
Decidability of DPDA Language Equivalence
via First-Order Grammars

Petr Jančar
Techn. Univ. Ostrava, Czech Republic (www.cs.vsb.cz/jancar)

Abstract—The decidability of language equivalence of deter-
ministic pushdown automata (DPDA) was established by G.
Sénizergues (1997, 2001), who thus solved a famous long-standing
open problem. A simplified proof, also providing a primitive re-
cursive complexity upper bound, was given by C. Stirling (2002).
In this paper, the decidability is re-proved in the framework
of first-order terms and grammars (given by finite sets of root-
rewriting rules). The proof is based on the abstract ideas used in
the previous proofs, but the chosen framework seems to be more
natural for the problem and allows a short presentation which
should be transparent for a general computer science audience.
The approach can be also easily adapted to provide the mentioned
complexity bound, and to extend the decidability to bisimulation
equivalence of (nondeterministic) pushdown automata, i.e. to
show a result which was also established by G. Sénizergues (1998,
2005).

I. I NTRODUCTION

Language equivalence of deterministic pushdown automata
(DPDA) is a famous problem in language theory. The decid-
ability question for this problem was posed in the 1960s [7],
then a series of works solving various subcases followed, until
the question was answered positively by Sénizergues in 1997,
with the full journal version [12]. G. Sénizergues was awarded
the Gödel prize in 2002 for this significant achievement.

Later Stirling [16] and also Sénizergues [13] provided
simpler proofs than the original proof. A modified version,
showing also a (nonelementary) primitive recursive complexity
upper bound, appeared as a conference paper by Stirling in
2002 [17]; Sénizergues showed a “more reasonable” upper
bound for a subclass in [15]. Sénizergues also generalised
the decidability result to bisimulation equivalence over aclass
of nondeterministic pushdown automata [14]. Unfortunately,
even the simpler proofs seem rather long and technical, which
does not ease further research regarding, e.g., the complexity.
(No nontrivial lower bound for DPDA-equivalence seems to be
known; the general bisimilarity problem is ExpTime-hard [9].)

The algorithms are based on the following key points. If
two configurations are nonequivalent then there is a shortest
word witnessing this fact, answ-word for short. If two
configurations are equivalent then any attempt to (stepwise)
build a potential sw-word can be contradicted: an (algorith-
mically verifiable) proof of a contradiction is produced after
a (sufficiently long) prefix of the potential sw-word has been
constructed.

This work was supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070),
and by the Czech Grant Agency project GAČR:P202/11/0340.

One reason why the DPDA problem turned out so intricate
seems to be the lack of structure of configurations (strings
of symbols), which calls for a richer framework. This is
also discussed by Stirling [16] who refers to the algebraic
theory of linear combinations of boolean rational series built
by Sénizergues, and replaces it by a process calculus whose
processes are derived from determinising strict grammars.
Another difficulty is that providing a proof of equivalence for
a given pair of states (i.e. structured objects representing con-
figurations) seems to require some measures and conditional
rules in the respective logical systems, to keep their soundness.
Stirling used (simpler) bisimulation approximants instead of
Sénizergues’s system of weights.

We can view the transformationsTB, TC in [12] as two
main means for contradicting that a particular word is a prefix
of an sw-word; Stirling [16] uses the rules BAL and CUT.
BAL (“balancing”) aims at making the (structured) states in
the pairs along the supposed sw-word close to each other,
i.e. having “bounded (different) heads” and the same (maybe
large) “tails.” CUT aims at “cutting away” large tails soundly.

Here we re-prove the decidability of DPDA language
equivalence in the framework of (deterministic) first-order
grammars, i.e. systems of first-order terms with finitely many
root-rewriting rules. The framework ofregular terms(possibly
infinite terms with only finitely many different subterms),
completedwith substitutions, seems to be a more natural and
simpler substitute of the algebraic structures in the previous
works. In fact, close relations between the frameworks of
(D)PDA, strict deterministic grammars and first-order schemes
were recognized long ago (see, e.g., references in [5] and [12]).

The overall strategy of the presented proof is not new, it is
close to [16] in particular, but the proof is no direct translation
of a previous proof into another framework. The previous
logical systems are replaced with aProver-Refuter game
whose soundness is obvious. The CUT rule is replaced with a
notion of afinite basis, generating the equivalence relation in a
certain sense. The chosen framework and the new ingredients
allow to present a direct, short, and easily understandable
proof. Moreover, the presentation is tailored so that the com-
plexity result [17] and the generalization to bisimilarity[14]
can be added smoothly. (See http://arxiv.org/abs/1010.4760
for complexity; the author plans a different arxiv-paper on
bisimilarity.)

The related research is rich and active. There are compre-
hensive references in Sénizergues’s and Stirling’s papers to
the prior research; for recent research on related complexity

Fig. 1. Graph presentations of terms

questions and on higher-order schemes, we can refer, e.g., to
[2], [3], [6], [8], [10], [11] and the references therein.

The (sub)section titles show the structure of the paper.
Section II sets “the stage.” Section III describes the (obviously
sound) Prover-Refuter game. Section IV shows that Prover has
a strategy which is complete (enables to prove equivalence for
all equivalent pairs). Hence searching for an sw-word and for
an equivalence proof in parallel gives a desired algorithm.

II. BASIC NOTIONS AND SIMPLE OBSERVATIONS

N denotes the set{0, 1, 2, . . .} of natural numbers. For a set
A, by CARD(A) we denote its cardinality (i.e. the number
of elements whenA is finite). A∗ denotes the set of finite
sequences of elements ofA, also calledwords (over A). By
|w| we denote thelength of w ∈ A∗. If w = uv thenu is a
prefix of w. The empty sequenceis denotedε (thus |ε| = 0).

First-Order Regular Terms and Substitutions

We recall the standard notion offirst-order terms, assuming
a fixed countable set VAR = {x1, x2, x3, . . . } of variables.
Given a setF = {f1, f2, . . . , fk} of function symbolswhere
arity(f) denotes the arity off ∈ F , an example of aterm
over F is E1 = f2(f1, f3(x5, x1), x5), assumingk ≥ 3 and
arity(f1) = 0, arity(f2) = 3, arity(f3) = 2. We can
recognize the syntactic tree ofE1 in the left part of Fig. 1.

Formally we viewterms asthe partial mappings

E : N
∗ → F ∪ VAR

where γ i (γ ∈ N
∗, i ∈ N) belongs toDOM(E) iff γ ∈

DOM(E) and1 ≤ i ≤ arity(E(γ)); we stipulatearity(xj) =
0 for all xj ∈ VAR. The expressions likef2(f1, f3(x5, x1), x5)
or x17 are thus viewed as representing partial mappings
N

∗ → F ∪ VAR (e.g.,E1(ε) = f2, E1(〈2, 1〉) = x5, etc.).
Given a termE and γ ∈ DOM(E), the term Eγ where

DOM(Eγ) = {δ | γδ ∈ DOM(E)} and Eγ(δ) = E(γδ) is a
subtermof E, occurring in E at γ, at depth|γ|. A term E

is finite if DOM(E) is finite. A term is regular if it has only
finitely many subterms.

A graph presentationGP (of someregular terms) is afinite
graph whose nodes are labelled with elements ofF ∪ VAR.
Each node labelled withf hasm outgoing arcs labelled with
1, 2, . . . , m where m = arity(f); the nodes labelled with
variablesxi (and the nodes labelled with nullary function
symbols) have no outgoing arcs. A termE is presented by
a graphGP when a noden is specified as theroot of E; we
refer to such a graph as toGPE . A term can have more than

Fig. 2. CreatingGPEσ from GPE and GPσ

one presentation. E.g.,E1, E2 presented in Fig. 1 are obviously
the same terms;E3 in Fig. 1 (where we now ignore the dotted
arc leading tox7) is an infinite regular term.

