Computer aided verification

Lecture 4: Model checking for
LTL

() M — Ay
(i) ¢ — A4 (notg — Ay — Ay)
(ii}) Lo, (An) N Loy(Ag) =07 (not Ly, (Awm) € Lu(Ap))
Lo(Apy X Aop) =07
yes — M F ¢

no - (M E ¢), counterexample = a path in M

(i) M — Ay

.} &/ﬂ {r}

{a}

(i) Ly(A) # 07

[Clarke, Grumberg, Peled 2000]

—n. 6/47

(1) On the fly verification

for each successsor s; of sdo...

—n. 7/47

Safety: DFS or BFS

proc dfs(s)
if error(s) then report error fi
add s to Statespace
for each successor t of s do
iIf t not in Statespace then dfs(t) fi
od

end
[Holzmann,Peled, Yannakakis 1996]

—n. 8/47

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
for each successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then seed:=s; ndfs(s) fi
end
proc ndfs(s} /* the nested search */
add {s,1} to Statespace
for each successor t of s do
if {t,1} not in Statespace then ndfs(t) fi
else if t==seed then report cycle fi

od

end
[Holzmann,Peled, Yannakakis 1996]

—n. 9/47

Assume an acceping state p with a cycle not detected by
ndf s(p) . Let p — the first such state.

Let r — the first state inspected by ndf s(p) thatis on a p-cycle
and for which {r, 1} in St at espace.

Let p’ — the accepting state such that r visited by ndf s(p’).

—n. 10/47

(1) On the fly verification

for each successsor s; of sdo...

(2) Partial-order reductions

for each selected successsor s; of sdo...

.

selected — depends on states visited so far !

—n. 11/47

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
delete s from Stack
end
proc ndfs(s) /* the nested search */
add {s,1} to Statespace
for each (selected) successor t of s do
if {t,1} not in Statespace then ndfs(t} fi
else if t in Stack then report cycle fi
od

end
[Holzmann,Peled,Yannakakis 1996]

—n. 12/47

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
for each successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
ndfs{s) /* different */
end
proc ndfs(s) /* the nested search */
if s is Progress State then return fi /™ new */
add {s,1} to Statespace
add s to Stack /* new */
for each successor t of s do
if {t,1} not in Statespace then ndfs{t) fi
else if t is in Stack then report cycle fi /* different */
od
delete s from Stack /* new */
end

[Holzmann,Peled, Yannakakis 1996]

—n. 13/47

never { /* non-progress: OU-progress */
do
. skip
:: lprogress — > break
od:
accept: do
:: lprogress

od

[Holzmann,Peled, Yannakakis 1996]

—progress
— @ @ —progress

(co-Buchi € Buchi)

—n. 14/47

Partial-order reductions

S "

NS

N b;
va

t, u niezalezne

Def.. M = (S, S, T, L) T — operations (transitions)

foraeT. en, € S5, a:en, — S5 (determinism)
path: I = 55281 =5 59 =2 ... So = Sinit

Oéz'(Sz') = Si+1

en, := {a | s €en,} (v €Eeny, <= s € en,)

ldea: ample, C en, Iinstead of en, In double DFS ?

—n. 19/47

ldea: ample, C en, instead of en, in double DFS ?

This makes sense, when:
— the result of verification is the same (correctness)

— significantly less states visited

— time overhead reasonable (effectivity)

—n. 20/47

When may we ignore ¢t ?

Problem 1. Property may depend on state .

Problem 2: @ —successors unreachable otherwise.

—n. 21/47

Def.: H:80—>81%82%...iH/:86%S/1%S/2—>...are
stuttering equivalent, IT = I, if sequences

L(so), L(s1), L(s2),... L(sh), L(s}), L(sh),. ..
become identical after grouping is done:

Def.. M = M’ ifand only if — Vilw M dIl'w M II=1I

— VI w M dAMlw M II=1I

—n. 22/47

LTL_x = LTL without X

Thm: IfgelTL_xand II=1II', then IIF¢ «— II'F o

Thm: IfgelTL_xyand M =M', then ME¢ <— M E®

Thm: LTL_y = FO=

—n. 23/47

partial-order reduction

M M’

<
I
<

Sufficient condition for correctness

(Co) ample, =0 <= en, = ()
Cc1) ...
(C2) ...

(C3) ...

—n. 25/47

Def.: «isinvisible if L(s) = L(a(s)), V s € en,,.

Przyktad: If « invisible, then (s)

SS1T = SSoTr

—n. 26/47

Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ...

(C3) ...

ldea: Instead of doing sth now, do it in future!

—n. 27/47

Problem 1. Property may depend on state .

Solved due to (C1) !

