Computer aided verification

lecture |0

Model-checking success stories

Stawomir Lasota
University of Warsaw

LITERATURE

® (.| Holzman, Mars Code. Commun. ACM 57(2):64-73,2014.

® DL Detlefs, C.H. Flood, A.T. Garthwalte et al. Even better DCAS-based
concurrent deques. in Distributed Algorithms, LNCS Vol. 1914, 59-73,
2000.

® 5 Doherty et al. DCAS is not a silver bullet for nonblocking
algorithm design. SPAA 2004: 2 16-224, 2004

® [BalllV.Levin, S. K. Rgjamani, A decade of software model checking with
SLAM. Commun. ACM 54(7):68-76, 201 |.

® [Ball, S K Raamani, Bebop: a symbolic model-checker for boolean
programs. SPIN Workshop, LNCS 1885, pp | 13-130, 2000.

http://dblp.uni-trier.de/db/conf/spaa/spaa2004.html#DohertyDGFLMMSS04
http://dblp.uni-trier.de/db/conf/spaa/spaa2004.html#DohertyDGFLMMSS04
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410

Mars Code

What formal methods were applied by the flight software team in Jet
Propulsion Lab, California Institute of Technology (under a contract with
NASA), to ensure Curiosity rover reached its destination on Mars on 5
August 2012 (Mars Science Laboratory mission).

OVERVIEW

* The software that controls an interplanetary spacecraft must be designed

to a high standard of reliability; any small mistake can lead to the loss of
the mission.

» Extraordinary measures were taken in both hardware and software
design to ensure spacecraft reliability and that the system can be
debugged and repaired from millions of miles away.

* Model checking helped verify intricate software subsystems for the
botential of race condrtions and deadlocks.

LANDING

The most critical part of the mission

Backshell Interface Plate m Cruise Stage

Parachute Support {
Structure

Backshell
Parachute

Descent Stage
Bridal
Umbilical
Device
Rover
Heat Shield

Controlled by one of two computers
allocated within the body of the rover.

PRECAUTIONS

Not covered:

- good software architecture: clean separation of concerns, modularity, strong
fault-protection mechanisms, etc.

- good development process: clearly stated requirements, rigorous unit and
integration testing, etc.

Covered:
- coding standards adopted

» code review process adopted

» software redundancy

- application of model-checking

CODING STANDARDS

risk-related, not style-related, coding rules

correlate directly with observed risk based on
software anomalies from earlier missions

compliance with a coding rule must be lLOC-l: language compliance (2 rules) '

automatically verifiable

E.OC-Z predictable execution (10 rulesa

stratified into levels
E.OC-B: defensive coding (7 rules))

automatic compliance check using Coverity,
Codesonar and Semmle tools E-OC-4= code clarity (12 rules)

flight software developers pass a course (and [LOC-S: all MISRA shallrules (73 rules))

an exam) on the coding rules [ﬁ
LOC-6: all MISRA shouldrules (16 rules)

CODING STANDARDS

LOC-1: compliance with ISO-C99, no compiler or
static analyzer warnings

LOC-2: predictable execution in embedded system
context, e.g. loops must have statically verifiable upper
bound on the nr of iterations

LOC-3: e.g. minimal assertion density of 2% (2.267%
reached in MSL mission)

LOC-4 Is the target level in mission-critical software,
including on-board flight software: restricts use of C
preprocessor, function pointers and pointer indirection

LOC-6 is the target level in safety-critical and human-
related software: all rules from the guidelines by
Motor Industry Software Reliability Association

l LOC-1: language compliance (2 rules) '

L

o

OC-2: predictable execution (10 rules

—

L

—

OC-3: defensive coding (7 rules)

N

o

L

—/

OC-4: code clarity (12 rules

|

L

)

OC-5: all MISRA shallrules (73 rules)

N/

L

)

OC-6: all MISRA shouldrules (16 rules

N/

CODE REVIEW

* tool-based human reviewers

* simultaneous use of different static analyzers: Coverity, Codesonar, Semmle
and Uno to identify likely bugs with reasonable false-positives rate

» designed tool Scrub integrates output of analyzers with human-generated
review comments

Code
Comments

Peer Reviewer Developer Code Review Code Review
or Tool Created Response Resolution Closeout