Convention.By “terms” we further mean “regular terms”
(i.e. those having finite graph presentations). We do not
consider the empty term with the empty domain; we might
use a special nullary (function) symbol⊥ instead.

We note that the equality of two (regular) terms can be ef-
ficiently checked by standard partition-refinement techniques:
Given a graph presentationGP, for each noden of GP we
consider the (sub)term rooted inn. We first partition all these
terms according to the root-labels, and then we are refining the
partition according to the (current) partition-classes ofroot-
successors, until the stable partition (the fixpoint) is found.

By TERMSF we denote the set of all (regular) terms over
F . A substitutionσ is a mappingσ : VAR → TERMSF whose
support SUPP(σ) = {xi | σ(xi) 6= xi} is finite. The finite-
support restriction allows us to present any substitutionσ by
a finite graphGP where eachxi ∈ SUPP(σ) has an associated
node inGP, namely the root ofσ(xi); we refer toGPσ then.
For a termE and a substitutionσ, we defineEσ (the term
resulting fromE by applyingσ) as expected:γ ∈ DOM(Eσ)
iff either γ ∈ DOM(E) and E(γ) 6∈ VAR, in which case
(Eσ)(γ) = E(γ), or γ = γ1γ2, γ1 ∈ DOM(E), E(γ1) = xj ,
γ2 ∈ DOM(σ(xj)), in which case(Eσ)(γ) = (σ(xj))(γ2).

Fig. 2 illustrates how to get a presentation ofEσ from
presentationsGPE , GPσ of E and σ, respectively: each arc
leading to (a node labelled with)xi ∈ SUPP(σ) in GPE is
redirected to the node associated withxi in GPσ. Note that if
E = xi thenEσ = xiσ = σ(xi).

By Eσ1σ2 we mean (Eσ1)σ2, but we also define the
composition of substitutionsσ1 o σ2, denoted justσ1σ2: for
σ = σ1σ2 andxi ∈ VAR we haveσ(xi) = (σ1(xi))σ2; thus
SUPP(σ1σ2) ⊆ SUPP(σ1) ∪ SUPP(σ2). We can easily check
Eσ1σ2 = (Eσ1)σ2 = Eσ whereσ = σ1σ2; more generally,
the compositionis associative, i.e., (σ1σ2)σ3 = σ1(σ2σ3).

Finally we note thatE3 in Fig. 1 can be viewed as arising
from (a finite term)E = f2(x1, f3(x5, x7), x1) (represented
like E3 but usingthe dotted arcin Fig. 1) by applying the
substitutionσ′ = {(x7, E)}, i.e. σ′ whereSUPP(σ′) = {x7}
andσ′(x7) = E, repeatedly forever; henceE3 = Eσ′σ′σ′
(To getGPE3 from GPE , each arc leading tox7 is redirected to
the root.) Note that the auxiliary variablex7 could be replaced
with any xi not occuring inE3.

Later we also refer to thepresentation sizePRESSIZE(E),
by which we mean thesizeof thesmallest graph presentation

Fig. 3. A (finite) deterministic labelled transition system

of E; similarly for PRESSIZE(σ). We can use any natural
notion of size which takes also the indices of variables into
account; e.g., we can take the number of nodes and arcs
plus the bit-size of all labels. We thus have only finitely
many termsE with PRESSIZE(E) ≤ b, for any given
boundb ∈ N. Another natural property which we assume is
PRESSIZE(Eσ) ≤ PRESSIZE(E) + PRESSIZE(σ).

Labelled Transition Systems and Trace Equivalence

A labelled transition system, anLTS for short, is a tupleL =
(S,A, (

a
−→)a∈A) whereS is the set ofstates, A the set of

actionsand
a

−→⊆ S×S is the set oftransitions labelled with
a ∈ A, calleda-transitions. Fig. 3 shows a finite LTS (in fact,
a det-LTS as defined later). The relations

w
−→⊆ S × S for

w ∈ A∗ are defined as expected:s
ε

−→ s ; if s
a

−→ s′ and
s′

u
−→ s′′ thens

au
−→ s′′. In Fig. 3 we have, e.g.,s1

bab
−→ s3.

By writing s
w

−→ we mean thats enables(a trace)w ∈ A∗,
i.e., s

w
−→ s′ for somes′. Trace equivalence∼ on S, and its

“strata” ∼0, ∼1, ∼2, . . . , are defined as follows:

s ∼ t if ∀w ∈ A∗ : s
w

−→⇔ t
w

−→ ,
and fork ∈ N: s ∼k t if ∀w ∈ A≤k : s

w
−→⇔ t

w
−→ ,

whereA≤k = {w ∈ A∗ | |w| ≤ k}.

Fact 1. (1) ∼ and all ∼k are equivalence relations.
(2) ∼0= S × S. (3) ∼0⊇∼1⊇∼2⊇ · · · . (4) ∩k∈N ∼k=∼.

This (trivial) fact suggests to define theequivalence-level(eq-
level) for each pair of states:

EQLV(s, t) = k (k ∈ N) if s ∼k t ands 6∼k+1 t ;
EQLV(s, t) = ω if s ∼ t, also written ass ∼ω t.

In Fig. 3 we have, e.g., EQLV(s1, s2) = 0, EQLV(s1, s5) = 2,
EQLV(s1, s4) = ω. We takeω as an infinite number satisfying
n < ω andω − n = ω + n = ω for any n ∈ N.

The next fact (fork ∈ N) will be particularly useful.

Proposition 2. If EQLV(s, t)=k and EQLV(s, s′)≥k+1 then
EQLV(s′, t) = k (sinces′ ∼k s ∼k t and s′ ∼k+1 s 6∼k+1 t).

Of special interest for us aredeterministicLTSs,det-LTSsfor
short:L = (S,A, (

a
−→)a∈A) is deterministic if for eachs ∈ S

and eacha ∈ A there is at most ones′ such thats
a

−→ s′.
(Fig. 3 depicts a finite det-LTS.)

Fact 3. In any det-LTS, ifw = a1a2 . . . ak and s
w

−→ then
there is a uniquepaths

a1−→ s1
a2−→ · · ·

ak−→ sk.

For det-LTSs we easily observe that by performing the same
actiona ∈ A from s, t the eq-level can drop by at most one,
and it does drop for some action whenω > EQLV(s, t) > 0:

r1 : Ax1
a

−→ ABx1 r2 : Ax1
b

−→ x1

r3 : Bx1
a

−→ BAx1 r4 : Bx1
b

−→ x1

Fig. 4. A det-first-order grammarG = ({A, B}, {a, b}, {r1, r2, r3, r4})

Proposition 4. Given adeterministicLTS:
(1) If s

w
−→ s′, t

w
−→ t′ thenEQLV(s′, t′) ≥ EQLV(s, t)−|w|.

(2) If EQLV(s, t) = k ∈ N then there isw = a1a2 . . . ak such
that s

a1−→ s1
a2−→ s2

a3−→ · · ·
ak−→ sk andt

a1−→ t1
a2−→ t2

a3−→
· · ·

ak−→ tk whereEQLV(sj , tj) = k − j for j = 1, 2, . . . , k.

In Point (2) we havesk 6∼1 tk, hence there isa ∈ A such
that sk

a
−→, ¬(tk

a
−→) or vice versa; the wordwa is then a

shortest nonequivalence-witness wordfor the pairs, t.

(Det-) First-Order Grammars as Generators of (Det-)LTSs

We now introduce LTSs whosestatesare not “black dots” as
in Fig. 3 but (regular) terms; transitionsE1

a
−→ E2 will be

determined by a finite set of root-rewriting rules.

