
Computer aided verification
lecture 10

Model-checking success stories

Sławomir Lasota
University of Warsaw

1



LITERATURE

• G. J. Holzman, Mars Code. Commun. ACM 57(2):64-73, 2014.

• D.L. Detlefs, C.H. Flood, A.T. Garthwaite et al. Even better DCAS-based 
concurrent deques. in Distributed Algorithms, LNCS Vol. 1914, 59–73, 
2000. 

• S. Doherty et al. DCAS is not a silver bullet for nonblocking 
algorithm design. SPAA 2004: 216-224, 2004.

• T. Ball, V. Levin, S. K. Rajamani, A decade of software model checking with 
SLAM. Commun. ACM 54(7):68-76, 2011. 

• T. Ball, S. K. Rajamani, Bebop: a symbolic model-checker for boolean 
programs. SPIN Workshop, LNCS 1885, pp 113-130, 2000.

2

http://dblp.uni-trier.de/db/conf/spaa/spaa2004.html#DohertyDGFLMMSS04
http://dblp.uni-trier.de/db/conf/spaa/spaa2004.html#DohertyDGFLMMSS04
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410


Mars Code

3

What formal methods were applied by the flight software team in Jet 
Propulsion Lab, California Institute of  Technology (under a contract with 
NASA), to ensure Curiosity rover reached its destination on Mars on 5 
August 2012 (Mars Science Laboratory mission).



4

• The software that controls an interplanetary spacecraft must be designed 
to a high standard of reliability; any small mistake can lead to the loss of 
the mission.

• Extraordinary measures were taken in both hardware and software 
design to ensure spacecraft reliability and that the system can be 
debugged and repaired from millions of miles away.

• Model checking helped verify intricate software subsystems for the 
potential of race conditions and deadlocks. 

OVERVIEW



5

LANDING

Controlled by one of two computers 
allocated within the body of the rover.

The most critical part of the mission



PRECAUTIONS

• good software architecture: clean separation of concerns, modularity, strong 
fault-protection mechanisms, etc.

• good development process: clearly stated requirements, rigorous unit and 
integration testing, etc. 

6

Not covered:

• coding standards adopted

• code review process adopted

• software redundancy 

• application of model-checking

Covered:



CODING  STANDARDS
• risk-related, not style-related, coding rules

• correlate directly with observed risk based on 
software anomalies from earlier missions

• compliance with a coding rule must be 
automatically verifiable

• stratified into levels

• automatic compliance check using Coverity, 
Codesonar and Semmle tools

• flight software developers pass a course (and 
an exam) on the coding rules

7



• LOC-1: compliance with ISO-C99, no compiler or 
static analyzer warnings 

• LOC-2: predictable execution in embedded system 
context, e.g. loops must have statically verifiable upper 
bound on the nr of iterations

• LOC-3: e.g. minimal assertion density of 2% (2.26% 
reached in MSL mission)

• LOC-4 is the target level in mission-critical software, 
including on-board flight software: restricts use of C 
preprocessor, function pointers and pointer indirection

• LOC-6 is the target level in safety-critical and human-
related software: all rules from the guidelines by 
Motor Industry Software Reliability Association

8

CODING  STANDARDS



CODE  REVIEW
• tool-based human reviewers

• simultaneous use of different static analyzers: Coverity, Codesonar, Semmle 
and Uno to identify likely bugs with reasonable false-positives rate

• designed tool Scrub integrates output of analyzers with human-generated 
review comments

9



CODE  REVIEW
• 145 code reviews held between 2008 and 2012

• app. 10.000 review comments and 30.000 tool-generated reports discussed

• app.  84% of them led to changes in code (2% difference between human 
comments and tool-generated reports)

• 12.3% of disagree responses of module owners; in 33% a required fix has 
been done anyway

