Decidability of DPDA Language Equivalence
via First-Order Grammars

Petr Jancar
Techn. Univ. Ostrava, Czech Republic (www.cs.vsb.czhanc

Abstract—The decidability of language equivalence of deter- One reason why the DPDA problem turned out so intricate
ministic pushdown automata (DPDA) was established by G. seems to be the lack of structure of configurations (strings
Senizergues (1997, 2001), who thus solved a famous long-sfaly o sympols), which calls for a richer framework. This is

open problem. A simplified proof, also providing a primitive re- . L .
cﬁrsivg complexity up%er boﬂnd, was gi?/en by 8 Sgr”ng (202). also d|scu_ssed by St_|rI|n_g [16] who refers _to the a_Ig_ebralc
In this paper, the decidability is re-proved in the framework theory of linear combinations of boolean rational seriest bu

of first-order terms and grammars (given by finite sets of root by Sénizergues, and replaces it by a process calculus whose
rewriting rules). The proof is based on the abstract ideas usd in processes are derived from determinising strict grammars.
the previous proofs, but the chosen framework seems to be mer Another difficulty is that providing a proof of equivalenoar f

natural for the problem and allows a short presentation which - ir of stat . tructured obiect .
should be transparent for a general computer science audiee, & 9IVEN pair of states (i.e. structured objects represgretim-

The approach can be also easily adapted to provide the mentied figurations) seems to require some measures and conditional
complexity bound, and to extend the decidability to bisimuation rules in the respective logical systems, to keep their soessl

equivalence of (nondeterministic) pushdown automata, i.eto Stirling used (simpler) bisimulation approximants instest
show a result which was also established by G.&éBizergues (1998, Sénizergues’s system of weights.
2005). We can view the transformatioriBg, T¢ in [12] as two
|. INTRODUCTION main means for co_nt_radicting that a particular word is a prefi
of an sw-word; Stirling [16] uses the rules BAL and CUT.
Language equivalence of deterministic pushdown automaia| (“balancing”) aims at making the (structured) states in
(DPDA) is a famous problem in language theory. The decighe pairs along the supposed sw-word close to each other,
ability question for this problem was posed in the 1960s [7]e. having “bounded (different) heads” and the same (maybe
then a series of works solving various subcases followetil, UNarge) “tails.” CUT aims at “cutting away” large tails soupd
the guestion was answered positively by Sénizergues i,199 Here we re-prove the decidability of DPDA language
with the full journal version [12]. G. Sénizergues was atesif equivalence in the framework of (deterministic) first-arde
the Godel prize in 2002 for this significant achievement. grammars, i.e. systems of first-order terms with finitely gnan
Later Stirling [16] and also Sénizergues [13] provideghot-rewriting rules. The framework eégular terms(possibly
simpler proofs than the original proof. A modified versioninfinite terms with only finitely many different subterms),
showing also a (nonelementary) primitive recursive coxiple completedwith substitutionsseems to be a more natural and
upper bound, appeared as a conference paper by Stirlingsimpler substitute of the algebraic structures in the jnevi
2002 [17]; Sénizergues showed a “more reasonable” UPR@Srks. In fact, close relations between the frameworks of
bound for a subclass in [15]. Sénizergues also generalisgPDA, strict deterministic grammars and first-order snke
the decidability result to bisimulation equivalence ovelass \ere recognized long ago (see, e.g., references in [5] &) [1
of nondeterministic pushdown automata [14]. Unfortunatel The overall strategy of the presented proof is not new, it is
even the simpler proofs seem rather long and technical,twhigiose to [16] in particular, but the proof is no direct traatigin
does not ease further research regarding, e.qg., the coitypleXf g previous proof into another framework. The previous
(No nontrivial lower bound for DPDA-equivalence seems to bggical systems are replaced with Rrover-Refuter game
known; the general bisimilarity problem is ExpTime-harfiY9 \hose soundness is obvious. The CUT rule is replaced with a
The algorithms are based on the following key points. Hotion of afinite basis generating the equivalence relation in a
two configurations are nonequivalent then there is a shortggrtain sense. The chosen framework and the new ingredients
word witnessing this fact, arsw-word for short. If two allow to present a direct, short, and easily understandable
configurations are equivalent then any attempt to (stepwigtoof. Moreover, the presentation is tailored so that the-co
build a potential sw-word can be contradicted: an (algeritiyjexity result [17] and the generalization to bisimilariti4]
mically verifiable) proof of a contradiction is producedeaft can be added smoothly. (See http://arxiv.org/abs/1060.47
a (sufficiently long) prefix of the potential sw-word has beefor complexity; the author plans a different arxiv-paper on
constructed. bisimilarity.)
)) The related research is rich and active. There are compre-
This work was supported by the European Regional Developriend

in the IT4Innovations Centre of Excellence project (CZ51101.00/02.0070), hensye references in Senizergues's and Stirling's [saper)
and by the Czech Grant Agency project GR:P202/11/0340. the prior research; for recent research on related contplexi

Fig. 1.

Graph presentations of terms

guestions and on higher-order schemes, we can refer, @.g

[2], [3], [6], [8], [10], [11] and the references therein.

The (sub)section titles show the structure of the pap

Section Il sets “the stage.” Section |1l describes the (obsly
sound) Prover-Refuter game. Section IV shows that Prover
a strategy which is complete (enables to prove equivalemrce

all equivalent pairs). Hence searching for an sw-word amd fo

an equivalence proof in parallel gives a desired algorithm.

II. BASIC NOTIONS AND SIMPLE OBSERVATIONS

er

root(F

_
GPg

T5e. 3 //
o [D

)
J
' Dj'm

Fig. 2. CreatingGPg, from GPg and GP,

one presentation. E.g&;, E> presented in Fig. 1 are obviously

the same termss in Fig. 1 (where we now ignore the dotted

arc leading tar;) is an infinite regular term.

‘Convention.By “terms” we further mean “regular terms”
(i.e. those having finite graph presentations). We do not
Dnsider the empty term with the empty domain; we might
se a special nullary (function) symbal instead.

We note that the equality of two (regular) terms can be ef-
ficiently checked by standard partition-refinement techesy
Given a graph presentatioap, for each noden of GP we

N denotes the sef0,1,2, ...} of natural numbers. For a setconsider the (sub)term rooted im We first partition all these

A, by cArRD(A) we denote its cardinality (i.e. the numbe

of elements whend is finite). A* denotes the set of finite
sequences of elements df, also calledwords (over .A). By
|lw| we denote thdengthof w € A*. If w = wv thenu is a
prefix of w. The empty sequende denoted: (thus|e| = 0).