Definition 5. A first-order grammaris a tupleG = (N ,A,R)
whereN is a finite set of rankednonterminals, i.e. (function)
symbols with arities,A is a finite set ofactions(or terminals),
andR is a finite set of(root rewriting) rulesr of the form

r : Y x1x2 . . . xm
a

−→ E (1)

where Y ∈ N , arity(Y) = m, a ∈ A, and E is a finite
term overN in which each occurring variable is from the set
{x1, x2, . . . , xm}. (E = xi, where1 ≤ i ≤ m, is an example.)
We putACT(r) = a, thus defining the mappingACT : R → A.
G = (N ,A,R) is deterministic, a det-first-order grammar, if
there is at most one rule (1) for each pairY ∈ N , a ∈ A.

Remark on notation.In the previous (classical term) notation,
the rules would be writtenr : f(x1, x2, . . . , xm)

a
−→ E.

Now N plays the role of formerF ; we useY to range
over N , and we omit parentheses. We might also useA, B

for nonterminals, butE, F, G, H and T, U, V, W will always
range over TERMSN (using our fixed VAR = {x1, x2, . . . }).
Y G1G2 . . . Gm, (Ax1x2x3)σ = Aσ(x1)σ(x2)σ(x3), F ′σ1σ2

are examples of the notation which we use for terms (where
σ’s are substitutions). We consider⊥ as a special nullary
nonterminal, with no rules; we use it in the example in Fig. 9.

Fig. 4 shows an example of a det-first-order grammarG.
This G is, in fact, very simple, we havearity(Y) = 1 for
all Y ∈ N and the rules are thus of the formY x1

a
−→

Y1Y2 . . . Yℓ x1. (A more general example will be illustrated in
Fig. 7.) Our example grammar is thus, in fact, a context-free
grammar in Greibach normal form, with no special starting
symbol and with only left derivations allowed, as the next
definition shows (due to using the rules asroot-rewriting). In
fact, the definition takes all(regular) terms as states, though
we allowed onlyfinite right-hand sides(rhs) E in rules (1)
for technical convenience.

Definition 6. A grammarG = (N ,A,R) generates (therule
based) LTS LR

G = (TERMSN ,R, (
r

−→)r∈R): for each rule
r : Y x1x2 . . . xm

a
−→ E (recall (1)) we have

Fig. 5. Applying rulesY x1x2x3
a

−→ x1 andY x1x2x3
b

−→ E to GPF

Fig. 6. A path inLA
G

F
r

−→ H if there is a substitutionσ such that
F = (Y x1 . . . xm)σ and H = Eσ.

(Note thatσ with SUPP(σ) = ∅ yieldsY x1 . . . xm
r

−→ E.)
For (the action-based) LTSLA

G = (TERMSN ,A′, (
a

−→)a∈A′)
we defineA′ = A ∪ {axi

| xi ∈ VAR} whereaxi
is a unique

(fresh) action attached toxi. For a ∈ A′ we haveF
a

−→ H if
F

r
−→ H for somer ∈ R with ACT(r) = a or if F = H = xi

and a = axi
.

Remark and convention.In LR
G the variablesxi are examples

of dead terms(not enabling any transition), like the term⊥.
In LA

G we havexi

axi−→ xi but we never use these special
transitions in our reasoning; we only use the consequence that
xi 6∼1 H if H 6= xi (in particular if H = xj for j 6= i).

Fact 7. LR
G is a det-LTS for anyG.

LA
G is a det-LTS iffG is deterministic.

Fig. 5 shows how the rules can be applied to graph presenta-
tions. To applyr : Y x1x2x3

b
−→ E to GPF , we first verify

that the root ofF is (labelled with)Y . Then we addGPE (the
rhs of r) to GPF (we “stackGPE on top ofGPF ”), the root of
E becomes the new root, and every arc leading toxi in GPE

is redirected to thei-th successor of the root ofF . If E = xj

then the result is that thej-th successor of the (old) root in
GPF becomes the new root (it can be the old root in case
of a loop). Fig. 6 depicts a path inLA

G . We note that even if
we successively “stack” many (finite) rhsE1, E2, . . . of used
rules (or rather subterms of rhs), there can be always root-
successors lying “deeply down,” even in the initial (regular)
term F . Note that the current root is connected to any future
root which lies in the current graph.

The next fact holds in bothLR
G andLA

G . (Recall Fig. 2).

Fact 8. If E
w

−→ F then Eσ
w

−→ Fσ; hence ifE
w

−→ xi

then Eσ
w

−→ σ(xi). If Eσ
w

−→ but ¬(E
w

−→) then w = uv

whereE
u

−→ xi for somexi ∈ VAR and Eσ
u

−→ σ(xi)
v

−→.

Fig. 7. Term representations of configurations and rules of (D)PDA

Convention.We further refer toLA
G , if not said otherwise.

Hence by writingE
w

−→ F we meanw ∈ A∗.
We are interested in the following problem.

Problem TRACE-EQ-DET-G
Input: a det-first-order grammarG = (N ,A,R), and

(graph presentations of) two input termsTin, Uin.
Question: is Tin ∼ Uin in LA

G?

(D)PDA from a First-Order Term Perspective

The next lemma could be derived from the papers referred to
in [5]; we sketch a direct concise proof, to be self-contained.

Lemma 9. The DPDA language equivalence problem is
(polynomial-time) reducible toTRACE-EQ-DET-G.

We view a pushdown automaton(PDA) as a tupleM =
(Q, Γ,A, ∆) of finite sets ofcontrol states, stack symbols,
actions (also calledinput letters), and (rewriting)rules, re-
spectively. Theterm-representationT (q2ABA) of the con-
figuration q2ABA ∈ Q × Γ∗, assumingQ = {q1, q2, q3}, is
on the left in Fig. 7; we putT (qε) = ⊥ and T (qAα) =
[qA]T (q1α) . . . T (qkα) whenQ = {q1, . . . , qk}. So Q× Γ is
the set of nonterminals with arityCARD(Q); ⊥ is a special
“bottom” nullary nonterminal. On the right in Fig. 7 we can
see theterm-representations oftwo rules (from Q×Γ×A×
Q × Γ∗), one pushing, q2A

a
−→ q1BC, and onepopping,

q2A
b

−→ q2; we ignore the dotted arc for the moment. The
term-representation ofqA

a
−→ q′β is T (qAx)

a
−→ T (q′βx)

when we addT (qix) = xi. In PDA semantics, a rule
qA

a
−→ q′β implies qAα

a
−→ q′βα for any α ∈ Γ∗. We can

easily check that this corresponds to the first-order grammar
semantics (qAα

a
−→ q′βα iff T (qAα)

a
−→ T (q′βα)).

We have so far ignored the possibleε-ruleslike q2C
ε

−→ q3;
it is standard to assume, w.l.o.g., that allε-rules arepopping. A
PDA is deterministic, a DPDA, if any ruleqC

ε
−→ .. excludes

the existence of another ruleqC
a

−→ .. for any a ∈ A ∪ {ε},
and there is at most one ruleqA

a
−→ .. for any tripleq, A, a;

a pair qA is called unstable if there is a ruleqA
ε

−→ ..,
otherwiseqA is stable. Def. 5 does not allow to translate a
rule q2C

ε
−→ q3 to [q2C]x1x2x3

ε
−→ x3, but we can adjust

the above definition ofT (qα) by puttingT (qCβ) = T (q′β)
whenqC

ε
−→ q′ is a rule. The dotted arc in Fig. 7 illustrates

this “ε-contraction” if we haveq2C
ε

−→ q3. For a DPDAM
we obviously get:qα

w
−→ iff T (qα)

w
−→ for any w ∈ A∗.

