Computation theory with atoms

I. Sets with atomsII. Computation models with atoms

Sławomir Lasota University of Warsaw

FoPSS School 2019: Nominal Techniques

I. Sets with atoms

- sets with atoms
 orbit-finite sets
 definable sets
- representation theorem
- homogeneous atoms

Atoms

Atoms are a fixed logical structure

atoms	atom automorphisms
equality atoms (N, =)	all bijections
integer atoms (Z, <)	translations
integers with successor $(Z, +1)$	translations
total order atoms (Q, <)	monotonic bijections
timed atoms (Q, <, +1)	monotonic bijections preserving integer differences
vector space (Q^n , +, q·_)	linear bijections
•••	•••

Atoms are a parameter in the following

look here

Sets with atoms

Classical sets are built using \emptyset and { } e.g. { \emptyset , { \emptyset }, { $\{\emptyset\}$ }, { \emptyset , { \emptyset }}}

an atom contains no elements

any atoms

Sets with atoms are built using \emptyset and { } and atoms

Examples:

- Ø
- three atoms {a, b, c},
- a pair (a, b) of atoms, encoded eg. as {a, {a,b}}
- atoms $\ \{a, b, c\}$
- ordered pairs of atoms
- finite words over atoms
- finite subsets of atoms
- all subsets of atoms

• illegal for (N, =)

legality depends on atom automorphisms

any atoms

Support

Extend atom automorphisms π to all sets element-wise, e.g. $\pi(\{a, b, c\}) = \{\pi(a), \pi(b), \pi(c)\}$ $\pi(\operatorname{atoms} \{a, b, c\}) = \operatorname{atoms} \{\pi(a), \pi(b), \pi(c)\}$ $\pi(\{\{a\}, \{a,b\}\}) = \{\{\pi(a)\}, \{\pi(a), \pi(b)\}\}$

A set X is supported by a finite set S of atoms, if every atom S-automorphism (= identity on S) preserves X:

$$(\pi(a) = a \text{ for all } a \in S) \implies \pi(X) = X$$

A set X is **legal** if it is hereditarily finitely supported:

- X is finitely supported,
- Most often we work with equivariant sets - its elements are finitely supported,
- and so on...

Sets supported by \emptyset are called equivariant

Support

 \varnothing

equality atoms (N, =)

Examples:

- Ø
- three atoms {1, 3, 6}
- a pair (3, 7) of atoms
- atoms \ {2, 5, 1}
- ordered pairs of atoms
- finite words over atoms
- finite subsets of atoms
- all subsets of atoms

{1, 3, 6},
{3, 7},
{2, 5, 1}
Ø
Ø
Ø
Ø
Ø

support = atoms that you use in order to "define" a set

Legal sets with atoms

x, y are in the same S-orbit if $\pi(x) = y$ for an S-automorphism π

 \varnothing -orbits we call orbits

Oligomorphic atoms

a structure *A* is **oligomorphic**

 $A^{(n)}$ split into finitely many Ø-orbits for every n.

if

Example: for atoms (Q, \leq) , atoms⁽ⁿ⁾ has n! orbits

Example: for atoms (Q, \leq , +1), atoms⁽²⁾ has infinitely many orbits (7,6¹/₃) (7,7¹/₃) (7,8) (7,8¹/₃) ...

oligomorphic atoms

Orbit-finite sets

x, y are in the same S-orbit if $\pi(x) = y$ for an S-automorphism π

A set is orbit-finite if its partition into orbits is finite

If atoms are oligomorphic, orbit-finiteness does not depend on S

Examples:

- Ø
- three atoms {1, 3, 6}
- a pair (3, 7) of atoms
- atoms \ {2, 5, 1}
- ordered pairs of atoms
- finite words over atoms
- finite subsets of atoms
- all subsets of atoms

finite

orbit-finite for oligomorphic atoms

orbit-infinite

oligomorphic atoms Hereditarily orbit-finite sets

poss	ibly illegal sets with atoms	
hereditarily fini sets with atoms	hereditarily finitely supported sets with atoms	orbit-finite sets
		hereditarily
		orbit-finite sets
	classical (atomless) sets	finite sets

oligomorphic atoms Hereditarily orbit-finite = definable

Definable sets

equality atoms (N, =) total order atoms (Q, <)

Examples:

• Ø

- Ø
- three atoms {1, 3, 6} {1, 3, 6},
- a pair (3, 7) of atoms $\{\{3\}, \{3,7\}\} = 37$
- atoms \ {2, 5, 1}
- ordered pairs of atoms { $ab : a, b atoms, a \neq b$ }
- finite words over atoms
- finite subsets of atoms
- all subsets of atoms

{d: datom, $d \neq 2$, $d \neq 5$, $d \neq 1$ } oms {ab: a,batoms, $a \neq b$ }

atoms⁽³⁾ modulo cyclic shift

orbit-infinite

{ {abc, bca, cab}: a,b,c atoms, $a \neq b, b \neq c, c \neq a$ } { {ab, cd}: a,b,c,d atoms, pairwise different } { a 1: a in atoms, $a \neq 2$ } { a : a in atoms, 4.5 < a < 6.1 }

Ø-definable ? equality atoms (N, =) total order atoms (Q, <)

- sets with atoms
 orbit-finite sets
 definable sets
- representation theorem
- homogeneous atoms

any atoms

Representation theorem

Theorem: Every equivariant orbit admits a surjective equivariant function from an orbit of $atoms^{(n)}$, for some n.

