Computer aided verification

Lecture 4: Model checking for LTL

Algorithm

(i)
$$M \mapsto \mathcal{A}_M$$

(ii)
$$\neg \phi \mapsto \mathcal{A}_{\neg \phi}$$
 (not $\phi \mapsto \mathcal{A}_{\phi} \mapsto \bar{\mathcal{A}}_{\phi}$)

(iii)
$$L_{\omega}(\mathcal{A}_M) \cap L_{\omega}(\mathcal{A}_{\neg \phi}) = \emptyset$$
? (not $L_{\omega}(\mathcal{A}_M) \subseteq L_{\omega}(\mathcal{A}_{\phi})$)

$$L_{\omega}(\mathcal{A}_{M} \times \mathcal{A}_{\neg \phi}) = \emptyset$$
?

yes
$$\rightarrow M \vDash \phi$$

no $\rightarrow \neg (M \vDash \phi)$, counterexample = a path in M

(i)
$$M \mapsto \mathcal{A}_M$$

$M \mapsto \mathcal{A}_M$

(iii)
$$L_{\omega}(\mathcal{A}) \neq \emptyset$$
?

[Clarke, Grumberg, Peled 2000]

Restrictions

(1) On the fly verification

for each successsor s_i of s do ...

. . .

Reachability: F bad state

Safety: DFS or BFS

```
proc dfs(s)

if error(s) then report error fi

add s to Statespace

for each successor t of s do

if t not in Statespace then dfs(t) fi

od

end
```

[Holzmann, Peled, Yannakakis 1996]

Double DFS

```
proc dfs(s)
    if error(s) then report error fi
    add {s,0} to Statespace
    for each successor t of s do
      if \{t,0\} not in Statespace then dfs(t) fi
    od
    if accepting(s) then seed:=s; ndfs(s) fi
end
proc ndfs(s) /* the nested search */
    add \{s,1\} to Statespace
    for each successor t of s do
      if {t,1} not in Statespace then ndfs(t) fi
      else if t==seed then report cycle fi
    od
end
```

[Holzmann, Peled, Yannakakis 1996]

Proof of correctness

Assume an acceping state p with a cycle not detected by ndfs(p). Let p – the first such state.

Let r – the first state inspected by ndfs(p) that is on a p-cycle and for which $\{r,1\}$ in Statespace.

Let p' – the accepting state such that r visited by ndfs(p').

Restrictions (cont.)

(1) On the fly verification

for each successsor s_i of s do ...

(2) Partial-order reductions

for each selected successor s_i of s do ...

selected – depends on states visited so far !

Solution

```
proc dfs(s)
    if error(s) then report error fi
    add {s,0} to Statespace
    add s to Stack
    for each (selected) successor t of s do
      if {t,0} not in Statespace then dfs(t) fi
    od
    if accepting(s) then ndfs(s) fi
    delete s from Stack
end
proc ndfs(s) /* the nested search */
    add {s,1} to Statespace
    for each (selected) successor t of s do
      if {t,1} not in Statespace then ndfs(t) fi
      else if t in Stack then report cycle fi
    od
end
```

[Holzmann, Peled, Yannakakis 1996]

np-cycles: FG ¬ progress

```
proc dfs(s)
    if error(s) then report error fi
    add {s,0} to Statespace
    for each successor t of s do
      if \{t,0\} not in Statespace then dfs(t) fi
    od
    ndfs(s) /* different */
end
proc ndfs(s) /* the nested search */
    if s is Progress State then return fi /* new */
    add {s,1} to Statespace
    add s to Stack /* new */
    for each successor t of s do
      if \{t,1\} not in Statespace then ndfs(t) fi
      else if t is in Stack then report cycle fi /* different */
    od
    delete s from Stack /* new */
end
```

[Holzmann, Peled, Yannakakis 1996]

np-cycles: automaton

```
never { /* non-progress: ◇□¬progress */
do
:: skip
:: !progress - > break
od;
accept: do
:: !progress
od
}
```

[Holzmann,Peled,Yannakakis 1996]

(co-Büchi ⊆ Büchi)

Partial-order reductions

Motivation

Motivation

Motivation

t, u niezależne

Model

Def.:
$$M = \langle S, S_{\text{init}}, T, L \rangle$$

T – operations (transitions)

for
$$\alpha \in T$$
:

for
$$\alpha \in T$$
: $\operatorname{en}_{\alpha} \subseteq S$, $\alpha : \operatorname{en}_{\alpha} \to S$

(determinism)

$$\Pi = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$$

$$s_0 = s_{\mathsf{init}}$$

$$\alpha_i(s_i) = s_{i+1}$$

$$en_s := \{ \alpha \mid s \in en_\alpha \}$$

$$(\alpha \in en_s \iff s \in en_\alpha)$$

 $\underline{\operatorname{ample}}_s \subseteq \operatorname{en}_s$ instead of en_s in double DFS ?