To prove Lemma 9, we use the following language equiva-
lence problem (w.l.o.g.): given a DPDAM = (Q, Γ,A, ∆)
and configurationsC, C′, decide if L(C) = L(C′) where
L(qα) = {w ∈ A∗ | ∃q′ : qα

w
−→ q′ε}. For any stable

pair qA and anya ∈ A, if there is no ruleqA
a

−→ .. then
we add the ruleqA

a
−→ qloopA; qloop is a new state with

the rulesqloopA
a

−→ qloopA for all a ∈ A, A ∈ Γ. This
modification does not affectL(C), L(C′). It is now easy to
verify that L(C) = L(C′) iff T (C) ∼ T (C′), assuming the
above described transformation of configurations and rules.

Semidecidability of Trace Non-Equivalence

Given G and a pairE 6∼ F , we can find a shortest word
witnessing the nonequivalence ofE, F by a systematic search.
Hence the next lemma is obvious even in the general case,
though we now concentrate on the deterministic case.

Lemma 10. There is an algorithm with the following property:
it (halts and) computesEQLV(Tin, Uin) for an instance
G, Tin, Uin of TRACE-EQ-DET-G iff Tin 6∼ Uin in LA

G .
Thus the complement ofTRACE-EQ-DET-G is semidecidable.

III. A N ALGORITHM DECIDING TRACE-EQ-DET-G

We aim to show the semidecidability of TRACE-EQ-DET-G,
which will yield the decidability by Lemma 10. III-A shows
some simple facts about the equivalences∼k and ∼, and
III-B introduces further technical prerequisites for the Prover-
Refuter game (played for an instanceG, Tin, Uin) described
in III-C. In III-D we will easily observe thesoundnessof
the P-R game, which means that Prover has no winning
strategy ifTin 6∼ Uin. It will be also obvious that there is an
algorithm which halts forG, Tin, Uin iff Prover has a winning
strategy. Hence the decidability of TRACE-EQ-DET-G will be
established once we show thecompleteness, i.e. the existence
of a winning strategy of Prover for everyTin ∼ Uin; this is
done in Sec. IV.

Convention.If not said otherwise, we assume a given det-first-
order grammarG = (N ,A,R) and refer to the det-LTSLA

G .
(Recall that Fact 3 applies here.) By referring to apathG

w
−→

(or G
w

−→ G′) we mean thatw is enabled byG and we also
refer to the unique sequenceG

a1−→ G1
a2−→ G2

a2−→ · · ·
ak−→

Gk (Gk = G′) wherew = a1a2 . . . ak.

A. Some Properties of∼k and∼ (in the Det-LTSLA
G)

For two substitutionsσ, σ′ : VAR → TERMSN we define

σ ∼k σ′ if σ(xi) ∼k σ′(xi) for all xi ∈ VAR.

Thecongruence propertiesin Prop. 11 are obvious, by recall-
ing Fact 8 (and Fig. 2, 5, 6).

Proposition 11. (1) If E ∼k F thenEσ ∼k Fσ.
HenceEQLV(E, F) ≤ EQLV(Eσ, Fσ).
(2) If σ ∼k σ′ thenEσ ∼k Eσ′.
HenceEQLV(σ, σ′) ≤ EQLV(Eσ, Eσ′).

Prop. 12 completes Point (1); it follows from the next obser-
vation. If EQLV(E, F) = k ∈ N then there isw, |w| = k,

Fig. 8. Hσ andH′σ[−xi]
= (H{(xi, H)}{(xi, H)}{(xi, H)} · · ·)σ

such thatE
w

−→ E′, F
w

−→ F ′ whereE′ 6∼1 F ′. If the roots
of E′, F ′ are nonterminals enabling different sets of actions
then EQLV(Eσ, Fσ) = k for any σ; another option is that
{E′, F ′} = {xi, H} whereH 6= xi.

Proposition 12. If EQLV(E, F) = k < ℓ = EQLV(Eσ, Fσ)
(ℓ ∈ N∪{ω}) then there are somexi ∈ SUPP(σ), H 6= xi, and
a word w, |w| = k, such thatE

w
−→ xi, F

w
−→ H or E

w
−→

H , F
w

−→ xi; moreover,σ(xi) ∼ℓ−k Hσ (by Prop. 4(1)).

The next proposition (sketched in Fig. 8) is later useful
for decreasing the support of a substitution in an inductive
argument (in Fig. 13). We defineσ[−xi] as the substitution
arising fromσ by removingxi from the support(if it is there):

σ[−xi](xi) = xi andσ[−xi](xj) = σ(xj) for all j 6= i.

(We now might takeE3 = E{(x7, E)}{(x7, E)} . . . in Fig. 1
as an example ofH ′ = Hσ′σ′ . . . in Fig. 8.)

Proposition 13. AssumeH 6= xi and H ′ = Hσ′σ′ · · · where
σ′ = {(xi, H)}. (GPH′ arises fromGPH by redirecting all
incoming arcs ofxi to the root ofH ; henceH ′ = H if xi

does not occur inH , in particular if H = xj , j 6= i.)
If σ(xi) ∼k Hσ thenσ(xi) ∼k H ′σ[−xi] and thus
σ ∼k {(xi, H

′)} σ[−xi].

H ′σ = H ′σ[−xi] sincexi does not occur inH ′. It thus suf-
fices to show that EQLV(σ(xi), Hσ) = EQLV(σ(xi), H

′σ).
This follows from Prop. 2, once we note thatHσ 6∼ H ′σ

implies EQLV(Hσ, H ′σ) > EQLV(σ(xi), H
′σ). (Fig. 8 makes

clear that any nonequivalence witnessw for Hσ, H ′σ has a
nonempty prefixu such thatHσ

u
−→ σ(xi), H ′σ

u
−→ H ′σ.)

B. k-Distance Regions (for DecidingT ∼k U)

We have implicitly noted (around Lemma 10) that we can
decide whetherT ∼k U (for k ∈ N); a natural way is to
construct thek-distance region for(T, U):

REG(T, U, k) = { (T ′, U ′) | T
w

−→ T ′, U
w

−→ U ′

for somew, |w| ≤ k }.

Fig. 9 shows the 2-distance region for (T, U) =
(AB⊥, BA⊥), assuming our example grammar in Fig. 4.

Note thatT 6∼k U iff there is (T ′, U ′) ∈ REG(T, U, k−1)
such thatT ′ 6∼1 U ′. We define theleast eq-levelfor a set of
pairs of terms (for a region REG(T, U, k) in particular):

for R ⊆ TERMSN × TERMSN , R 6= ∅, we define
M INEL(R) = min { EQLV(T ′, U ′) | (T ′, U ′) ∈ R}.

The next proposition follows from Prop. 4; it says that any
least eq-level pair in REG(T, U, k) must be in the bottom row
in the figures like Fig. 9 or Fig. 10, ifT 6∼ U andT ∼k U .

Fig. 9. The2-distance region REG(T, U, 2) for (T, U) = (AB⊥, BA⊥)

Fig. 10. Case1 of left-balancing

Proposition 14.
(1.) If T ∼ U thenT ′ ∼ U ′ for all (T ′, U ′) ∈ REG(T, U, k).
(2.) If T 6∼ U , T ∼k U and (T ′, U ′) ∈ REG(T, U, k) satisfies
EQLV(T ′, U ′) = M INEL(REG(T, U, k)) then (T ′, U ′) ∈
REG(T, U, k) r REG(T, U, k−1).

By Prop. 14, 11(2) and 2 we easily derive the next proposition.
It is useful to look at Fig. 11 (which is fully used later), and
imagineσ = {(x1, V1), (x2, V2)}, σ′ = {(x1, V

′
1), (x2, V

′
2)}.