First-Order Regular Terms and Substitutions

We recall the standard notion @ifst-order terms assuming
a fixed countable setAR = {x,x2,23,...} of variables
Given a setF = {f1, f2, ..., fr} of function symbolsvhere
arity(f) denotes the arity of € F, an example of derm
over F is E1 = fao(f1, fs(xs5, 1), x5), assumingk > 3 and
arity(f1) = 0, arity(f2) = 3, arity(fs) 2. We can
recognize the syntactic tree &f; in the left part of Fig. 1.
Formally we viewterms asthe partial mappings

FE :N* — FUVAR

where~i (y € N*, ¢ € N) belongs toboMm(E) iff v €
DOM(E) andl < i < arity(E(v)); we stipulatearity(z;) =
0 for all z; € VAR. The expressions liké (f1, fs(xs, z1), x5)

ferms according to the root-labels, and then we are refitieg t

partition according to the (current) partition-classesradt-
successors, until the stable partition (the fixpoint) isnidu

By TERMSz we denote the set of all (regular) terms over
F. A substitutions is a mappings : VAR — TERMSz whose
supportSUPHo) = {z; | o(z;) # z;} is finite. The finite-
support restriction allows us to present any substitutioloy
a finite graphcp where each; € SUPHo) has an associated
node inGP, namely the root ob(x;); we refer toGp, then.
For a termFE and a substitutionr, we defineFEo (the term
resulting fromE' by applyingo) as expectedy € DOM(Eo)
iff either v € DOM(E) and E(y) ¢ VAR, in which case
(Eo)(v) = E(7), or v = m72, 71 € DOM(E), E(m1) = z;,
v2 € DOM(o(z;)), in which case(Eo)(7y) = (o(x;))(72)-

Fig. 2 illustrates how to get a presentation B& from
presentationssPg, GP, of F and o, respectively: each arc
leading to (a node labelled with); € SuPHo) in GPg is
redirected to the node associated within GpP,. Note that if
E =z then Eo = XT;0 = O'(.%‘l)

By Foi0o we mean(Eo;)os, but we also define the

or z17 are thus viewed as representing partial mappingsmposition of substitutions; ¢ o2, denoted jusir;o,: for

N* — FUVAR (e.g.,El(a) = f2, E1(<2, 1>) = s, etC.).

Given a termE and v € DOM(E), the term E, where
DOM(E,) = {0 | v6 € DOM(E)} and E,(6) = E(vd) is a
subtermof E, occurring in E at v, at depth|y|. A term E
is finite if DOM(E) is finite. A termis regular if it has only
finitely many subterms.

A graph presentatiors P (of someregular terms) is &finite
graph whose nodes are labelled with elements7of) VAR.
Each node labelled witlf hasm outgoing arcs labelled with
1,2,...,m wherem arity(f); the nodes labelled with

o = o102 andz; € VAR we haveo(z;) = (o1(x;)) o2; thus
SUPHo102) C SUPHo1) U SUPHogz). We can easily check
Eci09 = (Fo1)oa = Eo whereo = o109; more generally,
the compositionis associativei.e., (c102)o3 = 01(0203).
Finally we note thatF; in Fig. 1 can be viewed as arising
from (a finite term)E = fo(x1, f5(zs5,27),21) (represented
like E5 but usingthe dotted arcin Fig. 1) by applying the
substitutions’ = {(x7, E)}, i.e. o’ wheresuPHo’) = {z7}
ando’(z7) = E, repeatedly forever; hende;s = Ec’c’o’
(To getGPg, from GpPg, each arc leading to7 is redirected to

variablesz; (and the nodes labelled with nullary functiorthe root.) Note that the auxiliary variahle could be replaced

symbols) have no outgoing arcs. A terl is presented by
a graphGcpP when a noden is specified as theoot of F; we

with any x; not occuring inEs.
Later we also refer to thpresentation siz&RESSIZE(E),

refer to such a graph as tePg. A term can have more thanby which we mean thsizeof the smallest graph presentation

b
b ri: Azy - ABx; o Ax1 — T1
b
s b s rs: Bry — BAxq ry : Bry — 21
1 S4
a
a Fig. 4. A det-first-order gramma¥y = ({4, B}, {a, b}, {r1,r2,r3,74})
S2 b 83

Proposition 4. Given adeterministicLTS:

(1) If s = &', t =5 t' thenEQLV(s', ') > EQLV(s,t) —|w].
(2) If EQLV(s,t) = k € N then there isw = ajas . .. ax such
of E; similarly for PRESSIZE(c). We can use any naturalthats -2% s; —22s g5 255+ 25, g andt -5 ¢ -2 ¢y —2
notion of sizewhich takes also the indices of variables into.. 2%, ¢, whereEQLV(sj,t;) =k —j for j =1,2,... k.

account; e.g., we can take the number of nodes and arcs_ . h h h . h
plus the bit-size of all labels. We thus have only finitely”? POIN (2) we havesy. 71 t, hence there is € A suc

many termsE with PRESSIZE(E) < b, for any given thats, -, ~(tx —) or vice versa, the wordva is then a
boundb € N. Another natural property which we assume i§hOrtest nonequivalence-witness wded the pairs, t.

PRESSIZE(Eo) < PRESSIZE(E) + PRESSIZE(0). (Det-) First-Order Grammars as Generators of (Det-)LTSs
Labelled Transition Systems and Trace Equivalence We now introduce LTSs whosstatesare not “black dots” as

A labelled transition systepanLTSfor short, is a tuplez — 1N Fig- 3 but(regular) terms transitions £, —— B will be
(S, A, (-)ac.a) Wheres is the set ofstates A the set of determined by a finite set of root-rewriting rules.
actionsand —-~C S x S is the set otransitions labelled with Definition 5. A first-order grammais a tupleG = (M, A, R)
a € A, calleda-transitions Fig. 3 shows a finite LTS (in fact, where \ is a finite set of rankedionterminalsi.e. (function)
a det-LTS as defined later). The relations-C S x S for symbols with aritiesA is a finite set ofactions(or terminals),
w € A* are defined as expectes:— s; if s <~ s and and R is a finite set of(root rewriting) rulesr of the form
s’ 5 s thens % s”. In Fig. 3 we have, e.gs; -2 s.
By writing s — we mean that enablega trace)w € A*,
i.e., s — s’ for somes’. Trace equivalence- on S, and its whereY < N, arity(Y) = m, a € A, and E is a finite
“strata” ~q, ~1, ~2, ..., are defined as follows: term over\ in which each occurring variable is from the set
s~tif Ywe A% s et 2 {z1,29,...,2m}. (B = z;, W_h_erel <i< m, is an example.)
and fork € N: s ~p, ¢ if Y € ASF : 5 s ¢ 4 We putacT(r) = a, thus Qefln_lng the MappingCT : R — A
G = (W, A, R) is deterministi¢c a det-first-order grammaif

Fig. 3. A (finite) deterministic labelled transition system

ey

r:Yoize. .. xm — E (1)

where ASF = {w € A* | |w| < k}. there is at most one rule (1) for each pait € NV, a € A.
Fact 1. (1) ~ and all ~, are equivalence relations. Remark on notationin the previous (classical term) notation,
(2) ~g= S x S. (3) ~gD~1D~9D -+ -. (4) Ngen ~rp=r. the rules would be writtenr : f(z1,29,...,2,) — FE.