• 6.4% of discuss responses of module owners; in 60% let to changes in code

• critical modules have been reviewed several times

10



SOFTWARE  REDUNDANCY

• critical hardware components were duplicated, including rover’s CPU

• on MSL mission all assertions remained enabled during the flight; a failing 
assertion placed aircraft into a predefined safe state, to diagnose the cause 
of failure before resuming normal operation

• during the critical landing phase, main CPU and its backup were used 
simultaneously, running two different versions of controlling software; at 
failure of main CPU, the backup one was to take control (which did not 
happen)

11



MODEL  CHECKING
• SPIN previously used in Cassini, Deep Space One and Mars Exploration 

missions

• MSL mission: 120 parallel tasks under control of real-time operating system, 
high potential for race conditions

• SPIN + Modex used to verify critical software components:

• dual-CPU boot-control algorithm

• the non-volatile flash file system

• the data-management subsystem (the largest one, 45 k lines of code, 
converted manually to a Spin model of 1.600 lines)

• model-checking performed routinely after every change in the code of the 
file system, in most cases identified subtle concurrency flaws

12



MODEX

13

• user-defined test drivers

• native source-code fragments

• instrumented code fragments, extracted from the source code

Modex builds a SPIN model that consists of three parts:



DOUBLY LINKED LIST

14



MODEX

15

Modex configuration file: Test driver :



16

popRight returns ’’empty” even if queue is never empty



17

popRight returns the same element twice



18

First MSL wheel tracks on Mars:



SLAM

19



OVERVIEW

• 85% of system crashes of  Windows XP caused by bugs in third-party 
kernel-level device drivers (2003)

• one of reasons is the complexity of the Windows drivers API

• SLAM: automatically checks device drivers for certain correctness 
properties with respect to the Windows device drivers API

• now core of Static Driver Verifier, which in turn is a part of  Windows 
Driver Development Kit, a toolset for drivers developers, and integrated 
into Visual Studio

20



TECHNIQUES
• abstracts C programs into boolean programs and applies an abstraction 

refinement scheme (CEGAR)

• recursive (!) procedure calls (pushdown systems model-checking)

• symbolic model checking (BDDs)

• pointers (pointer-alias static analysis)

• principal application: checking whether device drivers satisfy driver API 
usage rules

• API rules specified in SLIC (Specification Language for Interface Checking)

• temporal safety properties
21



CEGAR

22



SLIC
• SLIC rule is essentially a safety automaton defined in C-like language that 

monitors a program’s execution at function calls and returns

• only reads program variables

•  can maintain information about history

• signals occurrence of a bad state

• SLIC rule consists of
• state variables
• event handlers

• binders to event in the code (not shown)

23



CODE  INSTRUMENTATION

24



CEGAR  AT  WORK

25



FROM  SLAM  TO  SDV
• fully automatic (“push-button technology’’):  SDV wraps SLAM with 

scripts, input-output routines,  API rules, environment model, etc.
• pre-defined API rules, written by SDV team;  different rules for different 

classes of APIs 
• verifies source code of a device driver agains a SLIC rule
• code of a device driver is sandwiched between:

• top layer “harness” (test drive): main routine that calls driver entry 
points
• bottom layer : stub for Windows API functions (overapproximation), 

which define “environment’’ model
• dynamic memory allocation in preprocessing in harness

26



API  RULES

• different requirements for different classes of APIs, for instance:
• NDIS API for network drivers 
• MPIO API for storage drivers
• WDM API for display drivers

• WDF API - high level abstraction for common device drivers
• WDF API rules influenced WDF design, to make it easier to verify !
• version 2.0 of SDV (Windows 7, 2009) comes with >210 API rules for 

WDM, WDF and NDIS APIs

27



WHO  WRITES  API  RULES ?