Proposition 15. Suppose thatT ∼k U and for σ, σ′ we have
SUPP(σ) = SUPP(σ′) and (σ(xi), σ

′(xi)) ∈ REG(T, U, k−1)
for eachxi ∈ SUPP(σ).
If EQLV(T ′, U ′) = M INEL(REG(T, U, k)) andT ′ = Gσ then
EQLV(Gσ′, U ′) = EQLV(T ′, U ′).

Fig. 10 shows a case withG = x1, σ(x1) = T ′, σ′(x1) = V .

C. Prover-Refuter Game

We describe a game between Prover (she) and Refuter (he).
Given an initial pair(Tin, Uin), and finitely many pairs (con-
stituting a “basis”) chosen by Prover, Refuter attempts to build
a shortest word witnessing that one of the given pairs is non-
equivalent; Prover aims to contradict this attempt.

PROVER-REFUTER GAME (P-R GAME)

1) A det-first-order grammarG = (N ,A,R) is given.
2) Prover produces (by “guessing”, say) a finite set BASIS

of pairs of (graph presentations of regular) terms.
3) An input pair(Tin, Uin) is given.
4) Refuterchooses

(T0, U0) ∈ STARTSET = {(Tin, Uin)} ∪ BASIS,
andclaims EQLV(T0, U0) = M INEL(STARTSET) < ω.

5) For i = 0, 1, 2, . . . , Phasei is performed, i.e.:

a) Prover choosesk > 0, and REG(Ti, Ui, k) is con-
structed; ifTi 6∼k Ui then Prover loses (the play ends).

Fig. 11. Case2 of left-balancing

b) Refuter chooses(T ′
i , U

′
i) ∈ REG(Ti, Ui, k) r

REG(Ti, Ui, k−1) andwi, |wi| = k, such thatTi
wi−→

T ′
i , Ui

wi−→ U ′
i ; if there is no suchT ′

i , U
′
i , wi (due

to dead terms, henceTi ∼ Ui), Prover wins.Refuter
claims that EQLV(T ′

i , U
′
i) = M INEL(REG(Ti, Ui, k)).

(Recall Prop. 14.)
c) Prover produces(Ti+1, Ui+1) from (T ′

i , U
′
i) as follows:

• either she putsTi+1 = T ′
i , Ui+1 = U ′

i (no change),
• or she balances (recall Prop. 15 and Fig. 11):

if she finds σ, σ′ such that (σ(xi), σ
′(xi)) ∈

REG(T, U, k−1) for all xi ∈ SUPP(σ) = SUPP(σ′),
and she presentsT ′

i asGσ then she can (do aleft-
balancing, namely) putTi+1 = Gσ′, and Ui+1 =
U ′

i ; symmetrically, if U ′
i is Gσ′ then she can (do

a right-balancing, namely) putTi+1 = T ′
i , and

Ui+1 = Gσ.
(Thus EQLV(Ti+1, Ui+1) = EQLV(T ′

i , U
′
i) if Refuter’s

claim in 5.b is true. We haveTi+1 ∼ Ui+1 if Ti ∼ Ui.)
d) Provereither derives a contradiction from Refuter’s

claims in 4 and 5.b, by presenting a proof, i.e. a finite
algorithmically verifiable sequence of deductions based
on Propositions 2, 4, 11, 12, 13, in which case Prover
wins, or lets the play proceedwith Phasei+1.

Fig. 12 (used later) shows an example of Phasesi and i+1.
By switching Points2) and3) we get theweaker form of the

game; a play then starts with a given instanceG, Tin, Uin of
TRACE-EQ-DET-G. We use the above (stronger) form to stress
that BASIS is related to the grammarG (and is independent
of Tin, Uin). We note that performing Point5 in a play gives
rise to a (finite or infinite) sequence of pairs

(T1, U1), (T2, U2), (T3, U3), . . . (2)

which is eq-level decreasing, by which we meanω >

EQLV(T1, U1) > EQLV(T2, U2) > · · · , if Refuter’s claims
are true; we haveTj ∼ Uj for all j if T0 ∼ U0.

We can see that BASIS plays no role until possibly used
in the final proof contradicting Refuter’s claims. E.g., if

Fig. 12. A left balancing phasei followed by a no-change phasei+1

(Ti, Ui) for i > 0 is shown to be abasis-instance, i.e.
(Ti, Ui) = (Eσ, Fσ) for some (E, F) ∈ BASIS and some
substitutionσ, then this is a contradiction, since by Refuter’s
claims EQLV(Ti, Ui) < M INEL(STARTSET) (for i > 0) while
EQLV(Eσ, Fσ) ≥ EQLV(E, F) ≥ M INEL(STARTSET) (by
using Prop. 11(1)). Another simple proof of contradiction is a
repeat, i.e. getting(Tj , Uj) = (Ti, Ui) for j > i.

Remarks.We could make the game more flexible for Prover,
adding her other sound possibilities, but the above form
suffices for our aims. The namebasisis inspired by the notion
of bisimulation bases in the case of context-free processes; this
line of research started with [1] and further developments can
be found in [4]. The name reflects the aim to provide a finite
set which generates the whole equivalence relation in a certain
sense, though this is not formalized here.
As an example of a play of the P-R game, we can assume
that {(x1, x1), (Ax1, Bx1)} is chosen as a basis forG from
Fig. 4. If REG(T0, U0, 2) as in Fig. 9 appears in Phase0 and
Refuter chooses(T ′

0, U
′
0) = (ABBB⊥, BAAA⊥) then Prover

can immediately contradict Refuter’s claims: she creates the
instance(AAAA⊥, BAAA⊥) of (Ax1, Bx1) from (T ′

0, U
′
0)

by using(A⊥, B⊥), (AB⊥, BA⊥), (ABB⊥, BAA⊥) (with
supposedly bigger eq-levels than EQLV(T ′

0, U
′
0)) for succes-

sive subterm replacements.

D. Soundness of the Prover-Refuter Game

If {(Tin, Uin)}∪BASIS contains a pair of nonequivalent terms
then Refuter can be choosing so that his “least eq-level claims”
(in 4. and 5.b) are true; then the sequence (2) is eq-level
decreasing and Prover loses eventually. This also applies to
the weaker form of the P-R game (Points 2 and 3 switched).

Since BASIS is finite and Refuter always has finitely many
choices when there is his turn, there is an obvious algorithmic
aspect which we also capture in the next (soundness) lemma.

Lemma 16. There is an algorithm with the following property:
given a det-first order grammarG and Tin, Uin, it halts iff
there is someBASIS such that Prover can force her win for

G, Tin, Uin by usingBASIS (in the weaker form of the game),
in which caseT ∼ U for all (T, U) ∈ {(Tin, Uin)} ∪ BASIS.

By combining with Lemma 10 we get an algorithm which
decides TRACE-EQ-DET-G, if for each det-first-order gram-
marG there exists some BASIS which is sufficient for forcing
Prover’s win for anyTin ∼ Uin. This completeness is shown
in Section IV, which will finish a proof of the next theorem;
the corollary follows by Lemma 9.

Theorem 17. Trace equivalence of det-first-order grammars
(i.e., the problemTRACE-EQ-DET-G) is decidable.

Corollary 18. DPDA language equivalence is decidable.

IV. COMPLETENESS OF THEPROVER-REFUTERGAME

IV-A shows that we get the completeness if there isn ∈ N,
g : N → N for anyG such that Prover has a so-called(n, g)-
strategy. IV-B then shows a “balancing strategy” for Prover
which turns out to be an(n, g)-strategy.

A. Long(n, g)-Sequences are Sufficient for Prover

We still assume a fixed det-first-order grammarG =
(N ,A,R) if not said otherwise.
We recall PRESSIZE(E) (of a regular termE over N), and
put PRESSIZE(E, F) = PRESSIZE(E) + PRESSIZE(F), say.