Now A plays the role of formerF; we useY to range
over \V, and we omit parentheses. We might also useB

for nonterminals, buy, F, G, H andT, U, V, W will always
EQLV(s,t) =k (k€ N)if s ~p ¢t ands £yy1 t; range over ERMSy (using our fixed MR = {z,22,...}).
EQLV(s,t) = w if s ~ t, also written ass ~,, t. YG1Gs...Gp, (Az12923)0 = Ao (x1)0(x2)0(23), F'o109

are examples of the notation which we use for terms (where
o’s are substitutions). We consider as a special nullary
nonterminal, with no rules; we use it in the example in Fig. 9.

This (trivial) fact suggests to define tleguivalence-leveleq-
leve) for each pair of states:

In Fig. 3 we have, e.g., ®.V(s1,s2) =0, EQLV(s1, 85) = 2,
EQLV(s1, s4) = w. We takew as an infinite number satisfying
n<wandw—n=w+n=w foranyn € N.

The next fact (fork € N) will be particularly useful. Fig. 4 shows an example of a det-first-order gram@ar
Proposition 2. If EQLV (s, {)=k and EQLV (s, s')>k+1 then 1S G is, in fact, very simple, we haverity(Y) = 1 for
EQLV(s',t) = k (Sinces’ ~y s ~p t and s’ ~pr1 § isr). all Y € N and the rules are thus of the foriz, —

Y1Y5 ... Yy z1. (A more general example will be illustrated in
Of special interest for us aeterministicLTSs, det-LTSdor Fig. 7.) Our example grammar is thus, in fact, a context-free
short:£ = (S, A, (—)qe.4) is deterministic if for eack € S grammar in Greibach normal form, with no special starting
and eachn € A there is at most one’ such thats - s’. symbol and with only left derivations allowed, as the next
(Fig. 3 depicts a finite det-LTS.) definition shows (due to using the rulesrast-rewriting). In
fact, the definition takes alregular) terms as stateshough
we allowed onlyfinite right-hand sidegrhs) E in rules (1)
for technical convenience.
For det-LTSs we easily observe that by performing the same ,. ..
actiona € A from s, t the eq-level can drop by at most oneDennltlon 6. A grammarg = (N, A, R) generates (theule

and it does drop for some action whern> EQLV(s,t) > 0: based LTS L :a(TERMSN’R’ (—)rer): for each rule
r:Yxizs ... 2, — F (recall (1)) we have

Fact 3. In any det-LTS, ifw = ajas...a; and s — then
there is a uniquepaths % s; 2 ... 25 g,

old root
new root

G Prp *GI»

1/ 2 3

E (new root)

old root
1 2 3 b
GPp

Fig. 7. Term representations of configurations and rulesDdPDA

. . a b
Fig. 5. Applying rulesY z1z2z3 — 21 andYzi1z203 — E t0 GPr Convention.We further refer to£%, if not said otherwise.
Hence by writingEl — F we meanw € A*.

0 We are interested in the following problem.
AA kA
N f Ay Problem TRACE-EQ-DET-G
F @%E%%E Input a det-first-order grammaj = (N, A, R), and

(graph presentations of) two input terris,, U;,,.
Fig. 6. A path inC} Questionis Ti, ~ Usy, in LE?

F — H if there is a substitutionr such that (D)PDA from a First-Order Term Perspective
F= z...2n)0 and H = Eo.]
The next lemma could be derived from the papers referred to

(Note thato with SUPHo) = () yieldsYz; ...z, — E.) in [5]; we sketch a direct concise proof, to be self-contdine
For (the action-basedLTS £2 = (TERMSy, A, (—=)aca’)
we defined’ = AU {a,, | z; € VAR} wherea,, is a unique
(fresh) action attached ta,. For a € A’ we havel’ -~ H if
F —— H for somer € R with ACT(r) =aorif F = H=1; We view apushdown automato(PDA) as a tupleM =
anda = ag,. (Q,T, A, A) of finite sets ofcontrol states stack symbols
actions (also calledinput letter3, and (rewriting)rules, re-

Remark and conventiomn L§ the variablesr; are examples ! '
of dead termgnot enabling any transition), like the term. ~ SPectively. Theterm-representatior? (¢2ABA) of the con-
§|gurat|on @2 ABA € Q x T*, assuming®@ = {q1, 42,93}, IS

A i .
ranshions i reasoning we only use the consequege i, 1S 1o I Fig. 7. we putr () = 1 and T(aAo) =
' qAlT () ... T (qee) when@ = {q1,...,qr}. SOQ x T is

zi oy H I H 7 @i (in particular i/ = z; for j 7). the set of nonterminals with aritgARD(Q); L is a special
Fact 7. £§ is a det-LTS for anyj. “bottom” nullary nonterminal. On the right in Fig. 7 we can
¢ is a det-LTS iffG is deterministic. see theterm-representations afwo rules (from Q x I' x A x

Fig. 5 shows how the rules can be applied to graph presen%->< Fb), one pu;hmg @A — @ BC, and onepopping
tions. To applyr : Y1223 Y. F to cpp, we first verify g2 A — q2; we ignore the dotted arc for the moment. The

] : ol g o Ty
that the root off is (labelled with)Y". Then we addspy (the LS/M-Tepresentation ofA — ¢’ is 7(gAx) — T(q'fx)

rhs of r) to GPx (we “stackGPg on top ofGPp"), the root of WAhena we Qdd?(%iﬂi =T In FDA Semarlltics\;va rule
E becomes the new root, and every arc leadingtin gp, 2+~ ¢ Implies gAa — ¢'Sa for any a € T™. We can

is redirected to the-th successor of the root df. If £ = z; easily gheck thaﬂ th'? co_rresponds toathe f|r/st-order gramma
then the result is that thg-th successor of the (old) root inse\r/n\/ar;?csdAaf—_> ¢ dn';fh T(qAOfl)ak:) Tl(kq p 0‘2' .
GPr becomes the new root (it can be the old root in case ''C 'ave SO larignored e possibeUlesiike g0 —= gs,

of a loop). Fig. 6 depicts a path idg. We note that even if Itis s'.[andard to assume, W'I'O.'g" thatatfuiles z;\repoppmgA

we successively “stack” many (finite) rH&,, Es, ... of used PDA is deterministic a DPDA, if any ruleqC — .. excludes

. a
rules (or rather subterms of rhs), there can be always rom—ediﬁ'Stence ff an(:ther Ul o ;or any(i .EIA Uig}_’
successors lying “deeply down,” even in the initial (regula 2N ere 1S at most one rujel — .. for any tripleg, 4, a;

- . N . 15
term F'. Note that the current root is connected to any futufd P fJA IS palled unstableif there is a rulegd — .,
root which lies in the current graph. otherwiseqA is stable Def. 5 does not allow to translate a

g € .
The next fact holds in botif® and £%. (Recall Fig. 2). '€ ©2C — g5 10 [@2Clw1az25 — 3, but we can adjust
g g- (9-2) the above definition of (ga) by putting7 (¢C5) = T (¢/3)
Fact 8. If E -~ F then Ec - Fo; hence if E - z; whenqC — ¢ is a rule. The dotted arc in Fig. 7 illustrates
then Eo % o(z;). If Eo - but —(F —-) thenw = uv this “e-contraction” if we have;,C' — ¢3. For a DPDAM

v

where E - z; for somez; € VAR and Eo — o(z;) —. we obviously getga — iff 7 (qa) — for anyw € A*.