Cost-effectivity

Idea: $ample_s \subseteq en_s$ instead of en_s in double DFS?

This makes sense, when:

the result of verification is the same (correctness)

- significantly less states visited
- time overhead reasonable (effect

(effectivity)

Problems?

When may we ignore t?

Problem 1: Property may depend on state $\bigcirc p$.

Problem 2: $(\neg p)$ –successors unreachable otherwise.

Stuttering

Def.: $\Pi = s_0 \to s_1 \to s_2 \to \dots$ i $\Pi' = s_0' \to s_1' \to s_2' \to \dots$ are stuttering equivalent, $\Pi \equiv \Pi'$, if sequences

$$L(s_0), L(s_1), L(s_2), \dots \qquad L(s'_0), L(s'_1), L(s'_2), \dots$$

become identical after grouping is done:

Def.:
$$M \equiv M'$$
 if and only if $- \forall \Pi \ w \ M \ \exists \Pi' \ w \ M' \ \Pi \equiv \Pi'$ $- \forall \Pi' \ w \ M' \ \exists \Pi \ w \ M \ \Pi \equiv \Pi'$

$$LTL_{-X} = LTL$$
 without X

Thm: If
$$\phi \in \mathsf{LTL}_{-X}$$
 and $\Pi \equiv \Pi'$, then $\Pi \vDash \phi \iff \Pi' \vDash \phi$

Thm: If
$$\phi \in \mathsf{LTL}_{-X}$$
 and $M \equiv M'$, then $M \models \phi \iff M' \models \phi$

Thm:
$$LTL_{-X} = FO_{\equiv}$$

Correctness

$$M$$
 - partial-order reduction M'

$$M \equiv M'$$

Sufficient condition for correctness

- (C0) $ample_s = \emptyset \iff en_s = \emptyset$
- (C1) ...
- (C2) ...
- (C3) ...

Invisibility

Def.: α is invisible if $L(s) = L(\alpha(s)), \forall s \in en_{\alpha}$.

Przykład: If α invisible, then

$$ss_1r \equiv ss_2r$$

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible

(C2) ...

(C3) ...

Idea: Instead of doing sth now, do it in future!

Problems?

Problem 1: Property may depend on state $(\neg p)$.

Solved due to (C1)!

(C1) if $ample_s \neq en_s$, then every $\alpha \in ample_s$ is invisible

Def.: Relation of independence $I \subseteq T \times T$:

- irreflexive and antisymmetric
- if $\alpha I\beta$, $\alpha \in \mathrm{en}_s$, $\beta \in \mathrm{en}_s$, then

$$-\beta(s) \in \mathrm{en}_{\alpha}, \, \alpha(s) \in \mathrm{en}_{b}$$

$$-\beta(\alpha(s)) = \alpha(\beta(s))$$

$$D = T \times T \setminus I$$
 (dependency)

$$(s \in en_{\alpha} \cap en_{\beta})$$

Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers

Example: Independent may be:

- 2 instructions of different processes operating on local variables
- 2 instructions of different processes that increment the same global variable
- 2 instructions of different processes writing to/reading from different buffers

– 2 instructions of the same process ?

Question: Let $\alpha I\beta$. Is it possible that

$$s \in \mathrm{en}_{\alpha} \setminus \mathrm{en}_{\beta} \qquad \alpha(s) \in \mathrm{en}_{\beta} ?$$

$$\alpha(s) \in \mathrm{en}_{\beta}$$
?

Question: Let $\alpha I\beta$. Is it possible that

$$s \in \operatorname{en}_{\alpha} \setminus \operatorname{en}_{\beta}$$
 $\alpha(s) \in \operatorname{en}_{\beta}$?
$$\alpha I \beta$$

Yes! E.g. asynchronous reading and writing from/to the same buffer by two different processes.