No Fix

9

CODE REVIEW

* |45 code reviews held between 2008 and 2012

- app. 10.000 review comments and 30.000 tool-generated reports discussed

* app. 84% of them led to changes in code (2% difference between human
comments and tool-generated reports)

* 12.3% of disagree responses of module owners; in 33% a required fix has
been done anyway

* 6.4% of discuss responses of module owners; in 60% let to changes in code

* critical modules have been reviewed several times

SOFTWARE REDUNDANCY

» critical hardware components were duplicated, including rover's CPU

- on MSL mission all assertions remained enabled during the flight; a failing
assertion placed aircraft into a predefined safe state, to diagnose the cause

of failure before resuming normal operation

* during the critical landing phase, main CPU and its backup were used
simultaneously, running two different versions of controlling software; at

fallure of main CPU, the backup one was to take control (which did not
happen)

MODEL CHECKING

* SPIN previously used in Cassini, Deep Space One and Mars Exploration

MISSIONS

» MSL mission: 120 parallel tasks under control of real-time operating system,

hish potential for race condrtions

* SPIN + Modex used to verify critical software components:
* dual-CPU boot-control algorithm
- the non-volatile flash file system

* the data-management subsystem (the largest one, 45 k lines of code,

converted manually to a Spin model of 1.600 lines)

- model-checking performed routinely after every change in the code of the
file system, In most cases identified subtle concurrency flaws

12

MODEX

Modex builds a SPIN model that consists of three parts:
» user-defined test drivers

* native source-code fragments

* Instrumented code fragments, extracted from the source code

DOUBLY LINKED LIST

struct Node {valtype V; Node *L; Node *R}
Node *Dummy, *LeftHat, *RightHat;

initially
Dummy != null and
Dummy->L == Dummy and Dummy->R == Dummy and
LeftHat == Dummy and RightHat == Dummy

1 pushRight(val v) {

2 nd = new Node();

3 if (nd == null) return "full";

= nd->R = Dummy;

5 nd->V = v;

6 while (true) {

7 rh = RightHat;

8 rhR = rh->R;

9 if (rhR == rh) {

10 nd->L = Dummy;

11 lh = LeftHat;

12 if (DCAS(&RightHat, &LeftHat,
13 rh, 1h, nd, nd))
14 return "ok";

15 } else {

16 nd->L = rh;

17 if (DCAS(&RightHat, &rh->R,
18 rh, rhR, nd, nd))
19 return "ok";

20 }

21}

22 }

CO~NOOOPEWND -

[e e e e e e S Sl
QWO ~NOOTOMPWN-O
HJ

boolean DCAS(val *addril, val *addr2,
val oldl, val old2,
val newl, val new2) {
atomically {

if ((*addrl == oldl) &&

(*addr2 == 0ld2)) {
*addrl = newl;
*addr2 = new?2;

return true;
} else return false;
}

}

val

popRight() {

while (true) {

}

rh = RightHat;
1lh = LeftHat;
if (rh->R == rh) return "empty";
if (rh == 1h) {
if (DCAS(&RightHat, &LeftHat,
rh, 1h, Dummy, Dummy))
return rh->V;
} else {
rhl. = rh->L;
if (DCAS(&RightHat, &rh->L,
rh, rhL, rhL, rh)) {
result = rh->V;
rh->R = Dummy;
return result;
}
}

Modex configuration file:

%X
$X
X
X
%X
$X
D

pushRight
popRight
initialize
dcas malloc
sample reader
sample writer

#include “dcas.h”
%0 dcas.c

MODEX

Test driver:

void
sample reader (void)
{ int i, rv;

while (!RH)
{ /* wait */
}
for (1 = 0; i < 10; i++)
{ rv = popRight () ;
if (xrv != EMPTY)
{ assert(rv == i);
} else
(==
|
}
void
sample_writer (void)
{ int i, v;

initializel();

for (i = 0; i < 10; i++)
{ v = pushRight(i);

if (v != OKAY)