Lemma 9. The DPDA language equivalence problem is
(polynomial-time) reducible td RACE-EQ-DET-G.

To prove Lemma 9, we use the following language equiva-
lence problem (w.l.o.g.): given a DPDM = (Q,T', A, A)
and configurationsC,C’, decide if L(C) = L(C') where
L(qa) = {w € A* | 3¢ : qa =~ ¢'c}. For any stable
pair ¢A and anya € A, if there is no ruleg4d —% .. then
we add the rulegA % qio0pA; Goop IS @ NEW state with
the rulesgioopA —— qioopA for all a € A, A € T. This sych thate - E/, F - F' where E' £, F'. If the roots
modification does not affect(C), L(C’). It is now easy to of £’ F’ are nonterminals enabling different sets of actions

verify that L(C) = L(C') iff T(C) ~ T(C'), assuming the then EpLv(Ec, Fo) = k for any o; another option is that
above described transformation of configurations and ruIeS{EQ F'} = {x;, H} where H # x;.

Fig. 8. Ho and H'o|_, 1 = (H{(xs, H)H{(xi, H) (s, H)} ---)o

Semidecidability of Trace Non-Equivalence Proposition 12. If EQLV(E, F) = k < { = EQLV(Eo, Fo)

Given G and a pairE + F, we can find a shortest word (¢ € NU{w}) then there are some; € SUPF(%), H # 2, and
witnessing the nonequivalence Bf F by a systematic search.@ Word w, [w| = k, such thattl — a;, F' — H or E —
Hence the next lemma is obvious even in the general ca$k, I' — xi; moreovero(z;) ~,—, Ho (by Prop. 4(1)).

though we now concentrate on the deterministic case. The next proposition (sketched in Fig. 8) is later useful

Lemma 10. There is an algorithm with the following property:for decreasing the support of a substitution in an inductive
it (halts and) computesEQLV(T;,,Us,) for an instance argument (in Fig. 13). We define;_,, as the substitution
G, Tin, Uin Of TRACE-EQ-DET-G iff T}y, £ Uy, in L5 arising fromo by removingx; from the suppor{if it is there):
Thus the complement GfRACE-EQ-DET-G is semidecidable. O] (z:) = 25 andop_,| (z;) = o(x;) for all j # i.

[1l. AN ALGORITHM DECIDING TRACE-EQ-DET-G (We now might takeFs = E{(z7, E)}{(x7, E)} ... in Fig. 1
We aim to show the semidecidability ofRECE-EQ-DET-G, as an example off’ = Ho'o’... in Fig. 8.)
which will yield the decidability by !_emma 10. 1lI-A shows Proposition 13. AssumeH # z; and H' — Ho'o" - - - where
some simple facts about th.e equwalen.e% and ~, and o' = {(xz;, H)}. (GPy arises fromGpPy by redirecting all
[1I-B introduces further techmc_al prerequisites for th@fér— incoming arcs ofz; to the root of H: hence H' = H if x,
Refuter game (played _for an_mstan@e Tin, Uin) described yo0q ot occur ind, in particular if H = z;, j #1.)
in HI-C. In 1lI-D we will easily observe thesoundnesof . o(2:) ~1, Ho thena(z:) ~, H'o;_,1 and thus

.)) 7 k 7 k [—17,]

the P-R game, which means that Prover has no winning (s, H) Y 01_n1.
strategy if T}, + Us,. It will be also obvious that there is an B (=)
algorithm which halts fog, T;,,, U, iff Prover has a winning H'c = H'o|_,,) sincex; does not occur infd’. It thus suf-
strategy. Hence the decidability oRRCE-EQ-DET-G will be fices to show that &Lv(o(x;), Ho) = EQLV(o (i), H o).
established once we show thempleteness.e. the existence This follows from Prop. 2, once we note théfto % H'c
of a winning strategy of Prover for evefl,, ~ U,,; this is implies QLV(Ho, H'c) > EQLV(c(x;), H'o). (Fig. 8 makes
done in Sec. IV. clear that any nonequivalence witnessfor Ho, H'c has a

_ _ _ _ __nonempty prefixu such thatHo — o(xz;), H'o — H'c.)
Conventionlf not said otherwise, we assume a given det-first-

order grammag = (N, A, R) and refer to the det-LTE}. B. k-Distance Regions (for Deciding ~; U)

(Recall that Fact 3 applies here.) By referring tpah —— We have implicitly noted (around Lemma 10) that we can
(or G — G') we mean thatv is enabled by and we also decide whethefl' ~, U (for k € N); a natural way is to
refer to the unique sequence — G1 — G2 — -+ — construct thek-distance region fo(T, U):
G (G, = G') wherew = ajas . .. ay. w w

REG(T, U, k) = { (T, U") | T = T",U = "
A. Some Properties of;, and ~ (in the Det-LTSLf) for somew, |w| <k }.

For two substitutionsr, 0’ : VAR — TERMSy we define Fig. 9 shows the 2-distance region for (I,U) =

o~y ol if o(z;) ~p o' (2;) for all z; € VAR. (AB1,BALl), assuming our example grammar in Fig. 4.

. } Note thatT £ U iff there is (T",U’) € REG(T, U, k—1)

_Thecongruence propertlem Prop. 11 are obvious, by recall-g,ch thatr’ 41 U'. We define thdeast eq-levefor a set of
ing Fact 8 (and Fig. 2, 5, 6). pairs of terms (for a region (T, U, k) in particular):

Proposition 11. (1) If £ ~; F thenEo ~y, Fo. for R C TERMSy x TERMSy, R # (), we define

HenCGEQLV(E7 F) < EQLV(EO', FO'). MINEL(R) — min{ EQLV(T’, U/) | (T/7 U/) c R}
(2) If 0 ~; o’ thenEo ~ Eo’.
HenceEQLV(o,¢') < EQLV(Eo, Ed’). The next proposition follows from Prop. 4; it says that any

,) least eg-level pair in BG(T, U, k) must be in the bottom row
Prop. 12 completes Point (1); it follows from the next obsefn he figures like Fig. 9 or Fig. 10, il’ # U andT ~y, U.
vation. If EQLV(E, F) = k € N then there isw, |w| = k, '

e

By
x
(B
e
%
[y
b

oo

B|A
B A
L]l

B|A
AlB
L [L

Foowm e
Eebxew

Fig. 9. The2-distance region RG(T,U,2) for (T,U) = (ABL,BAL)

Fig. 10. Casel of left-balancing

Proposition 14.

1)K T ~UthenT' ~ U’ for all (T",U’) € REG(T, U, k).
)FT AU, T ~,Uand(T",U’) € REG(T, U, k) satisfies
EQLv(T",U’) = MINEL(REG(T,U,k)) then (T",U’) €
REG(T, U, k) ~ REG(T, U, k—1).