Definition 19.

1) For n ∈ N and a nondecreasing functiong : N → N,
(T1, U1), (T2, U2), . . . is an (n, g)-sequenceif it can
be presented as(E1σ, F1σ), (E2σ, F2σ), . . . where the
“heads” satisfy PRESSIZE(Ej , Fj) ≤ g(j) (for j =
1, 2, . . .) and σ satisfiesCARD(SUPP(σ)) ≤ n.

2) Prover has an(n, g)-strategyfor G if she can force that
the sequence(T1, U1), (T2, U2), (T3, U3), . . . arising in
the phases0, 1, 2, . . . (recall (2)) has an infinite subse-
quence which is an(n, g)-sequence, in each play where
T0 ∼ U0 and the play does not finish with Prover’s win
in Point 5b or with a repeat. (The basis is irrelevant.)

3) Stipulatingmax ∅ = 0, we define the following finite num-
ber (Maximal Finite Equivalence Level) for anyb ∈ N:
MAX FELb = max { EQLV(E, F) | E 6∼ F and
PRESSIZE(E, F) ≤ b }.

The essence of the next lemma is the fact that the length of
eq-level decreasing(n, g)-sequences is bounded by a number
depending just onG, n, g (and independent ofσ).

Lemma 20. If Prover has an(n, g)-strategy for a det-first-
order grammarG then there is someBASIS for G which is
sufficient for Prover to force her win for allTin ∼ Uin.

Proof: We assumeG, n, g such that Prover has an(n, g)-
strategy forG, and we show that there is some (large) bound
B ∈ N, determined (somehow) byG, n, g, such that BASIS =
{(E, F) | E ∼ F, PRESSIZE(E, F) ≤ B} satisfies the claim.

We consider a play of the P-R game in whichG is given, the
above BASIS (for some largeB) is chosen, andTin ∼ Uin is
given. In Point 4 Refuter necessarily choosesT0 ∼ U0 (though

Fig. 13. An(n, g)-(sub)sequence (left); decreasingSUPP(σ) by {(xi, H
′)}

claiming T0 6∼ U0). We let Prover use her assumed(n, g)-
strategy, and consider a moment (after a number of phases)
when the so far constructed sequence(T1, U1), (T2, U2), . . .
has a “long” (n, g)-subsequence(Ti1 , Ui1) = (E1σ, F1σ),
(Ti2 , Ui2) = (E2σ, F2σ), . . . , (Tiℓ

, Uiℓ
) = (Eℓσ, Fℓσ); let

us write ℓ asℓ(n,g).
Prover can derive from Refuter’s claims that

(E1σ, F1σ), (E2σ, F2σ), . . . , (Eℓ(n,g)
σ, Fℓ(n,g)

σ) (3)

is eq-level decreasing (though in realityEiσ ∼ Fiσ for all i).
If E1 ∼ F1 (which must be the case whenn = 0, so

when CARD(SUPP(σ)) = 0) then Prover can claim her win
if B ≥ g(1): in this case(Ti1 , Ui1) = (E1σ, F1σ) is a basis-
instance.

Assume now EQLV(E1, F1) = k ∈ N; note thatk ≤
MAX FELg(1). SinceE1σ ∼ F1σ, by Prop. 12 we know that
Prover can demonstrateE1σ

w
−→ σ(xi) and F1σ

w
−→ Hσ

(or vice versa) forxi ∈ SUPP(σ), H 6= xi and |w| = k

(see Fig. 13). Moreover, she derives EQLV(σ(xi), Hσ) >

EQLV(Es+1σ, Fs+1σ) > EQLV(Es+2σ, Fs+2σ) > · · · for
(the shift)s = 1 + MAX FELg(1).

Using (deduction rules based on) Proposition 13, 11(2)
and 2, Prover can demonstrate that in the pairs(Ejσ, Fjσ), for
j = s+1, s+2, . . . , she can replaceσ with {(xi, H

′)}σ[−xi]

whereGPH′ arises fromGPH by redirecting each incoming arc
of xi to the root (see Fig. 13),without affecting the eq-levels
of these pairs if Refuter’s claims are true.

Note that PRESSIZE(H) is surely bounded byg(1) +
MAX FELg(1) · STEPINC, where STEPINC can be taken as
the size of the largest rhs in the rules ofG; it bounds the
possibleone-step increaseof the presentation size when a rule
is applied (recall Fig. 5).

Prover thus demonstrates an(n−1, g′)-sequence

(E′
1σ[−xi], F

′
1σ[−xi]), (E

′
2σ[−xi], F

′
2σ[−xi]), . . . (4)

of length ℓ(n−1,g′) = ℓ(n,g) − (1 + MAX FELg(1)) where
E′

j = Es+j{(xi, H
′)} and F ′

j = Fs+j{(xi, H
′)}; we note

that PRESSIZE(E′
j , F

′
j) is surely bounded (byg(s+j) + 2 ·

PRESSIZE(H) and thus) by

g′(j) defined as (5)

g(1+MAX FELg(1)+j)+2 ·(g(1)+MAX FELg(1) ·STEPINC).

We can now reason for the sequence (4) as we did for the
sequence (3). IfE′

1 ∼ F ′
1 then Prover can claim her win ifB ≥

g′(1). If E′
1 6∼ F ′

1 then Prover creates an(n−2, g′′)-sequence
of lengthℓ(n−2,g′′) = ℓ(n−1,g′)−(1+MAX FELg′(1)), etc. The
iteration can happen at mostn times, and thusG, n, g indeed
determine someB which guarantees that the above BASIS is
sufficient for forcing Prover’s win for allTin ∼ Uin.

B. A Balancing Strategy which is an(n, g)-Strategy

In this subsection we prove the next lemma, by which a proof
of Theorem 17 will be finished (by Lemmas 20, 16, 10).

Lemma 21. For any det-first-order grammarG, Prover has
an (n, g)-strategy (n, g being determined byG).

Assuming a det-first-order grammarG = (N ,A,R) (gene-
rating the LTSLA

G), we now describe a particularbalancing
strategyof Prover in the Prover-Refuter game whenG is given
in Point 1; this strategy will turn out to be an(n, g)-strategy.
(We use a liberal notion of a strategy; it still leaves some free
choice to Prover.) We start with some technical notions.

(Shortest) Sink Words; Root-Performability; ConstantM0

• A word w ∈ A∗ is a (Y, j)-sink-word, where 1 ≤
j ≤ m = arity(Y), if Y x1 . . . xm

w
−→ xj (hence if

Y F1 . . . Fm
w

−→ Fj for all F1, . . . , Fm).
• A path F

u
−→ (of length |u|) is root-performableif the

root of F is Y ∈ N andY x1 . . . xarity(Y)
u

−→; hence no
proper prefix ofu is a(Y, j)-sink word then; if, moreover,
u itself is not a(Y, j)-sink word thenF

u
−→ is strongly

root-performable.
• A path G

w
−→ sinks into depthk in DOM(G) (recall G :

N
∗ → N ∪VAR) if it sinks alongsomeγ = i1i2 . . . ik ∈

DOM(G), i.e. if w = w1w2 · · ·wk and for eachℓ, 1 ≤
ℓ ≤ k, we have:wℓ is a (Y, iℓ)-sink word whereY =
G(i1i2 . . . iℓ−1). HenceG

ε
−→ sinks into depth0.

In Fig. 5, a is a (Y, 1)-sink-word of length1. In Fig. 6,
if root(F) = A and the arc depicted inGPF is labelled2

thena1a2a3a4a5a6 is an(A, 2)-sink word.F
a1a2...aj

−→ is root-
performable for allj, 0 ≤ j ≤ 6, but it is not strongly root-
performable forj = 6. The next fact is clear from Fig. 5.

