Computer aided verification

Lecture 4: Model checking for
LTL
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[Clarke, Grumberg, Peled 2000]
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(1) On the fly verification

for each successsor s; of sdo...
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Safety: DFS or BFS

proc dfs(s)
if error(s) then report error fi
add s to Statespace
for each successor t of s do
iIf t not in Statespace then dfs(t) fi
od

end
[Holzmann,Peled, Yannakakis 1996]
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proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
for each successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then seed:=s; ndfs(s) fi
end
proc ndfs(s} /* the nested search */
add {s,1} to Statespace
for each successor t of s do
if {t,1} not in Statespace then ndfs(t) fi
else if t==seed then report cycle fi

od

end
[Holzmann,Peled, Yannakakis 1996]
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Assume an acceping state p with a cycle not detected by
ndf s(p) . Let p — the first such state.

Let r — the first state inspected by ndf s( p) thatis on a p-cycle
and for which {r, 1} in St at espace.

Let p’ — the accepting state such that r visited by ndf s(p’ ).
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(1) On the fly verification

for each successsor s; of sdo...

(2) Partial-order reductions

for each selected successsor s; of sdo...

.

selected — depends on states visited so far !
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proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
delete s from Stack
end
proc ndfs(s) /* the nested search */
add {s,1} to Statespace
for each (selected) successor t of s do
if {t,1} not in Statespace then ndfs(t} fi
else if t in Stack then report cycle fi
od

end
[Holzmann,Peled,Yannakakis 1996]
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proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
for each successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
ndfs{s) /* different */
end
proc ndfs(s) /* the nested search */
if s is Progress State then return fi /™ new */
add {s,1} to Statespace
add s to Stack /* new */
for each successor t of s do
if {t,1} not in Statespace then ndfs{t) fi
else if t is in Stack then report cycle fi /* different */
od
delete s from Stack /* new */
end

[Holzmann,Peled, Yannakakis 1996]
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never { /* non-progress: OU-progress */
do
. skip
:: lprogress — > break
od:
accept: do
:: lprogress

od

[Holzmann,Peled, Yannakakis 1996]

—progress
— @ @ —progress

(co-Buchi € Buchi)
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Partial-order reductions
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Def.. M = (S, S, T, L) T — operations (transitions)

foraeT. en, € S5, a:en, — S5 (determinism)
path: I = 55281 =5 59 =2 ... So = Sinit

Oéz'(Sz') = Si+1

en, := {a | s €en,} (v €Eeny, <= s € en,)

ldea: ample, C en, Iinstead of en, In double DFS ?
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ldea: ample, C en, instead of en, in double DFS ?

This makes sense, when:
— the result of verification is the same (correctness)

— significantly less states visited

— time overhead reasonable (effectivity)
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When may we ignore ¢t ?

Problem 1. Property may depend on state .

Problem 2: @ —successors unreachable otherwise.
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Def.: H:80—>81%82%...iH/:86%S/1%S/2—>...are
stuttering equivalent, IT = I, if sequences

L(so), L(s1), L(s2),...  L(sh), L(s}), L(sh),. ..
become identical after grouping is done:

Def.. M = M’ ifand only if — Vilw M dIl'w M II=1I

— VI w M dAMlw M II=1I
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LTL_x = LTL without X

Thm: IfgelTL_xand II=1II', then IIF¢ «— II'F o

Thm: IfgelTL_xyand M =M', then ME¢ <— M E®

Thm: LTL_y = FO=
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partial-order reduction
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Sufficient condition for correctness

(Co) ample, =0 <= en, = ()
Cc1) ...
(C2) ...

(C3) ...
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Def.: «isinvisible if L(s) = L(a(s)), V s € en,,.

Przyktad:  If « invisible, then (s)

SS1T = SSoTr
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Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ...

(C3) ...

ldea: Instead of doing sth now, do it in future!
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Problem 1. Property may depend on state .

Solved due to (C1) !