By Prop. 14, 11(2) and 2 we easily derive the next proposition
It is useful to look at Fig. 11 (which is fully used later), and

imagineo = {(z1, V1), (x2,V2)}, o’ = {(21, V{), (22, V5)}.

Proposition 15. Suppose thal” ~; U and for o, ¢’ we have
SUPKo) = sUPRo’) and (o(z;),0'(x;)) € REG(T, U, k—1)

for eachx; € SUPHo).

If EQLV(T",U’) = MINEL(REG(T, U, k)) andT’ = Go then
EQLV(Go’,U’) = EQLV(T",U").

Fig. 10 shows a case wit = xy, o(x1) =17, o'(x1) = V.

C. Prover-Refuter Game

We describe a game between Prover (she) and Refuter (he).
Given an initial pair(T;,, U;,), and finitely many pairs (con-
stituting a “basis”) chosen by Prover, Refuter attemptsuiitdb
a shortest word witnessing that one of the given pairs is non-

b) Refuter chooses(T;,U/) €

U2

T/ Ul — Vl V2 U/

vivy| U’

Fig. 11. Case of left-balancing

REG(TZ', Ui, k) N

REG(T}, U;, k—1) andw;, |w;| = k, such thatT; —%

T!, U; — U/; if there is no suchl’,U/,w; (due

to dead terms, hencg; ~ U;), Prover wins.Refuter

claimsthat EQLv (T}, U!) = MINEL(REG(T;, U, k)).

(Recall Prop. 14.)

Prover produce§l’; 1, U;1+1) from (T}, U/) as follows:

« either she putd;; = T/, U;x1 = U] (no changg

o or she balances (recall Prop. 15 and Fig. 11):
if she finds 0,0’ such that (o(z;),0'(z;)) €
ReEG(T,U, k—1) for all x; € SUPHo) = SUPH0'),
and she presents! as Go then she can (do keft-
balancing namely) putT;,; = Go’, andU;;, =
U!; symmetrically, if U] is Go’ then she can (do
a right-balancing namely) putT;;; = 7/, and
UiJrl = Go.

(Thus QLV(T;41, U, 41) = EQLV(T!, U)) if Refuter’s

claim in 5.b is true. We havé;,; ~ U, if T; ~ U;.)

Provereither derives a contradiction from Refuter's

claims in 4 and 5.pby presenting a proof, i.e. a finite

algorithmically verifiable sequence of deductions based

on Propositions 2, 4, 11, 12, 13, in which case Prover

wins, or lets the play proceedith Phasei+1.

equivalent; Prover aims to contradict this attempt.

PROVER-REFUTER GAME (P-R GAME)

1) A det-first-order grammag = (N, A, R) is given.

2) Prover produces (by “guessing”, say) a finite sesB
of pairs of (graph presentations of regular) terms.

3) An input pair(T;,, U;,) is given.

4) Refuterchooses
(To, Uy) € STARTSET = {(T}n, Uin)} U BASIS,
andclaims EQLV(Ty, Up) = MINEL(STARTSET) < w.

5) Fori=0,1,2,..., Phase is performed, i.e.:
a) Prover choose¢ > 0, and ReG(T;,U;, k) is con-

Fig. 12 (used later) shows an example of Phasasdi+1.

By switching Point) and3) we get thewveaker form of the
game a play then starts with a given instangeT;,,, U;,, of
TRACE-EQ-DET-G. We use the above (stronger) form to stress
that Basis is related to the grammay (and is independent
of T;,, Uin). We note that performing Poiritin a play gives
rise to a (finite or infinite) sequence of pairs

(Th,Uy), (T2, Us), (T5,Us), (2)

which is eg-level decreasingby which we meanw >
EQLv(Ty1,U1) > EQLV(T»,Us) > ---, if Refuter's claims
are true; we havd; ~ Uj for all j if Ty ~ U.

We can see that &Is plays no role until possibly used

structed; ifT; £, U; then Prover loses (the play ends)in the final proof contradicting Refuter's claims. E.g., if

T;| U; G, Tin, Ui, by usingBAsIs (in the weaker form of the game),
in which casel’ ~ U for all (T,U) € {(Tin,Uin)} U BASIS.

By combining with Lemma 10 we get an algorithm which
decides RACE-EQ-DET-G, if for each det-first-order gram-
mar G there exists some A%1s which is sufficient for forcing
Prover’'s win for anyT;, ~ U,,. This completeness is shown
in Section 1V, which will finish a proof of the next theorem;
the corollary follows by Lemma 9.

Theorem 17. Trace equivalence of det-first-order grammars
(i.e., the problemTRACE-EQ-DET-G) is decidable.

Corollary 18. DPDA language equivalence is decidable.

IV. COMPLETENESS OF THEPROVER-REFUTER GAME

IV-A shows that we get the completeness if therevig N,
g : N — N for any G such that Prover has a so-called g)-
Fig. 12. A left balancing phaséfollowed by a no-change phase-1 strategy. IV-B then shows a “balancing strategy” for Prover

(T;,U;) for ¢ > 0 is shown to be abasis-instancei.e. which turns out to be aiin, g)-strategy.

(Ti,U;) = (Eo, Fo) for some(E,F) € BAsis and some A Long(n, g)-Sequences are Sufficient for Prover
substitutiono, then this is a contradiction, since by Refuter
claims QLV(T;, U;) < MINEL(STARTSET) (for i > 0) while
EQLV(Fo, Fo) > EQLV(E,F) > MINEL(STARTSET) (by
using Prop. 11(1)). Another simple proof of contradictierai
repeat i.e. getting(7;,U;) = (T3, U;) for j > .
RemarksWe could make the game more flexible for ProveDefinition 19.
adding her other sound possibilities, but the above formy) For , € N and a nondecreasing function: N — N,

We still assume a fixed det-first-order grammégr =
(N, A, R) if not said otherwise.

We recall RRESSIZE(FE) (of a regular termE over A), and
put PRESSIZE(E, F') = PRESSIZE(E) + PRESSIZE(F), say.

suffices for our aims. The nanb@sisis inspired by the notion (T1,Uy), (T, Uy), ... is an (n,g)-sequenceif it can
of bisimulation bases in the case of context-free procedisies be presented a¢E; o, Fio), (Eyo, Fyo), ... where the
line of research started with [1] and further developmeats ¢ “heads” satisfy PRESSIZE(E;, Fj) < g(j) (for j =

be found in [4]. The name reflects the aim to provide a finite 1 2) and o satisfiescARD(SUPK&)) < n.
set which generates the whole equivalence relation in aicert 2y prover has arfn, g)-strategyfor G if she can force that

sense, though this is not formalized here. the sequencéT’,U,), (Tz, Us), (T5,Us), ... arising in
As an example of a play of the P-R game, we can assume the phase®), 1,2,... (recall (2)) has an infinite subse-
that {(z1,21), (Az1, Bx1)} is chosen as a basis for from quence which is arin, g)-sequence, in each play where
Fig. 4. If REG(To, Uy, 2) as in Fig. 9 appears in Phaseand Ty ~ Uy and the play does not finish with Prover's win
Refuter choosefly, Ug) = (ABBBL, BAAAL) then Prover in Point 5b or with a repeat. (The basis is irrelevant.)
can immediately contradict Refuter's claims: she creates t 3) Stipulatingmax @ = 0, we define the following finite num-
instance(AAAAL, BAAAL) of (Azy, Bxy) from (T3, Up) ber (Maximal Finite Equivalence Level) for abyc N:

by using(AL,B1), (ABL,BAL), (ABBL, BAAL) (with MAXFEL, = max{EQLV(E,F) | E 4 F and
supposedly bigger eqg-levels thamEv (T3, Uj)) for succes- PRESSIZE(E, F) < b}.