{ i--;

bl

popRight returns "empty’ even If queue Is never empty

CO~NONPWN =

S S e e T e el el el
HFOOWOO~NOOTDMPWN=O

22

pushRight(val v) {
nd = new Node();
if (nd == null) return "full";
nd->R = Dummy;
nd->V = v;
while (true) {
rh = RightHat;
rhR = rh->R;
if (rhR == rh) {
nd->L = Dummy;
lh = LeftHat;
if (DCAS(&RightHat, &LeftHat,
rh, 1lh, nd, nd))
return "ok";
} else {
nd->L = rh;
if (DCAS(&RightHat, &rh->R,
rh, rhR, nd, nd))
return "ok";

}

e A process p invokes popRight while the deque is not

empty. It loads its rh variable and is then delayed.

e While pis delayed, other processes complete pushRight

and popLeft operations so that the node referenced by
p’s rh variable is popped from the deque by a popLeft
without the deque being empty in that period.

e p resumes execution and performs the test at line 5,

finding rh—R =rh (because rh has been removed by a
popLeft), and returns empty.

val

CO~NOOOPEWND -

N = b b
QWO ~NOOTOMPWN-O
\TI

W

popRight() {

while (true) {

rh = RightHat;
1lh = LeftHat;
if (rh->R == rh) return "empty";
if (rh == 1h) {
if (DCAS(&RightHat, &LeftHat,
rh, 1h, Dummy, Dummy))
return rh->V;
} else {
rhl. = rh->L;
if (DCAS(&RightHat, &rh->L,
rh, rhL, rhL, rh)) {
result = rh->V;
rh->R = Dummy;
return result;
}
}

popRight returns the same element twice

1 pushRight(val v) {

2 nd = new Node();

3 if (nd == null) return "full";

= nd->R = Dummy;

5 nd->V = v;

6 while (true) {

7 rh = RightHat;

8 rhR = rh->R;

9 if (rhR == rh) {

10 nd->L = Dummy;

11 1h = LeftHat;

12 if (DCAS(&RightHat, &LeftHat,
13 rh, 1h, nd, nd))
14 return "ok";

15 } else {

16 nd->L = rh;

17 if (DCAS(&RightHat, &rh->R,
18 rh, rhR, nd, nd))
19 return "ok";

20 }

21 }

22 }

CO~NOOO P WN -

N = b b
COWO~NOOTOMPWN=-O
\.'J

val

}

Process p invokes popRight when the deque contains
more than one element and runs alone until it is about
to execute the DCAS at line 12, but is delayed before
it does so.

Other processes execute pushRight and popLeft oper-
ations so that p.rh=LeftHat and the deque contains
more than one element. This can be achieved without
modifying p.rh—L.

Some process ¢ invokes and completes an execution of
popLeft, and this operation removes the node refer-
enced by p.rh. This also happens without modifying
p.rh—L.

Other processes execute popRight operations so that
once again, p.rh = RightHat. The deque is now empty.
Finally, p executes its DCAS, which succeeds because
p.rh=RightHat and p.rh—L=p.rhL, and p returns
p.rh—V, which has already been returned by g.

popRight() {
while (true) {
rh = RightHat;
1lh = LeftHat;

i
i

}

}

f (rh->R == rh) return "empty";
f (rh == 1h) {
if (DCAS(&RightHat, &LeftHat,
rh, 1h, Dummy, Dummy))
return rh->V;
else {
rhl. = rh->L;
if (DCAS(&RightHat, &rh->L,
rh, rhL, rhL, rh)) {
result = rh->V;
rh->R = Dummy;
return result;

}

First MSL wheel tracks on Mars:

SLAM

OVERVIEW

* 85% of system crashes of Windows XP caused by bugs in third-party
kernel-level device drivers (2003)

* one of reasons Is the complexity of the Windows drivers AP

- SLAM: automatically checks device drivers for certain correctness
properties with respect to the Windows device drivers AP

* now core of Static Driver Verifier, which in turn is a part of Windows

Driver Development Kit, a toolset for drivers developers, and integrated
into Visual Studio

i=node-x); | ++ VI%

20

TECHNIQUES

» abstracts C programs into boolean programs and applies an abstraction
refinement scheme (CEGAR)

* recursive (1) procedure calls (pushdown systems model-checking)
» symbolic model checking (BDDs)
» pointers (pointer-alias static analysis)

- principal application: checking whether device drivers satisty driver AP|
usage rules

* APl rules specified in SLIC (Specification Language for Interface Checking)