• typical end-user does not write API rules
• initially written and iteratively refined in cooperation with driver 

experts (“It takes a PhD to develop API rules”)
• since 2007 task of writing API rules transferred to software engineers
• in version 2.0 of SDV (Windows 7, 2009), out of >210 API rules:

• 60 written by formal verification experts
• 150 written or adapted by software engineers or interns

28



EFFECTIVENESS
• SDV 1.3: on average 1 bug per driver in 30 sample drivers shipped with 

Driver Development Kit for Windows Server 2003.
• SDV 1.4, 1.5 (Windows Vista drivers): on average 1 bug per 2 drivers in 

sample WDM drivers
• SDV 1.6: on average 1 bug per 3 drivers in sample WDF drivers for 

Windows Server 2008
• SDV 2.0: on average 1 bug per WDF driver, and few bugs in all WDM 

sample drivers
• on WDM drivers: 90% real bugs, 10% false alarms, 3.5% nonresults
• on WDF drivers: 98% real bugs, 2% false alarms, 0.04% nonresults
• during development of Windows 7, 270 real bugs found in 140 

WDM and WDF drivers

29



PERFORMANCE

• a run of SDV on 100 drivers and 80 SLIC rules:
• largest driver : 30 k lines of code
• total of all drivers: 450 k lines of code
• total time of 8.000 runs: 30 hours on 8-core machine
• timeout: SDV run is killed after 20 min
• results in 97% of runs

30



LIMITATIONS  OF  SLAM

• unable to handle large programs
• often gives useful result for control-dominated properties of programs 

with tens of thousands lines of code
• unable to establish properties that depend on heap data structure 

(sound overapproximation of pointers)
• no support for concurrent programs (there is however an extension 

towards concurrent programs: context-bounded analysis of pushdown 
systems)

31



Model-checking 
pushdown systems

32



Recursive programs

33

void dummy(unsigned int n) {
if (n<=1) return;

if (!even(n)) 
dummy(n-1);

else {
assert(depth of recursion 

  stack is even);
dummy(n/2);

}
}

dummy(7);



Recursive programs

33

void dummy(unsigned int n) {
if (n<=1) return;

if (!even(n)) 
dummy(n-1);

else {
assert(depth of recursion 

  stack is even);
dummy(n/2);

}
}

dummy(7);

bool b = even(n);

void dummy(bool b) {
if (*) return;

if (!b) 
dummy(!b);

else {
assert(depth of recursion 

  stack is even);
dummy(*)

}
}

dummy(F);



34

Reachability for pushdown systems



34

Reachability for pushdown systems

• pushdown system B, with states Q and stack alphabet S



34

Reachability for pushdown systems

• pushdown system B, with states Q and stack alphabet S
• Configurations of B:   Q × S*



34

Reachability for pushdown systems

• pushdown system B, with states Q and stack alphabet S
• Configurations of B:   Q × S*
• finite automaton A with states Q and input alphabet S



34

Reachability for pushdown systems

• pushdown system B, with states Q and stack alphabet S
• Configurations of B:   Q × S*
• finite automaton A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }



34

Reachability for pushdown systems

Theorem:  Pre*(regular set) is regular,
   and may be effectively computed in polynomial time

• pushdown system B, with states Q and stack alphabet S
• Configurations of B:   Q × S*
• finite automaton A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }



34

Reachability for pushdown systems

Theorem:  Pre*(regular set) is regular,
   and may be effectively computed in polynomial time

Corollary:  Configuration-to-configuration reachability is decidable 
  in polynomial time

• pushdown system B, with states Q and stack alphabet S
• Configurations of B:   Q × S*
• finite automaton A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }



Idea

35

Saturate transitions δ ⊆ Q × S × Q of automaton A:

(p, s, q) ∈ forced(δ’)  iff
PDA B has a push transition
(p, s, q₂, s₂s₁) such that
(q₂, s₂, q₁), (q₁, s₁, q) ∈ δ’

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

p

q

s

q₂

q₁
s₂

s₁

Outcome:  δ’(p, s, q)  in A   iff   (p, s) →* (q, ε) in B