sive subterm replacements. .
The essence of the next lemma is the fact that the length of

D. Soundness of the Prover-Refuter Game eq-level decreasingn, g)-sequences is bounded by a number

If {(T3n,Usin)} UBASIS contains a pair of nonequivalent termsOIepenOIIng Just 0, n, g (and independent af).

then Refuter can be choosing so that his “least eg-levehslai Lemma 20. If Prover has an(n, g)-strategy for a det-first-

(in 4. and 5.b) are true; then the sequence (2) is eq-lewatier grammarg then there is som@&asis for G which is

decreasing and Prover loses eventually. This also appliesstifficient for Prover to force her win for aff;,, ~ U,,.

thesyveaker form (.)f .the P-R game (Points 2 anql 3 switched). Proof: We assumgj, n, g such that Prover has dn, g)-
ince Basis is finite and Refuter always has finitely many .

choices when there is his turn, there is an obvious algofith strategy forg, and we show that there is some (large) bound

aspect which we also capture in the next (soundness) Iemr?a; N, determined (somehow) by, n, g, such that Bsis =
,F)| E ~ F,PRESSIZE(E, F') < B} satisfies the claim.

Lemma 16. There is an algorithm with the following property: We consider a play of the P-R game in whiglis given, the
given a det-first order grammag and T3, U;,, it halts iff above Bsis (for some large3) is chosen, and’,, ~ U;, is
there is someBAsIs such that Prover can force her win forgiven. In Point 4 Refuter necessarily choo%gs- U, (though

E)

PrESSIZE(E;, F}) < g(5)
CARD(SUPP(0))

Fig. 13. An(n, g)-(sub)sequence (left); decreasiagPRo) by {(z;, H')}
claiming Ty # Up). We let Prover use her assuméd, g)-

g(1+MAXFELy1)+7)+2-(9(1)+MAXFELgy) - STEPINC).

We can now reason for the sequence (4) as we did for the
sequence (3). IE¥{ ~ Fj then Prover can claim her win 8 >
g'(1). If E{ o4 F| then Prover creates gmn—2, ¢’’)-sequence
oflengthl(,, _o gy = £(5,—1,¢y— (1 +MAXFELg (1)), €tc. The
iteration can happen at mosttimes, and thugj, n, g indeed
determine somé which guarantees that the above8s is
sufficient for forcing Prover’s win for alll’;,, ~ Uj;,. [|

B. A Balancing Strategy which is gm, g)-Strategy
In this subsection we prove the next lemma, by which a proof
of Theorem 17 will be finished (by Lemmas 20, 16, 10).

Lemma 21. For any det-first-order grammag, Prover has
an (n, g)-strategy ¢, g being determined by).

Assuming a det-first-order grammgr = (N, A, R) (gene-
rating the LTSL3), we now describe a particuldralancing

strategy, and consider a moment (after a number of phases

when the so far constructed sequerti@g, U,), (12, Us), . ..
has a fong’ (n,g)-subsequenceT;,,U;,) = (Eio,Fio),
(Ti2,Ui2) = (EQO',FQO'), ey (Ti[7 i[) = (E[O',Fga'); let
us write £ as/t(,).

Prover can derive from Refuter’s claims that

(Evo, Fr0), (Ea0, F20), ..., (B, , 05 Fo, o) (3)

is eg-level decreasing (though in realijo ~ F;o for all 7).
If £ ~ F; (which must be the case when = 0, so
when CARD(SUPHc)) = 0) then Prover can claim her win
if B> g(1): in this case(T;,,U;,) = (Fi0, Fio) is a basis-

instance.

Assume now BLV(E;, F1) = k € N; note thatk <
MAXFELg(y). SinceEyo ~ Fio, by Prop. 12 we know that
Prover can demonstrate,;c — o(z;) and Fio — Ho
(or vice versa) forz; € SUPHo), H # xz; and |w| = k
(see Fig. 13). Moreover, she deriveIE/ (o(z;), Ho) >
EQLV(Es410, Fs110) > EQLV(Esi20, Fsio0) > --- for
(the shift)s = 1 + MAXFEL ().

Using (deduction rules based on) Proposition 13, 11(

and 2, Prover can demonstrate that in the pdiisr, Fjo), for
J = s+1,542,..., she can replace with {(z;, H')}o[_,,

strategyof Prover in the Prover-Refuter game whgiis given
in Paint 1; this strategy will turn out to be gm, g)-strategy.
(We use a liberal notion of a strategy; it still leaves sonee fr
choice to Prover.) We start with some technical notions.

(Shortest) Sink Words; Root-Performability; Constaui

e Aword w € A* is a (Y,j)-sink-word wherel <
j < m = arity(Y), if Yoi...2,, — x; (hence if
YF,...F, LFJ for all Fl,...,Fm).

o A path F - (of length|u|) is root-performableif the
rootof FlisY e N andYz1 ... Zapiry(v) —: hence no
proper prefix ofu is a(Y, j)-sink word then; if, moreover,
u itself is not a(Y, j)-sink word thenF — is strongly
root-performable

« A pathG - sinks into depth: in DoM(G) (recall G :
N* — N UVAR) if it sinks alongsome~y = iyiy...7; €
DOM(G), i.e. if w = wyws---wy, and for each?, 1 <
¢ < k, we have:w, is a (Y, i,)-sink word whereY =
G(iyio .. .i¢—1). HenceG —= sinks into deptH).

Fig. 5, a is a (Y,1)-sink-word of lengthl. In Fig. 6,

it root(F) = A and the arc depicted iGPr is labelled2
thena, azasasasag is an(A, 2)-sink word. F “'225% is root-

whereGPy arises fromgpy; by redirecting each incoming arcPerformable for allj, 0 < j < 6, but it is not strongly root-
of z; to the root (see Fig. 13without affecting the eg-levels Performable forj = 6. The next fact is clear from Fig. 5.

of these pairs if Refuter's claims are true.