(C1) If ample, # eng, then every a € ample, IS invisible
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Def.. Relation of independence I C 1" x T

— Irreflexive and antisymmetric
— IfalB, a € eng, § € eng, then (s € en, Meng)

_ 5(8) € €,, CV(S) c eny

- Bla(s)) = a(B(s))

D=TxT \ I (dependency)
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Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers
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Example: Independent may be:

— 2 instructions of different processes operating on local
variables

— 2 instructions of different processes that increment the same
global variable

— 2 instructions of different processes writing to/reading from

different buffers

— 2 instructions of the same process ?
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Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng 7
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Question: Let alp. Is it possible that

s € en, \ eng a(s) € eng 7

Yes! [E.g. asynchronous reading and writing
from/to the same buffer by two different processes.
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Sufficient condition for correctness

(C0) ample, =) <= en, =10
(C1) If ample, # eng then every o € ample, IS invisible
(C2) ? (en,\ ample,) I ample,

(C3) ...

ldea: Instead of doing sth now, do it in future!
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(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

—n. 33/47



(C2)

(C2) a transition dependent on some transition from ample,
can not be executed

before some transition from ample, is executed

(c2) for every path II starting in s:
If « € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed
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(C2)

Lemma: (C2) implies (en, \ ample,) I ample,.

Proof: Let( € en, \ ample,, o € ample,, aDg.

s 5 B(s) — ... contradiction with (C2) .
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Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,
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Problem 2: @—successors unreachable otherwise.

OW

e.g., let o € ample,, 5 ¢ ample,

by (C2) appliedto 3~v..., we deduce v/«
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Problem 2: @—successors unreachable otherwise.

« invisible, thus ssirr’ = ss,55
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Problem 2 °°: @—path unreachable otherwise.

by (C2) we deduce vIa, ~'Ia, ...

o invisible, thus ssirr’ ... = ssss, ...
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Def. (weak fairness): if a € en, almost always then «
eventually executed.

Corollary:  for every reachable state s, if a € en, then eventually
some (5 will be executed such that aDg.

SN

Problem 2°° does not appear under weak fairness
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Are (Co) — (c2) sufficient?
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Are (Co) — (c2) sufficient?

No!

(¥ Q

B

a1
%
© O—=

a3

(c3) we forbid cycles C' such that 95 Vs € C § € en, \ ample,
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(Co) ample, =) < en, =1

(C1) If ample, # en, then every a € ample, IS invisible

(c2) for every path II starting in s:

If o« € ample,, 5 ¢ ample,, aDj
then 5 can not be executed in II

before some transition from ample, is executed

(c3) we forbid cycles C' such that 95 Vs € C 8 € en, \ ample,
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How to implement this?



(C1) easy

(C2) hard, implemented in an approximate manner
— an over-approximation of D Is computed
— condition (C2) IS monotonic

— static analysis only

(C3) replaced by an easier but stronger:

(C3) if ample, # en, then Vo € ample, a(s) ¢ stack
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Implementation

Implementation decision:

ample, = all transitions of some process  enabled in s
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Implementation decision:

ample, = all transitions of some process : enabled in s

whenever
— they are independent from all operations of all other
processes
— no operation of any other process may enable

any other operation of process :
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— 1If 5 modifies pc so that « may be executed

— 1If Promela enabling condition for o« depends on global

variables, then any g that modifies these variables

— If o Is reading from/writing to a buffer then any 3 that

reads from/writes to this buffer
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— « 1 ¢ refer to the same global variable

and at least one of them modifies the variable (over-appr.)

— « |1 § belong to the same process; synchronous communi-

-cation is understood as belonging to both processes

— « 1 B write to/read from the same buffer

However reading from and writing to the same buffer Is
Independent!
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Example:
Operations independent from all operations of other processes:

— operating on local variables

— reading from a buffer with xr flag set
— writing to a bugger with xs flag set
— test nenpt y(q) if xr flad is set for g

— testnful | (q) if xs flaf is set for g
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— In both DFS’s the set ample, should be the same

— condition (C3) is applied to M x A_, instead of M.

IS It correct?
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