Sufficient condition for correctness

- (C0) $ample_s = \emptyset \iff en_s = \emptyset$
- (C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible
- (C2) ? $(en_s \setminus ample_s) I ample_s$
- (C3) ...

Idea: Instead of doing sth now, do it in future!

(C2)

(C2) a transition dependent on some transition from ample_s can not be executed before some transition from ample_s is executed

(C2) a transition dependent on some transition from ample_s can not be executed before some transition from ample_s is executed

(C2) for every path Π starting in s:

if $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$, $\alpha D\beta$

then β can not be executed in Π

before some transition from $ample_s$ is executed

Lemma: (C2) implies $(en_s \setminus ample_s)$ I $ample_s$.

Proof: Let $\beta \in \text{en}_s \setminus \text{ample}_s$, $\alpha \in \text{ample}_s$, $\alpha D\beta$.

$$s \xrightarrow{\beta} \beta(s) \to \dots$$
 contradiction with (C2).

Problems?

Problem 2: (s_2) —successors unreachable otherwise.

e.g., let $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$

Problems?

Problem 2: (s_2) —successors unreachable otherwise.

e.g., let $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$

by (C2) applied to $\beta \gamma \dots$, we deduce $\gamma I \alpha$

Problems?

Problem 2: (s₂)-successors unreachable otherwise.

 α invisible, thus $ss_1rr' \equiv ss_2s_2'$

Problemy?

Problem 2^{∞} : s_2 —path unreachable otherwise.

by (C2) we deduce $\gamma I \alpha$, $\gamma' I \alpha$, ...

 α invisible, thus $ss_1rr' \ldots \equiv ss_2s_2' \ldots$

Fairness

Def. (weak fairness): if $\alpha \in en_s$ almost always then α eventually executed.

Corollary: for every reachable state s, if $\alpha \in en_s$ then eventually some β will be executed such that $\alpha D\beta$.

Problem 2^{∞} does not appear under weak fairness

Enough?

Are (C0) - (C2) sufficient?

Enough?

Are (C0) - (C2) sufficient?

No!

(C3) we forbid cycles C such that $\exists \beta \ \forall s \in C \ \beta \in en_s \setminus ample_s$

Sufficient condition for correctness

(C0)
$$ample_s = \emptyset \iff en_s = \emptyset$$

(C1) if $ample_s \neq en_s$ then every $\alpha \in ample_s$ is invisible

(C2) for every path Π starting in s:

if $\alpha \in \text{ample}_s$, $\beta \notin \text{ample}_s$, $\alpha D\beta$

then β can not be executed in Π

before some transition from $ample_s$ is executed

(C3) we forbid cycles C such that $\exists \beta \ \forall s \in C \ \beta \in en_s \setminus ample_s$

How to implement this?

Sufficient condition for correctness

(C1) easy

- (C2) hard, implemented in an approximate manner
 - an over-approximation of D is computed
 - condition (C2) is monotonic
 - static analysis only

- (C3) replaced by an easier but stronger:
 - (C3') if ample \neq en $\forall \alpha \in$ ample $\alpha(s) \notin$ stack

Implementation

Implementation decision:

 $\mathrm{ample}_s = \mathsf{all}$ transitions of some process i enabled in s

Implementation

Implementation decision:

 $ample_s = all transitions of some process i enabled in s$

whenever

- they are independent from all operations of all other processes
- no operation of any other process may enable any other operation of process i

β enabling α (over-approximation)

– if β modifies pc so that α may be executed

– if Promela enabling condition for α depends on global variables, then any β that modifies these variables

– if α is reading from/writing to a buffer then any β that reads from/writes to this buffer

$\alpha D\beta$ (over-approximation)

 $-\alpha$ i β refer to the same global variable and at least one of them modifies the variable (over-appr.)

– α i β belong to the same process; synchronous communi-cation is understood as belonging to both processes

– α i β write to/read from the same buffer

However reading from and writing to the same buffer is independent!

What remains independent?

Example:

Operations independent from all operations of other processes:

- operating on local variables
- reading from a buffer with xr flag set
- writing to a bugger with xs flag set
- test nempty(q) if xr flad is set for q
- test nfull(q) if xs flaf is set for q

P.-o. reductions and on the fly verification

in both DFS's the set ample, should be the same

- condition (C3') is applied to $M \times \mathcal{A}_{\neg \phi}$ instead of M.

Is it correct?