Note that RESSIZE(H) is surely bounded byg(1) +
MAXFEL,1) - STEPINC, where SEPINC can be taken as
the size of the largest rhs in the rules @f it bounds the

Fact 22. If w is a (Y, j)-sink-word thenw = av and there
isaruler : Yz,...z,, — E where E —- sinks along
somey € DOM(E) for which E(y) = x; (S0 E > ;).
(A particular case isE = zj, v =¢.)

possibleone-step increasef the presentation size when a rule

is applied (recall Fig. 5).
Prover thus demonstrates ém—1, ¢’)-sequence

(B10(z) Flo{—2,)), (B30 2], F301-00), - (4)

of length £(,_1 4y = Lng — (1 + MAXFEL,1)) Where
B = Espj{(x, H')} Qnd Fi = Fgj{(zi, H')}; we note
that PRESSIZE(E], F}) is surely bounded (by(s+j) + 2 -
PRESSIZE(H) and thus) by

g'(j) defined as (5)

It is thus clear that we can efficiently (by standard dy-
namic programming techniques) fixsshortestY’, j)-sink word
sswY, j) for each pairY,j, YeN, 1<j<arity(Y) (in our
assumedj) for which there is such a word. If there is no
(Y, j)-sink word (so thej-th successor o¥ is nonexposable
and thus irrelevant) then we can safely decreasey(Y') and
make the obvious corresponding modifications in the rules of
G. Hence we further assunssw(Y, j) for eachY, j, and put

My = 1+ max{ |sSsSWY, j)| | YeN,1<j<arity(Y)}. (6)

Restricted Balancing

The balancing strategy which we are defining obliges Prover > 20] em
to choosek = M; in Point 5a of each phase of the game,
where M, is a constant determined ky (sufficiently larger
than M, as will be clarified later), and to restrict herself to
the following way of balancing (in 5c).

A left-balancing in Phase can only look as follows (we
refer to Fig. 10 and 11 where we p(if,U) = (T;,U;), w =

< Y
wi, |wi| =k = My, and(T",U") = (T}, U}): w sy M T
1) Ifthere is(77,V) in REG(T;, U;, M1—1) for someV (as Fig. 14. (A prefix of) the path from a pivdf/ to the next pivot
in Fig. 10) then Prover chooses one such pair and puts)])
o oy Erasing the Rest-Hea@ when Balancing Sides are Switched
Tit1 =V, U1 =Uj.

2) If 1) does not apply and there is a root-performableet us consider a left balancing step in Phages in Fig. 10
subpath of lengthM, in T; % T/ (see Fig. 11), or 11). We note that/;,, is reachable from the pival/; in
then Prover takeshe last such subpath, in the form M; steps. Fofl;; we observe that it has “a small finite rest-
(Azy...2m)0 - G'oc where|v| = My, w; = ujvuy, headG” completed with the tails’ (like V/, V3 in Fig. 11)
T, % (Azy...zp)0 - G'o 22 T! = Go, and Wwhich are reachable from the pivd} within M, steps. (The
Azy...xym — G = G. For eachj, 1 < j < m, rest-head can be even missing, like in Fig. 10.)

Prover finds someo(x;),V]) € REG(T:, Ui, M1—1) We note that BPTH(G’) < 1+ M, - STEPDINC whereG’
and definesy’(z;) = Vj’; finally she putsT;,; = Go’, Iisthe finite term referred to in 2) and Fig. 11. Sirge% G
Uiy1 = Ul is My-sinking which is a shorthand for saying that there is

3) If none of 1) and 2) applies, no left-balancing is allowed1o root-performable subpath of lengif, in G’ =% G, we

ssw(4,j) ~ can easily check that EPTH(G) < DEPTHG') + (My—1) -

Soundness of defining :2)Ve have (Az:...zm)o STEPDINC. Hence EPTH(G) < 1+ (2My—1) - STEPDINC.

SSW(A,j)) : .
o(x;) and Prover can thus take/ so thatF ~—=" V/ We now consider a case where a left balancing is performed
whereF is the right-hand-side counterpart @iz ...zm)o; in Phase and no left balancing is possible in Phasel; we
the path F ssw4.4) V] must exist sincel; ~u, U;. We assumeTl; 1 = Go' as above, and in Fig. 12. Phasel is

also note that there is indeed soriesuch thatG’ 2> G: @ no-change phase and the pdth, wl—ﬂ_ i1 = Tiga IS

if we had G'c ~— o(z;) for a prefix u’ of uy then My-sinking; a preflx of this pat.h thus sinks into the depth

= M div My in DOM(T;41). Sinced > DEPTH(G), there

! euy,uz,j such thatwi+1 = ULUY and Ti+l = Go’ N

namely (7}, V') € ReG(T;, U;, Mi—1) where Vi — V (@S ,/(5.) 2, T, ,. This entails that both sides at the end of

also depicted in Fig. 11). Phasei+1, i.e. bothT;, and U, ., are reachable from the
In both cases 1) and 2JJ; is called thebalancing pivot |4c¢ pivotU; within 20, steps Us 5 Uiy Wit2 Usio, and

and (T;4+1,U;+1) the balancing result(or the bal-resuly of Ui — o' (x;) 22 Ty for somew, |v] < My).

this balancing step. Theight balancing stepsare defined -

symmetrically {; is then the pivot). Pivots of a Play are on a Special “Pivot-Path” id3

o))) If Prover balances in Phaseand in Phasé+1 then we have
Switching Balancing Sides is Separated by a No-Change Phgge w:, W', |wi| = M,, for the respective pivots.J{ =
The strategy obliges Prover to behave as follows in Phase U; — U;, = W' in the case of left balancings, antl =

Prover balances, i.e. performs a left balancing step orta rigl; —- T;,1 = W’ in the case of right balancings.)
balancing step as defined by 1) and 2) above, if possible buif Prover balances in Phagewith pivot W (W = U; or
she cannot do a left (right) balancing if a right (left) balamy W = T;) and does no change in Phasel then there are

was done in Phase-1; if balancing is (thus) not possible,words+/, v of length at mos2M; such thatiw v, Tita,

i =T, Uy = U " . .
Prover does no change, i.e. plig., =T, Usy1 = U;. W = U0, as we noted above. If there is the next pivot,
Prover thuscannot switch balancing sides in two consecy;

, ;) 7, or T; for j > i+2, it is reachable by, ow;y3 ... wit;—
tive phase&uch q;vyltch needs a separatmg ho-change phaf?gm T;Lg or U;+2 (depending on the si(;e2 of+t?1e nexﬁtLin\llot).
To finish the definition of thebalancing strategy we now Thus the next pivot is reachable from the last pitotby a

define M, (so that the rest-head in Fig. 12 gets “erased"). special path: a “starting prefix” of length at mast/y, finish-

We put DEPTH(E) = max{[| | 7 € DOM(E)} for finite ing in some term/ (eitherU; ., or one ofT} 5, U; 1), might
terms £, and_we define thmax!mal one-step depth-increasg,g ¢,1\yeq by a sequence of “follow-up” paths; each of these
STEPDINC (given by the rules i), and M, as follows: follow-up paths has lengtd/; and is My-sinking. Fig. 14
STEPDINC = max{DEPTH(E)—1 | E is the rhs of a rulg, depicts just one follow-up path; we assumeeSDINC = 1

there. (In Fig. 14 the starting prefix gives an impression of
My = Mo - (2+ (2Mo—1) - STEPDINC). (7) term-increasing but this is not true in general.) Our choice

uy = w”, o(z;) “> T/ and we thus had the case 1);;r

of M; guarantees “term-sinking” in the follow-up paths; in
particular, any path in this follow-up sequence necessaril
visits a subterm o¥/ (in the ever greater depth mom(V)).