Fact 22. If w is a (Y, j)-sink-word thenw = av and there
is a rule r : Y x1 . . . xm

a
−→ E where E

v
−→ sinks along

someγ ∈ DOM(E) for which E(γ) = xj (so E
v

−→ xj).
(A particular case isE = xj , v = ε.)

It is thus clear that we can efficiently (by standard dy-
namic programming techniques) fix ashortest(Y, j)-sink word
SSW(Y, j) for each pairY, j, Y ∈N , 1≤j≤arity(Y) (in our
assumedG) for which there is such a word. If there is no
(Y, j)-sink word (so thej-th successor ofY is nonexposable
and thus irrelevant) then we can safely decreasearity(Y) and
make the obvious corresponding modifications in the rules of
G. Hence we further assumeSSW(Y, j) for eachY, j, and put

M0 = 1+max{ |SSW(Y, j)| | Y ∈N , 1≤j≤arity(Y)}. (6)

Restricted Balancing

The balancing strategy which we are defining obliges Prover
to choosek = M1 in Point 5a of each phase of the game,
whereM1 is a constant determined byG (sufficiently larger
than M0 as will be clarified later), and to restrict herself to
the following way of balancing (in 5c).

A left-balancing in Phasei can only look as follows (we
refer to Fig. 10 and 11 where we put(T, U) = (Ti, Ui), w =
wi, |wi| = k = M1, and(T ′, U ′) = (T ′

i , U
′
i)):

1) If there is(T ′
i , V) in REG(Ti, Ui, M1−1) for someV (as

in Fig. 10) then Prover chooses one such pair and puts
Ti+1 = V , Ui+1 = U ′

i .
2) If 1) does not apply and there is a root-performable

subpath of lengthM0 in Ti
wi−→ T ′

i (see Fig. 11),
then Prover takesthe last such subpath, in the form
(Ax1 . . . xm)σ

v
−→ G′σ where |v| = M0, wi = u1vu2,

Ti
u1−→ (Ax1 . . . xm)σ

v
−→ G′σ

u2−→ T ′
i = Gσ, and

Ax1 . . . xm
v

−→ G′ u2−→ G. For eachj, 1 ≤ j ≤ m,
Prover finds some(σ(xj), V

′
j) ∈ REG(Ti, Ui, M1−1)

and definesσ′(xj) = V ′
j ; finally she putsTi+1 = Gσ′,

Ui+1 = U ′
i .

3) If none of 1) and 2) applies, no left-balancing is allowed.

Soundness of defining 2): We have(Ax1 . . . xm)σ
SSW(A,j)
−→

σ(xj) and Prover can thus takeV ′
j so that F

SSW(A,j)
−→ V ′

j

whereF is the right-hand-side counterpart of(Ax1 . . . xm)σ;

the pathF
SSW(A,j)
−→ V ′

j must exist sinceTi ∼M1 Ui. We
also note that there is indeed someG such thatG′ u2−→ G:
if we had G′σ

u′

−→ σ(xj) for a prefix u′ of u2 then

u2 = u′u′′, σ(xj)
u′′

−→ T ′
i and we thus had the case 1),

namely (T ′
i , V) ∈ REG(Ti, Ui, M1−1) whereV ′

j

u′′

−→ V (as
also depicted in Fig. 11).

In both cases 1) and 2),Ui is called thebalancing pivot
and (Ti+1, Ui+1) the balancing result(or the bal-result) of
this balancing step. Theright balancing stepsare defined
symmetrically (Ti is then the pivot).

Switching Balancing Sides is Separated by a No-Change Phase

The strategy obliges Prover to behave as follows in Phasei:
Prover balances, i.e. performs a left balancing step or a right

balancing step as defined by 1) and 2) above, if possible but
she cannot do a left (right) balancing if a right (left) balancing
was done in Phasei−1; if balancing is (thus) not possible,
Prover does no change, i.e. putsTi+1 = T ′

i , Ui+1 = U ′
i .

Prover thuscannot switch balancing sides in two consecu-
tive phases; such a switch needs a separating no-change phase.
To finish the definition of thebalancing strategy, we now
defineM1 (so that the rest-headG in Fig. 12 gets “erased”).

We put DEPTH(E) = max{|γ| | γ ∈ DOM(E)} for finite
termsE, and we define themaximal one-step depth-increase
STEPDINC (given by the rules inG), andM1 as follows:

STEPDINC = max{DEPTH(E)−1 | E is the rhs of a rule},

M1 = M0 · (2 + (2M0−1) · STEPDINC). (7)

Fig. 14. (A prefix of) the path from a pivotW to the next pivot

Erasing the Rest-HeadG when Balancing Sides are Switched

Let us consider a left balancing step in Phasei (as in Fig. 10
or 11). We note thatUi+1 is reachable from the pivotUi in
M1 steps. ForTi+1 we observe that it has “a small finite rest-
headG” completed with the tailsσ′ (like V ′

1 , V ′
2 in Fig. 11)

which are reachable from the pivotUi within M1 steps. (The
rest-head can be even missing, like in Fig. 10.)

We note that DEPTH(G′) ≤ 1 + M0 · STEPDINC whereG′

is the finite term referred to in 2) and Fig. 11. SinceG′ u2−→ G

is M0-sinking, which is a shorthand for saying that there is
no root-performable subpath of lengthM0 in G′ u2−→ G, we
can easily check that DEPTH(G) ≤ DEPTH(G′) + (M0−1) ·
STEPDINC. Hence DEPTH(G) ≤ 1 + (2M0−1) · STEPDINC.

We now consider a case where a left balancing is performed
in Phasei and no left balancing is possible in Phasei+1; we
assumeTi+1 = Gσ′ as above, and in Fig. 12. Phasei+1 is
a no-change phase and the pathTi+1

wi+1
−→ T ′

i+1 = Ti+2 is
M0-sinking; a prefix of this path thus sinks into the depth
d = M1 div M0 in DOM(Ti+1). Sinced > DEPTH(G), there
are u1, u2, j such thatwi+1 = u1u2 and Ti+1 = Gσ′ u1−→
σ′(xj)

u2−→ Ti+2. This entails that both sides at the end of
Phasei+1, i.e. bothTi+2 and Ui+2, are reachable from the
last pivotUi within 2M1 steps (Ui

wi−→ Ui+1
wi+2
−→ Ui+2, and

Ui
v

−→ σ′(xj)
u2−→ Ti+2 for somev, |v| ≤ M1).

Pivots of a Play are on a Special “Pivot-Path” inLA
G

If Prover balances in Phasei and in Phasei+1 then we have
W

wi−→ W ′, |wi| = M1, for the respective pivots. (W =
Ui

wi−→ Ui+1 = W ′ in the case of left balancings, andW =
Ti

wi−→ Ti+1 = W ′ in the case of right balancings.)
If Prover balances in Phasei with pivot W (W = Ui or

W = Ti) and does no change in Phasei+1 then there are

words v′, v′′ of length at most2M1 such thatW
v′

−→ Ti+2,

W
v′′

−→ Ui+2, as we noted above. If there is the next pivot,
Uj or Tj for j ≥ i+2, it is reachable bywi+2wi+3 . . . wi+j−1

from Ti+2 or Ui+2 (depending on the side of the next pivot).
Thus the next pivot is reachable from the last pivotUi by a

special path: a “starting prefix” of length at most2M1, finish-
ing in some termV (eitherUi+1 or one ofTi+2, Ui+2), might
be followed by a sequence of “follow-up” paths; each of these
follow-up paths has lengthM1 and is M0-sinking. Fig. 14
depicts just one follow-up path; we assume STEPDINC = 1
there. (In Fig. 14 the starting prefix gives an impression of
term-increasing but this is not true in general.) Our choice

of M1 guarantees “term-sinking” in the follow-up paths; in
particular, any path in this follow-up sequence necessarily
visits a subterm ofV (in the ever greater depth inDOM(V)).