» temporal safety properties

21

CEGAR

cprog P
i predicates
LB) S —» cprog P’ refine — % PpassesS
spec S mef of unsat.

symexec

CEGAR l validated trace

P fails S

type cprog, spec, predicates, bprog, trace, proof let rec cegar (P':cprog) (preds :predicates) : result =
let B: bprog = abstract (P'preds) in

type result = match check(B) with

Pass | Fail of trace | AbstractPass -> Pass

| AbstractFail(trc) ->

type chkresult = match symexec(P, trc) with

AbstractPass | AbstractFail of trace | Satisable -> Fail(trc)

| Unsatisable(prf) -> cegar P’ (preds U (refine prf))

type excresult =

Satisable | Unsatisable of proof let slam (P:cprog) (S:spec) : result =

cegar (instrument (P,S)) (preds S)

22

SLIC

SLIC rule is essentially a safety automaton defined in C-like language that

monitors a program’s execution at function calls and returns

On|>/ reads program variables state { enum {Unlocked, Locked} state; }
KeInitializeSpinLock.call {
can maintain information about history | e o
signals occurrence of a bad state KeAcquireSpinLock.call |
if (state == Locked) {
error;
SLIC rule consists of) CI |
state = Locked;
. }
- state variables)
- event handlers KeReleaseSpinLock.call
if (!(state == Locked)) {
. . error;
* binders to event in the code (not shown) eTeak!

state = Unlocked;

}

23

CODE INSTRUMENTATION

state { enum {Unlocked, Locked} state; }

KeInitializeSpinLock.call {
state = Unlocked;

}

1
KeAcquireSpinLock.call { 2
if (state == Locked) { 3
error; 4
} else { 5
state = Locked; 6
} 7
} 8
9
KeReleaseSpinLock.call { 10
if (!(state == Locked)) { 11
error; 12

} else {

state = Unlocked;

}

KeInitializeSpinLock();

if(x > 0)
KeAcquireSpinlock() ;
count = count+l;
devicebuffer[count] = localbuffer[count];
if(x > 0)
KeReleaseSpinLock() ;

24

W O 9 0 0 b W -

S N s s
Mo WO

{ state = Unlocked;
KeInitializeSpinLock();}

if(x > 0)
{ SLIC KeAcquireSpinLock_call () ;
KeAcquireSpinlock(); }
count = count+l;
devicebuffer[count] = localbuffer[count];
if(x > 0)
{ SLIC KeReleaseSpinLock call();
KeReleaseSpinLock () ; }

CEGAR Al WORK

1 1 bool {x > 0};
slic error() { assert(false); } 2T 2
3 ({state==Locked} := false; 3 {state==Locked} := false;
bool {state==Locked)}; 4 KelnitializeSpinLock(); 4 KelInitializeSpinLock();
5 5
SLIC KeAcquireSpinLock call() { 5 ace 3 aac
if({state==Locked}) slic error(); 7 if(*) 7 if({x>0})
else {state==Locked} := true; 8 { SLIC KeAcquireSpinLock call(); 8 { SLIC KeAcquireSpinLock call();
} B KeAcquireSpinLock(); } E KeAcquireSpinLock () ; }
10 skip; 10 skip;
SLIC KeReleaseSpinLock call() { 11 skip; 11 skip;
if (!{state==Locked}) slic error(); 12 if(*) 12 if({x>0})
else {state==Locked} := false; 13 { SLIC KeReleaseSpinLock Call(); 13 { SLIC KeReleaseSpinLock Call();
} 14 KeReleaseSpinLock(); } 14 KeReleaseSpinLock (); }
15 15
16 16

25

FROM SLAM TO SDV

» fully automatic (“'push-button technology’): SDV wraps SLAM with
scripts, Input-output routines, API rules, environment model, etc.