We also observe that if there is no next pivot (i.e. no next
balancing) and the play is infinite then both sides (b®th
andUj) range over finitely many terms, which entails getting
a repeat(i, Uiy) = (T, Uj,) for someji < j).

To summarize, the pivotdl’;, W, ...

strategy) are on a (special) path

Fig. 15. First steps in path (8), the second term happens t“b&ir-base”
(of the balancing the bal-result related té7,0” o can be written a$E;o, Fjo)
steps in a play where Prover adhers to the described batandir finite terms E;, F} Where DEPTH(E
bounded by IEPTH(i)+

i), DEPTH(F}) are
(M1—1)+ M, - STEPDINCH+ (1 +

(2My—1)-STEPDI Nc). This obviously yields somg: N — N

WILWQE,WSE,... (8)

where eachV; YW i+1 IS in the above discussed form (as7
depicted in F|g 14, which also capturpg| = M;).

(determined byg) such that RESSIZE(E;, F;) <

g(j) for
1,2,....

AcknowledgmentThe author thanks Colin Stirling for initial

discussions, and Luca Aceto, Arnaud Carayol, Didier Caucal

A Suffix of the Sequence of Bal-Results ig=ayy)-Sequence

and anonymous reviewers for later comments. The thanks go

We consider an infinite play in whicli; ~ U,. We have also to Philippe Schnoebelen and his colleagues at LSV ENS
observed that if there are only finitely many balancings theTachan for organizing the first public presentation of thop
we get a repeat. We thus further assume that there are ihfinitgn Cachan, January 2011).

many balancing steps in the play.

If a term V' (not only a pivot) is visited infinitely often
by the path (8) then any particular visit & occurs in the
path W; 2, W41 for somej (V' is somewhere in the
path in Flg 14), and ReSSIZE(W ;1) can be obviously only [2]
boundedly bigger thanfEsSIzE(V'). Then one pivot appears
infinitely often and the bal-results are infinitely often teme

(1]

(3]

(as can be easily checked by Fig. 10 and 11); we get a repeat.

It remains to consider the case when there is a visit of
termV = (Yz;...z,)0’ in (8) (a “stair-base”, depicted as
the second term in Fig. 15) such that no subtermVofis
visited later; thus the rest of (8) is strongly root-perfairte.
There is thus somé € N such that (8) can be written as

2

(5]

(6]

W, 5V =(Ya.. xm)a —»Hla S Hyo! 245
where (Yzy ... 2n) - Hy 28 Hy, 22 ... andHyo' = [

Wit1, Heo' = Wiya, (By Fig. 14) we can check that
DEPTH(H,;) <1+ j-2M; - STEPDINC.

(8]

We now verify that the bal-results with pivotd,0’, Hoo', [9]

create an(n, g)-sequence(Fo, Fio), (Eqo, Fr0),
(recall the left in Fig. 13), for some and g determined by [10]
the grammarg. To this aim, we present’ aso’ = o¢’c
so that eacho”(z;) (1 < ¢ < m) is a finite term with [11]
DEPTH(¢"(z;)) < M;—1 where eachy € poMm(c”(x;))
satisfies|y| = M—1 iff (¢”(xi))(7) € SUPKo). (We use [,
subterms ofV occurring at depth\/; to creates.) We can

use variables so thaupPHo) C {z1,22,...,2,} Where 13

n = cM for ¢ = max { arity(Y) | Y € N'}. 114

Recall that the bal-result corresponding to the pil’ =
Hjo" o is composed from some terms reachable flipr"’c (15
within M; moves (recall Figures 10 and 11), possibly also
completed with a finite rest-head where DEPTH(G) <1 + (16]
(2My—1) - STEPDINC. Since a pathH ;0" s — of Iength at 17
most M; can sink into depth at mos¥; in bom(H;o" o),

REFERENCES

J. Baeten, J. Bergstra, and J. Klop, “Decidability of ifislation
equivalence for processes generating context-free lgggiial. ACM
vol. 40, no. 3, pp. 653-682, 1993.

S. Bdohm and S. Goller, “Language equivalence of deieistic real-time
one-counter automata is NL-complete,”"MFCS 2011 ser. LNCS, vol.
6907. Springer, 2011, pp. 194-205.

C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serreg¢Brsion
schemes and logical reflection,” IMCS 2010 |IEEE Computer Society,
2010, pp. 120-129.

O. Burkart, D. Caucal, F. Moller, and B. Steffen, “Vergiton on infinite
structures,” inHandbook of Process Algehrd. Bergstra, A. Ponse, and
S. Smolka, Eds. North-Holland, 2001, pp. 545-623.

B. Courcelle, “Recursive applicative program schefnesHandbook of
Theoretical Computer Science, vol, B van Leeuwen, Ed. Elsevier,
MIT Press, 1990, pp. 459-492.

W. Czerwifski and S. Lasota, “Fast equivalence-chegkior normed
context-free processes,” Broc. FSTTCS’10ser. LIPIcs, vol. 8. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

S. Ginsburg and S. A. Greibach, “Deterministic contexieflanguages,”
Information and Contrglvol. 9, no. 6, pp. 620-648, 1966.

S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, ant\arrell, “On
the complexity of the equivalence problem for probabiistiutomata,”
in FoSSaCS’12ser. LNCS, vol. 7213. Springer, 2012, pp. 467-481.
A. Kucera and R. Mayr, “On the complexity of checking samtic
equivalences between pushdown processes and finite-statespes,”
Inf. Comput, vol. 208, no. 7, pp. 772-796, 2010.

I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmittn“the expres-
siveness and decidability of higher-order process cdlcuif. Comput,
vol. 209, no. 2, pp. 198-226, 2011.

S. Salvati and I. Walukiewicz, “Krivine machines andgheér-order
schemes,” iNCALP(2)'11, ser. LNCS, vol. 6756. Springer, 2011, pp.
162-173.

G. Sénizergues, “L(A)=L(B)? Decidability resultofn complete formal
systems, Theoretical Computer Scienceol. 251, no. 1-2, pp. 1-166,
2001, (a preliminary version appeared at ICALP’97).

—, “L(A)=L(B)? a simplified decidability proof,"Theoretical Com-
puter Sciencevol. 281, no. 1-2, pp. 555-608, 2002.

, “The bisimulation problem for equational graphs fafite out-
degree,” SIAM J.Comput. vol. 34, no. 5, pp. 1025-1106, 2005, (a
preliminary version appeared at FOCS’'98).

G. Sénizergues, “The equivalence problem for t-tupdalis co-NP,” in
ICALP’03, ser. LNCS, vol. 2719. Springer, 2003, pp. 478-489.

C. Stirling, “Decidability of DPDA equivalence, Theoretical Computer
Science vol. 255, no. 1-2, pp. 1-31, 2001.

——, “Deciding DPDA equivalence is primitive recursjven Proc.
ICALP’02, ser. LNCS, vol. 2380. Springer, 2002, pp. 821-832.

