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Approximate analysis

surely ✔ perhaps ✘



123 · 457 + 76543
?
= 132654



123 · 457 + 76543
?
= 132654

6 · 7 + 7

?
= 3 (mod 9)

6 + 7

?
= 3 (mod 9)





the least information

the greatest information



Approximate analysis

• static analysis

• source code is analyzed (control-flow diagram)

• false alarms (false positives)

• typically oriented towards specific properties

• fully automatic

• scalable

• a diagnostic information if error



Approximate analysis - methods

• data-flow analysis

• control-flow analysis

• type analysis

• WCET analysis

• ...

• abstract interpretation



Approximate analysis - applications

• code optimization, program transformations

• program verification (static analysis)

• estimation of quality of code

• abstract interpretation - systematization



Code optimization
• constants propagation (at compile time)

• copies propagation

• available expressions analysis (elimination of comp.)

• live variables analysis (elimination of dead code)

• definition-use and use-definition analysis

• strictness analysis

• array bounds analysis

• ...



Program verification
• division by 0, exceptions

• pointers

• NULL dereferences

• static and dynamic data (stack and heap)

• shape analysis

• aliasing analysis

• array bounds

• detection of invariants

• ...



Data-flow analyses



Data-flow analysis

(while-programs)



finite set of control locations

State = S ⇥ Store

Store = Var ! Val

S = {1, . . . , n},  ✓ S ⇥ S

init(S) ✓ S



Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...



Reaching definitions analysis

In each control location compute the set of 
assignments that possibly have been executed (and 
not „overwritten”) prior to reaching this location. 



Reaching definitions analysis



Reaching definitions analysis

kill(i)   gen(i)   ∪

• formalize the problem as a 
set of equations 

• variables represent  
information before and 
after each instruction

• the lest solution

• iterative algorithm



Reaching definitions analysis

x

exit

i = x

entry

i \ kill(i) [ gen(i)

x

entry

i =
[
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x

exit

j

x

entry
1 = {(x, ?), (y, ?), (z, ?)}

we are interested in the least solution



Reaching definitions analysis

x

exit

i = x

entry

i \ kill(i) [ gen(i)

x

entry

i =
[
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x

exit

j

x

entry
1 = {(x, ?), (y, ?), (z, ?)}

we are interested in the least solution

kill(b) = ;

kill(skip) = ;

gen(skip) = ;
gen(b) = ;

kill(z := e) = {(z, ?)} [ {(z, j) | j 2 S}

gen([z := e]i) = {(z, i)}



Reaching definitions analysis



Reaching definitions analysis

we are interested in the least solution

solutions: x

entry
l0 ◆ {(x, ?), (y, ?), (z, l)}



Available expressions analysis

In each control location compute the set of 
expressions whose value is surely computed 

whenever this location is entered. 
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exit

i = x

entry

i \ kill(i) [ gen(i)

x

entry

i =
\

j i

x

exit

j

x

entry
1 = ;

we are interested in the greatest solution

Available expressions analysis



we are interested in the greatest solution

i x

entry

i x

exit
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Available expressions analysis



we are interested in the greatest solution

two solutions: 

x

exit

i = x

entry

i \ kill(i) [ gen(i)

x

entry

i =
\

j i

x

exit

j

x

entry
1 = ;

x

entry
l0 = {x+ y}, ;

Available expressions analysis



Live variables analysis

In each program location compute the set of variables 
that are live (possibly used in future before being 

redefined) when exiting this location.

backwards analysis



Live variables analysis

x

exit

i =
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i j

x

entry

j
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entry
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x

exit
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we are interested in the least solution



Very busy expressions analysis

In each control location compute the set of expressions 
that will surely be computed in future before redefinition 

of any of variables appearing in the expression. 

backwards analysis



Very busy expressions analysis

x

entry

i = x

exit

i \ kill(i) [ gen(i)
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entry
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entry
j
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6

= ;

we are interested in the greatest solution



Very busy expressions analysis

x

entry

i = x

exit

i \ kill(i) [ gen(i)

x

entry
i =

\

i j

x

entry
j

x

exit

6

= ;

we are interested in the greatest solution

two solutions:

x

exit

l = {x+ 1}, ;



Abstract interpretation



Generalization

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n},  ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i )

x

entry

i =
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j i

x

exit

j t f

init

(x)

finit : init(S) ! L



Generalization

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n},  ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i )

x

entry

i =
G

j i

x

exit

j t f

init

(x)

finit : init(S) ! L

abstract 
interpretation
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• live variables analysis

• very busy expressions analysis

• constants propagation

• ...
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Data-flow analyses

• reaching definitions analysis

• available expressions analysis

• live variables analysis

• very busy expressions analysis

• constants propagation

• ...