- pre-defined APl rules, written by SDV team; different rules for different
classes of APls

- verifies source code of a device driver agains a SLIC rule
» code of a device driver is sandwiched between:

* top layer "harness” (test drive): main routine that calls driver entry
points

* bottom layer: stub for Windows APl functions (overapproximation),
which define “environment” model

* dynamic memory allocation in preprocessing In harness

26

APl RULES

- different requirements for different classes of APls, for instance:

- NDIS API for network drivers

- MPIO API for storage drivers

- WDM API for display drivers

- WDF API - high level abstraction for common device drivers
- WDF API rules influenced WDF design, to make 1t easier to verify |

> version 2.0 of SDV (Windows 7, 2009) comes with >210 API rules for
WDM,WDF and NDIS APIs

27

WHO WRITES APl RULES ¢

* typical end-user does not write API rules

* Inrtially written and rteratively refined in cooperation with driver
experts (It takes a PhD to develop API rules™)

- since 2007/ task of writing AP| rules transferred to software engineers
* In version 2.0 of SDV (Windows /, 2009), out of >210 APl rules:
» 60 written by formal verification experts

- |50 written or adapted by software engineers or interns

28

FFFEC TIVENESS

- SDV |.3:0n average | bug per driver in 30 sample drivers shipped with
Driver Development Kit for Windows Server 2003.

- SDV 14, |.5 (Windows Vista drivers): on average | bug per 2 drivers In
sample WDM drivers

- SDV |.6: 0on average | bug per 3 drivers in sample WDF drivers for
Windows Server 2008

- SDV 2.0: on average | bug per WDF driver, and few bugs in all WDM
sample drivers

- on WDM drivers: 90% real bugs, 10% false alarms, 3.5% nonresults
- on WDF drivers: 98% real bugs, 2% false alarms, 0.04% nonresults

* during development of Windows 7, 2/0 real bugs found in 140
WDM and WDF drivers

29

PERFORMANCE

« a run of SDV on 100 drivers and 80 SLIC rules:

* largest driver: 30 k lines of code

 total of all drivers: 450 k lines of code

* total time of 8.000 runs: 30 hours on 8-core machine
* timeout: SDV run is killed after 20 min

* results In 9/% of runs

30

LIMITATIONS OF SLAM

unable to handle large programs

often gives useful result for control-dominated properties of programs
with tens of thousands lines of code

unable to establish properties that depend on heap data structure
(sound overapproximation of pointers)

no support for concurrent programs (there is however an extension
towards concurrent programs: context-bounded analysis of pushdown
systems)

31

Model-checking
pushdown systems

Recursive programs

vold dummy(unsigned int n) {
if (n<=1) return;

if (leven(n))
dummy(n-1);
else {
assert(depth of recursion
stack 1s even);

dummy(n/2);

}

dummy (7);

33

Recursive programs

vold dummy(unsigned int n) {
if (n<=1) return;

if (leven(n))
dummy(n-1);
else {
assert(depth of recursion
stack 1s even);

dummy(n/2);

}

dummy (7);

33

bool b = even(n);

void dummy(bool b) {

if (*) return;

if (Ib)
dummy(!b);
else {
assert(depth of recursion
stack 1s even);

dummy (*)

}

dummy (F);

Reachabllity for pushdown systems

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5

34

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5
 Configurations of B: Q x 5*

34

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5
 Configurations of B: Q x 5*
- finite automaton A with states Q and input alphabet S

34

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5

 Configurations of B: Q x 5*
- finite automaton A with states Q and input alphabet S

- L(A) ={ (g, w) : A accepts w from state g }

34

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5

- Configurations of B: Q x 5*
- finite automaton A with states Q and input alphabet S

- L(A) ={ (g, w) : A accepts w from state g }

[Theorem: Pre*(regular set) is regular,
and may be effectively computed in polynomial time

34

Reachability for pushdown systems

* pushdown system B, with states Q and stack alphabet 5

- Configurations of B: Q x 5*
- finite automaton A with states Q and input alphabet S

- L(A) ={ (g, w) : A accepts w from state g }

[Theorem: Pre*(regular set) is regular,
and may be effectively computed in polynomial time

Corollary: Configuration-to-configuration reachabllity is decidable
in polynomial time

34

Saturate transitions © € Q x S x Q of automaton A;

& :=0 U pop
repeat

& := 8 U forced (&)
until forced(8’) C &’

Outcome: d'(p,s,q) inA iff (p,s) 2% (q,€)inB

p
(p, s, q) € forced(0) iff
PDA B has a push transition S 4
(P, s, g2, 5251) such that S1

(d2,52,91), (q1,51,9) € O’

35 q

S2

g2

