
Computer aided
verification

lecture 9

Abstract interpretation
Sławomir Lasota

University of Warsaw

Literature

• F. Nielson, H.R. Nielson, C. Hankin, Principles of Program
Analysis, Springer, 2005.

• http://www.imm.dtu.dk/~riis/PPA/slides2.pdf

• V. D'Silva, D. Kroening, G. Weissenbacher, A Survey of
Automated Techniques for Formal Software Verification.
IEEE Trans. on CAD of Integrated Circuits and Systems
27(7):1165-1178, 2008.

http://www2.imm.dtu.dk/%7Eriis/PPA/ppa.html
http://www2.imm.dtu.dk/%7Eriis/PPA/ppa.html
http://www2.imm.dtu.dk/%7Eriis/PPA/ppa.html
http://www2.imm.dtu.dk/%7Eriis/PPA/ppa.html
http://www.imm.dtu.dk/~riis/PPA/slides4.pdf
http://www.imm.dtu.dk/~riis/PPA/slides4.pdf
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410

Pionieers

• P. Naur 1965

• P. Cousot, R. Cousot 1977

Approximate analysis

surely ✔ perhaps ✘

123 · 457 + 76543
?
= 132654

123 · 457 + 76543
?
= 132654

6 · 7 + 7

?
= 3 (mod 9)

6 + 7

?
= 3 (mod 9)

the least information

the greatest information

Approximate analysis

• static analysis

• source code is analyzed (control-flow diagram)

• false alarms (false positives)

• typically oriented towards specific properties

• fully automatic

• scalable

• a diagnostic information if error

Approximate analysis - methods

• data-flow analysis

• control-flow analysis

• type analysis

• WCET analysis

• ...

• abstract interpretation

Approximate analysis - applications

• code optimization, program transformations

• program verification (static analysis)

• estimation of quality of code

• abstract interpretation - systematization

Code optimization
• constants propagation (at compile time)

• copies propagation

• available expressions analysis (elimination of comp.)

• live variables analysis (elimination of dead code)

• definition-use and use-definition analysis

• strictness analysis

• array bounds analysis

• ...

Program verification
• division by 0, exceptions

• pointers

• NULL dereferences

• static and dynamic data (stack and heap)

• shape analysis

• aliasing analysis

• array bounds

• detection of invariants

• ...

Data-flow analyses

Data-flow analysis

(while-programs)

finite set of control locations

State = S ⇥ Store

Store = Var ! Val

S = {1, . . . , n}, ✓ S ⇥ S

init(S) ✓ S

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

Reaching definitions analysis

In each control location compute the set of
assignments that possibly have been executed (and
not „overwritten”) prior to reaching this location.

Reaching definitions analysis

Reaching definitions analysis

kill(i) gen(i) ∪

• formalize the problem as a
set of equations

• variables represent
information before and
after each instruction

• the lest solution

• iterative algorithm

Reaching definitions analysis

x

exit

i = x

entry

i \ kill(i) [gen(i)

x

entry

i =
[

j i

x

exit

j

x

entry
1 = {(x, ?), (y, ?), (z, ?)}

we are interested in the least solution

Reaching definitions analysis

x

exit

i = x

entry

i \ kill(i) [gen(i)

x

entry

i =
[

j i

x

exit

j

x

entry
1 = {(x, ?), (y, ?), (z, ?)}

we are interested in the least solution

kill(b) = ;

kill(skip) = ;

gen(skip) = ;
gen(b) = ;

kill(z := e) = {(z, ?)} [{(z, j) | j 2 S}

gen([z := e]i) = {(z, i)}

Reaching definitions analysis

Reaching definitions analysis

we are interested in the least solution

solutions: x

entry
l0 ◆ {(x, ?), (y, ?), (z, l)}

Available expressions analysis

In each control location compute the set of
expressions whose value is surely computed

whenever this location is entered.

x

exit

i = x

entry

i \ kill(i) [gen(i)

x

entry

i =
\

j i

x

exit

j

x

entry
1 = ;

we are interested in the greatest solution

Available expressions analysis

we are interested in the greatest solution

i x

entry

i x

exit

i
x

exit

i = x

entry

i \ kill(i) [gen(i)

x

entry

i =
\

j i

x

exit

j

x

entry
1 = ;

Available expressions analysis

we are interested in the greatest solution

two solutions:

x

exit

i = x

entry

i \ kill(i) [gen(i)

x

entry

i =
\

j i

x

exit

j

x

entry
1 = ;

x

entry
l0 = {x+ y}, ;

Available expressions analysis

Live variables analysis

In each program location compute the set of variables
that are live (possibly used in future before being

redefined) when exiting this location.

backwards analysis

Live variables analysis

x

exit

i =
[

i j

x

entry

j

x

entry

i = x

exit

i \ kill(i) [gen(i)

x

exit

6

= ;

we are interested in the least solution

Very busy expressions analysis

In each control location compute the set of expressions
that will surely be computed in future before redefinition

of any of variables appearing in the expression.