P(Expr)

P(Expr)

P(Var)

P(Var⇥ (S [ {?}))

Var ! Z>



Distributivity

f(s)(l1 t l2) = f(s)(l1) t f(s)(l2)

f(s)(l) = l \ l1 [ l2

holds whenever:

may not hold

L = P(D) D � finite



Constants propagation

In each control location compute the set of variables that 
have a constant value independent from the history.  



L = Var ! Z>

f(6)(l1 t l2)(z) = >
f(6)(l1)(z) = f(6)(l2)(z) = 25

l1(y) = 5 l2(y) = �5

Constants propagation



Algorithm

the lest fix-point of the monotonic function

LS⇥{entry,exit} with the coordinate-wise ordercomplete lattice

x

exit

i = f(x)(xentry

i )

x

entry

i =
G

j i

x

exit

j t f

init

(x)

~x = ~

f(~x)

~f

iterative algorithm

we assume that L has only finite chains



LFP

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n},  ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

x

exit

i = f(x)(xentry

i )

x

entry

i =
G

j i

x

exit

j t f

init

(x)

finit : init(S) ! L



MOP

- abstract space

- complete lattice

L

(L,v)

t,u - bounds

S = {1, . . . , n},  ✓ S ⇥ S

init(S) ✓ S

f : S ! Mon(L ! L)

finit : init(S) ! L

yentryi =
G

{f(p) | p 2 pathsentry(i)}

yexiti =
G

{f(p) | p 2 pathsexit(i)}



MOP        LFPv

~y v ~x



MOP        LFPv

~y v ~xnot always computable



MOP    =    LFP

~y = ~x

when distributivity holds



Abstract domains



Non-relational domains

• signs

• intervals

• parity

• congruence modulo k

[n,m]

P(�, 0,+)







Expressive power

• signs

• intervals

• DBM (difference bounds matrices)

• octagon

• octahedra

• polyhedra
a1x1 + . . . + anxn  c

+
� x

+
� y  c

x� y  c

+
� x1 . . .

+
� xn  c

pr
ec

is
io

n



Pointer analyses domains

• points-to graphs



Example: alias analysis

a and b do not point to the same location 

x and y may point to the same location



Abstract semantics



S = {A, B, C, D, E, F, G}

State = S ⇥ Store

Store = Var ! Val



concrete 
semantics

abstract 
semantics



concrete 
semantics

abstract 
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

Domains



Abstract semantics

? 7! ?
odd, even,> 7! >

? 7! ?
odd 7! even

even 7! odd

> 7! >



concrete 
semantics

abstract 
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

do these two semantics agree?



Representation function

concrete 
semantics

abstract 
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

� : V ! L

monotonic
�(v) =

(
even if v even

odd if v odd



Representation function

concrete 
semantics

abstract 
semantics

V = Store = Var ! Z

L = Var ! {?, even, odd,>}

the best approximation

� : V ! L

monotonic
�(v) =

(
even if v even

odd if v odd



7 22

β β

odd even



β is not always a homomorphism!

7 22

β β

odd even



β is not always a homomorphism!

β
β

[n 7! 1,m 7! �2]
m := n+m

m := n+m

[n 7! 1,m 7! �1]

[n 7! +,m 7! �] [n 7! +,m 7! >]

[n 7! +,m 7! �]v



standard 
semantics

abstract 
semantics



standard 
semantics

abstract 
semantics

cumulative 
semantics



{5}
{1}

{5, 16, 8, 4, 2} {16, 8, 4, 2}

{5}

{8, 4, 2, 1}

{16}



Abstraction function

concrete 
semantics

abstract 
semantics

L = Var ! {?, even, odd,>}

abstraction

P(V )

↵ : P(V ) ! L ↵(X) = t{�(v) | v 2 X}



{5}
{1}

{5, 16, 8, 4, 2} {16, 8, 4, 2}

{5}

{8, 4, 2, 1}

{16}



odd

odd

even

even

odd

>

>



Abstraction function (example)
α maps a set of concrete values to the most exact 

abstract value



Concretization function (example)
γ maps an abstract value to the set of represented 

concrete values



x  ⊆  γ⋅α(x)



α⋅γ(a)  ≤  a



α⋅γ(a)  ≤  a

>0.5



Galois connection



LP(V )

the most exact 
abstraction

set of represented 
values

Concrete and abstract domain



Example

P(Z)

↵(X) = the smallest interval containing X

�(I) = I

Intervals



M is more abstract (less exact) than L

Two abstract domains



Example

Intervals



Example

Intervals