(C1) If ample, # eng, then every a € ample, IS invisible

—n. 28/47

Def.. Relation of independence I C 1" x T

— Irreflexive and antisymmetric
— IfalB, a € eng, § € eng, then (s € en, Meng)

_ 5(8) € €,, CV(S) c eny

- Bla(s)) = a(B(s))

D=TxT \ I (dependency)

—n. 29/47

Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

—n. 30/47

Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

— 2 instructions of the same process ?

—n. 30/47

Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng 7

—n. 31/47

Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng 7

Yes! [E.g. asynchronous reading and writing
from/to the same buffer by two different processes.

—n. 31/47

Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ? (en,\ ample,) I ample,

(C3) ...

ldea: Instead of doing sth now, do it in future!

—n. 32/47

(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

—n. 33/47

(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

(c2) for every path II starting in s:
If « € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed

—n. 33/47

(C2)

Lemma: (C2) implies (en, \ ample,) I ample,.

Proof: Let(€ en, \ ample,, o € ample,, aDg.

s 5 B(s) — ... contradiction with (C2) .

—n. 34/47

Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

—n. 35/47

Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

by (C2) appliedto 3~v..., we deduce v/«

—n. 35/47

Problem 2: @—successors unreachable otherwise.

« invisible, thus ssirr’ = ss,55

—n. 36/47

Problem 2 °°: @—path unreachable otherwise.

by (C2) we deduce vIa, ~'Ia, ...

o invisible, thus ssirr’ ... = ssss, ...

—n. 37/47

Def. (weak fairness): if a € en, almost always then «
eventually executed.

Corollary: for every reachable state s, if a € en, then eventually
some (5 will be executed such that aDg.

SN

Problem 2°° does not appear under weak fairness

—n. 38/47

Are (Co) — (c2) sufficient?

—n. 39/47

Are (Co) — (c2) sufficient?

No!

(¥ Q

B

a1
%
© O—=

a3

(c3) we forbid cycles C' such that 95 Vs € C § € en, \ ample,

—n. 39/47

(Co) ample, =) < en, =1

(C1) If ample, # en, then every a € ample, IS invisible

(c2) for every path II starting in s:

If o« € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed

(c3) we forbid cycles C' such that 95 Vs € C 8 € en, \ ample,

—n. 40/47

How to implement this?

(C1) easy

(C2) hard, implemented in an approximate manner
— an over-approximation of D Is computed
— condition (C2) IS monotonic

— static analysis only

(C3) replaced by an easier but stronger:

(C3) if ample, # en, then Vo € ample, a(s) ¢ stack

—n. 42/47

Implementation

Implementation decision:

ample, = all transitions of some process enabled in s

—n. 43/47

Implementation decision:

ample, = all transitions of some process : enabled in s

whenever
— they are independent from all operations of all other
processes
— no operation of any other process may enable

any other operation of process :

—n. 43/47

— 1If 5 modifies pc so that « may be executed

— 1If Promela enabling condition for o« depends on global

variables, then any g that modifies these variables

— If o Is reading from/writing to a buffer then any 3 that

reads from/writes to this buffer

— . 44/47

— « 1 ¢ refer to the same global variable

and at least one of them modifies the variable (over-appr.)

— « |1 § belong to the same process; synchronous communi-

-cation is understood as belonging to both processes

— « 1 B write to/read from the same buffer

However reading from and writing to the same buffer Is
Independent!

—n. 45/47

Example:
Operations independent from all operations of other processes:

— operating on local variables

— reading from a buffer with xr flag set
— writing to a bugger with xs flag set
— test nenpt y(q) if xr flad is set for g

— testnful | (q) if xs flaf is set for g

—n. 46/47

— In both DFS’s the set ample, should be the same

— condition (C3) is applied to M x A_, instead of M.

IS It correct?

—n. 47/47

	Algorithm
	$M mapsto aut _M$
	Restrictions
	Reachability: $F $ bad state
	Double DFS
	Proof of correctness
	Restrictions (cont.)
	Solution
	np-cycles: FG $
eg $ progress
	np-cycles: automaton
	Motivation
	Motivation
	Motivation
	Model
	Cost-effectivity
	Problems?
	Stuttering
	LTLmX
	Correctness
	Sufficient condition for correctness
	Invisibility
	Sufficient condition for correctness
	Problems?
	Independence
	Independence
	Independence

	Independence
	Independence

	Sufficient condition for correctness
	Cj
	Cj

	Cj
	Problems?
	Problems?

	Problems?
	Problemy?
	Fairness
	Enough?
	Enough?

	Sufficient condition for correctness
	Sufficient condition for correctness
	Implementation
	Implementation

	$� $ enabling $a $ (over-approximation)
	$a D � $ (over-approximation)
	What remains independent?
	P.-o. reductions and on the fly verification