backwards analysis

Very busy expressions analysis

x

entry

i = x

exit

i \ kill(i) [gen(i)

x

entry
i =

\

i j

x

entry
j

x

exit

6

= ;

we are interested in the greatest solution

Very busy expressions analysis

x

entry

i = x

exit

i \ kill(i) [gen(i)

x

entry
i =

\

i j

x

entry
j

x

exit

6

= ;

we are interested in the greatest solution

two solutions:

x

exit

l = {x+ 1}, ;

Abstract interpretation

Generalization

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n}, ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i)

x

entry

i =
G

j i

x

exit

j t f

init

(x)

finit : init(S) ! L

Generalization

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n}, ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i)

x

entry

i =
G

j i

x

exit

j t f

init

(x)

finit : init(S) ! L

abstract
interpretation

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Var⇥ (S [{?}))

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Expr)

P(Var⇥ (S [{?}))

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Expr)

P(Var)

P(Var⇥ (S [{?}))

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Expr)

P(Expr)

P(Var)

P(Var⇥ (S [{?}))

Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Expr)

P(Expr)

P(Var)

P(Var⇥ (S [{?}))

Var ! Z>

Distributivity

f(s)(l1 t l2) = f(s)(l1) t f(s)(l2)

f(s)(l) = l \ l1 [l2

holds whenever:

may not hold

L = P(D) D � finite

Constants propagation

In each control location compute the set of variables that
have a constant value independent from the history.

L = Var ! Z>

f(6)(l1 t l2)(z) = >
f(6)(l1)(z) = f(6)(l2)(z) = 25

l1(y) = 5 l2(y) = �5

Constants propagation

Algorithm

the lest fix-point of the monotonic function

LS⇥{entry,exit} with the coordinate-wise ordercomplete lattice

x

exit

i = f(x)(xentry

i)

x

entry

i =
G

j i

x

exit

j t f

init

(x)

~x = ~

f(~x)

~f

iterative algorithm

we assume that L has only finite chains

LFP

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n}, ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i)

x

entry

i =
G

j i

x

exit

j t f

init

(x)

finit : init(S) ! L

MOP

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n}, ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

finit : init(S) ! L

yentryi =
G

{f(p) | p 2 pathsentry(i)}

yexiti =
G

{f(p) | p 2 pathsexit(i)}

MOP LFPv

~y v ~x

MOP LFPv

~y v ~xnot always computable

MOP = LFP

~y = ~x

when distributivity holds

Abstract domains

Non-relational domains

• signs

• intervals

• parity

• congruence modulo k

[n,m]

P(�, 0,+)

Expressive power

• signs

• intervals

• DBM (difference bounds matrices)

• octagon

• octahedra

• polyhedra
a1x1 + . . . + anxn  c

+
� x

+
� y  c

x� y  c

+
� x1 . . .

+
� xn  c

pr
ec

is
io

n

Pointer analyses domains

• points-to graphs

Example: alias analysis

a and b do not point to the same location

x and y may point to the same location

Abstract semantics

S = {A, B, C, D, E, F, G}

State = S ⇥ Store

Store = Var ! Val

concrete
semantics

abstract
semantics

concrete
semantics

abstract
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

Domains

Abstract semantics

? 7! ?
odd, even,> 7! >

? 7! ?
odd 7! even

even 7! odd

> 7! >

concrete
semantics

abstract
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

do these two semantics agree?

Representation function

concrete
semantics

abstract
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

� : V ! L

monotonic
�(v) =

(
even if v even

odd if v odd

Representation function

concrete
semantics

abstract
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

the best approximation

� : V ! L

monotonic
�(v) =

(
even if v even

odd if v odd

7 22

β β

odd even

β is not always a homomorphism!

7 22

β β

odd even

β is not always a homomorphism!

β
β

[n 7! 1,m 7! �2]
m := n+m

m := n+m

[n 7! 1,m 7! �1]

[n 7! +,m 7! �] [n 7! +,m 7! >]

[n 7! +,m 7! �]v

standard
semantics

abstract
semantics

standard
semantics

abstract
semantics

cumulative
semantics

{5}
{1}

{5, 16, 8, 4, 2} {16, 8, 4, 2}

{5}

{8, 4, 2, 1}

{16}

Abstraction function

concrete
semantics

abstract
semantics

L = Var ! {?, even, odd,>}

abstraction

P(V)

↵ : P(V) ! L ↵(X) = t{�(v) | v 2 X}

{5}
{1}

{5, 16, 8, 4, 2} {16, 8, 4, 2}

{5}

{8, 4, 2, 1}

{16}

odd

odd

even

even

odd

>

>

Abstraction function (example)
α maps a set of concrete values to the most exact

abstract value

Concretization function (example)
γ maps an abstract value to the set of represented

concrete values

x ⊆ γ⋅α(x)

α⋅γ(a) ≤ a

α⋅γ(a) ≤ a

>0.5

Galois connection

LP(V)

the most exact
abstraction

set of represented
values

Concrete and abstract domain

Example

P(Z)

↵(X) = the smallest interval containing X

�(I) = I

Intervals

M is more abstract (less exact) than L

Two abstract domains

Example

Intervals

Example

Intervals