We also observe that if there is no next pivot (i.e. no next
balancing) and the play is infinite then both sides (bothTj

andUj) range over finitely many terms, which entails getting
a repeat ((Tj1 , Uj1) = (Tj2 , Uj2) for somej1 < j2).

To summarize, the pivotsW1, W2, . . . (of the balancing
steps in a play where Prover adhers to the described balancing
strategy) are on a (special) path

W1
v1−→ W2

v2−→ W3
v3−→ · · · (8)

where eachWj

vj

−→ Wj+1 is in the above discussed form (as
depicted in Fig. 14, which also captures|vj | = M1).

A Suffix of the Sequence of Bal-Results is an(n, g)-Sequence

We consider an infinite play in whichT0 ∼ U0. We have
observed that if there are only finitely many balancings then
we get a repeat. We thus further assume that there are infinitely
many balancing steps in the play.

If a term V ′ (not only a pivot) is visited infinitely often
by the path (8) then any particular visit ofV ′ occurs in the
path Wj

vj

−→ Wj+1 for some j (V ′ is somewhere in the
path in Fig. 14), and PRESSIZE(Wj+1) can be obviously only
boundedly bigger than PRESSIZE(V ′). Then one pivot appears
infinitely often and the bal-results are infinitely often thesame
(as can be easily checked by Fig. 10 and 11); we get a repeat.

It remains to consider the case when there is a visit of a
term V = (Y x1 . . . xm)σ′ in (8) (a “stair-base”, depicted as
the second term in Fig. 15) such that no subterm ofV is
visited later; thus the rest of (8) is strongly root-performable.
There is thus somek ∈ N such that (8) can be written as

W1
u

−→ V = (Y x1 . . . xm)σ′ u′

−→ H1σ
′ vk+1
−→ H2σ

′ vk+2
−→ · · ·

where(Y x1 . . . xm)
u′

−→ H1
vk+1
−→ H2

vk+2
−→ · · · , andH1σ

′ =
Wk+1, H2σ

′ = Wk+2, (By Fig. 14) we can check that

DEPTH(Hj) ≤ 1 + j · 2M1 · STEPDINC.

We now verify that the bal-results with pivotsH1σ
′, H2σ

′,
. . . create an(n, g)-sequence(E1σ, F1σ), (E2σ, F2σ), . . .

(recall the left in Fig. 13), for somen and g determined by
the grammarG. To this aim, we presentσ′ as σ′ = σ′′σ

so that eachσ′′(xi) (1 ≤ i ≤ m) is a finite term with
DEPTH(σ′′(xi)) ≤ M1−1 where eachγ ∈ DOM(σ′′(xi))
satisfies|γ| = M−1 iff (σ′′(xi))(γ) ∈ SUPP(σ). (We use
subterms ofV occurring at depthM1 to createσ.) We can
use variables so thatSUPP(σ) ⊆ {x1, x2, . . . , xn} where

n = cM1 for c = max { arity(Y) | Y ∈ N }.

Recall that the bal-result corresponding to the pivotHjσ
′ =

Hjσ
′′σ is composed from some terms reachable fromHjσ

′′σ

within M1 moves (recall Figures 10 and 11), possibly also
completed with a finite rest-headG where DEPTH(G) ≤ 1 +
(2M0−1) · STEPDINC. Since a pathHjσ

′′σ
u

−→ of length at
most M1 can sink into depth at mostM1 in DOM(Hjσ

′′σ),

Fig. 15. First steps in path (8), the second term happens to bea “stair-base”

the bal-result related toHjσ
′′σ can be written as(Ejσ, Fjσ)

for finite terms Ej , Fj where DEPTH(Ej), DEPTH(Fj) are
bounded by DEPTH(Hj)+ (M1−1)+M1 ·STEPDINC+(1+
(2M0−1)·STEPDINC). This obviously yields someg : N → N

(determined byG) such that PRESSIZE(Ej , Fj) ≤ g(j) for
j = 1, 2,

Acknowledgment.The author thanks Colin Stirling for initial
discussions, and Luca Aceto, Arnaud Carayol, Didier Caucal,
and anonymous reviewers for later comments. The thanks go
also to Philippe Schnoebelen and his colleagues at LSV ENS
Cachan for organizing the first public presentation of this proof
(in Cachan, January 2011).

REFERENCES

[1] J. Baeten, J. Bergstra, and J. Klop, “Decidability of bisimulation
equivalence for processes generating context-free languages,” J.ACM,
vol. 40, no. 3, pp. 653–682, 1993.

[2] S. Böhm and S. Göller, “Language equivalence of deterministic real-time
one-counter automata is NL-complete,” inMFCS 2011, ser. LNCS, vol.
6907. Springer, 2011, pp. 194–205.

[3] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre, “Recursion
schemes and logical reflection,” inLICS 2010. IEEE Computer Society,
2010, pp. 120–129.

[4] O. Burkart, D. Caucal, F. Moller, and B. Steffen, “Verification on infinite
structures,” inHandbook of Process Algebra, J. Bergstra, A. Ponse, and
S. Smolka, Eds. North-Holland, 2001, pp. 545–623.

[5] B. Courcelle, “Recursive applicative program schemes,” in Handbook of
Theoretical Computer Science, vol. B, J. van Leeuwen, Ed. Elsevier,
MIT Press, 1990, pp. 459–492.

[6] W. Czerwiński and S. Lasota, “Fast equivalence-checking for normed
context-free processes,” inProc. FSTTCS’10, ser. LIPIcs, vol. 8. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[7] S. Ginsburg and S. A. Greibach, “Deterministic context free languages,”
Information and Control, vol. 9, no. 6, pp. 620–648, 1966.

[8] S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J.Worrell, “On
the complexity of the equivalence problem for probabilistic automata,”
in FoSSaCS’12, ser. LNCS, vol. 7213. Springer, 2012, pp. 467–481.

[9] A. Kučera and R. Mayr, “On the complexity of checking semantic
equivalences between pushdown processes and finite-state processes,”
Inf. Comput., vol. 208, no. 7, pp. 772–796, 2010.

[10] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt, “On the expres-
siveness and decidability of higher-order process calculi,” Inf. Comput.,
vol. 209, no. 2, pp. 198–226, 2011.

[11] S. Salvati and I. Walukiewicz, “Krivine machines and higher-order
schemes,” inICALP(2)’11, ser. LNCS, vol. 6756. Springer, 2011, pp.
162–173.

[12] G. Sénizergues, “L(A)=L(B)? Decidability results from complete formal
systems,”Theoretical Computer Science, vol. 251, no. 1–2, pp. 1–166,
2001, (a preliminary version appeared at ICALP’97).

[13] ——, “L(A)=L(B)? a simplified decidability proof,”Theoretical Com-
puter Science, vol. 281, no. 1–2, pp. 555–608, 2002.

[14] ——, “The bisimulation problem for equational graphs offinite out-
degree,” SIAM J.Comput., vol. 34, no. 5, pp. 1025–1106, 2005, (a
preliminary version appeared at FOCS’98).

[15] G. Sénizergues, “The equivalence problem for t-turn dpda is co-NP,” in
ICALP’03, ser. LNCS, vol. 2719. Springer, 2003, pp. 478–489.

[16] C. Stirling, “Decidability of DPDA equivalence,”Theoretical Computer
Science, vol. 255, no. 1–2, pp. 1–31, 2001.

[17] ——, “Deciding DPDA equivalence is primitive recursive,” in Proc.
ICALP’02, ser. LNCS, vol. 2380. Springer, 2002, pp. 821–832.