Surjective function = the orbit of the pair $((a_1 a_2 ... a_n), x)$

Representation theorem

equality atoms (N, =)

equality atoms (N, =)

Least support

Theorem: Every equivariant orbit is isomorphic to atoms⁽ⁿ⁾ modulo G, for some n and G a group of permutations of {1...n}.

Examples: $atoms^{(2)}/(12) = P_2(atoms)$ $atoms^{(3)}/(123) = atoms^{(3)} \mod cyclic shift$ $atoms^{(5)}/(123)(45)$

Straight sets: every orbit isomorphic to $atoms^{(n)}$ for some n

Corollary: Every set (element) x has the least support **supp**(x), i.e., support included in every support of x.

 $supp((3, 6, 7, 2) / (1 2 3)) = \{3, 6, 7, 2\}$

- sets with atoms
 orbit-finite sets
 definable sets
- representation theorem
- homogeneous atoms

Oligomorphic atoms

a structure A is oligomorphic if $A^{(n)}$ is orbit-finite for every n.

Theorem: orbit-finite sets are stable under Caertesian products and subsets

Homogeneous atoms (relational case)

Example: (Q, \leq)

Homogeneous atoms (relational case)

Homogeneous atoms (relational case)

extension property

Homogeneous atoms (general case)

a structure A is homogeneous

every isomorphism of **finitely generated substructures** of *A* extends to an automorphism of the whole structure

if

```
Example: bit vectors (V, +)
```

V = infinite-dimensional linear space over Z_2 = infinite sequences over {0,1} with finitely many 1's

0101001101000011101110000000 ...

substructure generated by {01010..., 01100...} =
 {01010..., 01100..., 00110..., 00000...}
substructure generated by X = ? subspace spanned by X

Example: (Z, +1)substructure generated by $\{7\} = \{7, 8, ...\}$

Least support?

bit-vector atoms (V, +)

010100110100001110111000 ...

supp((01010..., 01100...)) = ?

Theorem: Every set x has the least **closed** support **supp**(x), i.e., closed support included in every closed support of x.

 $supp((01010..., 01100...)) = \{01010..., 01100..., 00110..., 00000...\}$

Quantifier elimination

Observation: When atoms are homogeneous

two tuples in atoms⁽ⁿ⁾ are in the same orbit

the tuples generate isomorphic substructures

there is a function **b** such that substructures generated by n atoms have size bounded by **b**(n)

Corollary: When atoms are homogeneous, have finite vocabulary and bounded substructures,

iff

- atoms are oligomorphic
- legal subsets of $atoms^n = quantifier-free$ definable subsets of $atoms^n$

Example: For bit-vector atoms (V, =), what is $\mathbf{b}(n)$? $\mathbf{b}(n) = 2^n$ Integer atoms (Z, +1) ?

In the sequel, atoms are **well-behaved**:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

hence quantifier-free logic decidable hence oligomorphic and FO = quantifier free logic

orbits of atoms(n) = substructures generated by n atoms

there is a function **b** such that substructures generated by n atoms have size bounded by **b**(n)

finitely generated substructures of atoms are computable

Age = finitely generated substructures

atoms	finitely generated substructures	
equality atoms (N, =)	finite pure sets	
integer atoms (Z, <)	finite total orders	
total order atoms (Q, <)	finite total orders	
vector space $(Q^n, +, q\cdot)$	vector spaces over Q of dim \leq n	
bit vectors (V, +)	finite vector spaces over Z_2	
?	finite graphs	
?	finite trees	
?	finite partial orders	

• class is closed under amalgamation if every instance has a solution

• amalgamation class = class of finitely generated structures closed under iso, substructures and amalgamation

• finite planar graphs?

• finite trees (child relation)?

• finite trees (descendant relation)?

Theorem (Freïssé):

homogeneous structures

amalgamation classes of finitely generated structures

atoms	amalgamation class
equality atoms (N, =)	finite pure sets
<u>integer atoms (Z, <)</u>	finite total orders
total order atoms (Q, <)	finite total orders
bit vectors (V, +)	finite vector spaces over \mathbf{Z}_2
random (universal) graph	finite graphs
universal tree	finite trees
universal partial order	finite partial orders

classification challenge

Theorem: [Lachlan, Woodrow'80] Let A be an infinite countable homogeneous graph. Then either A or its complement is isomorphic to one of:

- universal (random) graph
- universal graph excluding n-clique, for some n
- disjoint union of cliques of the same (finite or infinite) size

An analogous (but more complex) classification exists for directed graphs [Cherlin'98].

A classification of all homogeneous structures remains a great challenge.

WQO solvable problems:

- emptiness of 1-dim alternating automata
- coverability of Petri nets

WQO Dichotomy Conjecture:

For a homogeneous structure *A*, exactly one of the following conditions holds:

- *Age*(A), ordered by embeddings, is a WQO
- WQO solvable problems are undecidable.

The conjecture confirmed for:

- graphs
- directed graphs
- 2-colored graphs
- 5-colored finitely bounded graphs
- when all relations are equivalences
- ...

?

Random graph = universal graph?

Question: Why *Age*(the random graph) = all finite graphs? Why is the random graph homogeneous?

?

Assume atoms to be a relational structure.

Question: Closure under singleton amalgamation implies closure under (arbitrary) amalgamation?

?

Consider Age(atoms) ordered by embeddings.

Question: In which case below *Age*(atoms) is a WQO? What about **colored** *Age*(atoms)?

- equality atoms (N, =)
- total order atoms (Q, <)
- universal graph atoms
- universal partial order atoms