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I.   Sets with atoms
II. Computation models with atoms



I. Sets with atoms

• sets with atoms
• orbit-finite sets 

• definable sets

• representation theorem 

• homogeneous atoms
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recap}



Atoms
Atoms are a fixed logical structure

Atoms are a parameter in the following

atoms atom automorphisms

equality atoms (N, =) all bijections

integer atoms (Z, <) translations

integers with successor (Z, +1) translations

total order atoms (Q, <) monotonic bijections

timed atoms (Q, <, +1) monotonic bijections preserving 
integer differences

vector space (Qn, +, q・_ ) linear bijections

... ...
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look here



Classical sets are built using ∅ and { }

Sets with atoms 

e.g. {∅, {∅}, {{∅}}, {∅,{∅}}}

Sets with atoms are built using ∅ and { } and atoms

an atom contains 
no elements

Examples: • ∅ 
• three atoms {a, b, c},
• a pair (a, b) of atoms, encoded eg. as {a, {a,b}}
• atoms∖{a, b, c}
• ordered pairs of atoms 
• finite words over atoms 
• finite subsets of atoms
• all subsets of atoms
• .... illegal for (N, =)

legality depends on
atom automorphisms
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any atoms  



Support

A set X is supported by a finite set S of atoms, if
every atom S-automorphism (= identity on S) preserves X:

(π(a) = a for all a∊S)  ⟹  π(X) = X

Extend atom automorphisms π to all sets element-wise, e.g.
π({a, b, c}) = {π(a), π(b), π(c)} 
π(atoms∖{a, b, c}) = atoms∖{π(a), π(b), π(c)}
π({{a}, {a,b}}) = {{π(a)}, {π(a), π(b)}}  

A set X is legal if it is hereditarily finitely supported:
- X is finitely supported,
- its elements are finitely supported, 
- and so on...

Sets supported by ∅ are called equivariant
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Most often we work with equivariant sets

any atoms  



∅ 
{1, 3, 6},
{3, 7},
{2, 5, 1}
∅
∅ 
∅ 
∅

Examples:

support = atoms that you use in order to ”define” a set
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equality atoms (N, =) 

• ∅ 
• three atoms {1, 3, 6}
• a pair (3, 7) of atoms
• atoms∖{2, 5, 1}
• ordered pairs of atoms
• finite words over atoms 
• finite subsets of atoms
• all subsets of atoms

Support



Legal sets with atoms

possibly illegal sets with atoms

hereditarily finitely supported 
sets with atoms

classical (atomless) sets
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finite sets

?



x, y are in the same S-orbit
if

π(x) = y for an S-automorphism π

g
g

g

Orbits
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∅-orbits we call orbits

any atoms  



a structure A is oligomorphic
if

A(n) split into finitely many ∅-orbits for every n.

Example: for atoms (Q, ≤, +1), atoms(2) has infinitely many orbits
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Oligomorphic atoms

(7,6⅓)    (7,7⅓)    (7,8)    (7,8⅓)  ...

Example: for atoms (Q, ≤), atoms(n) has n! orbits



x, y are in the same S-orbit if π(x) = y for an S-automorphism π

g
g

g

Orbit-finite sets

} finite

} orbit-finite for oligomorphic atoms

} orbit-infinite

Examples:

A set is orbit-finite if its partition into orbits is finite
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• ∅ 
• three atoms {1, 3, 6}
• a pair (3, 7) of atoms
• atoms∖{2, 5, 1}
• ordered pairs of atoms
• finite words over atoms 
• finite subsets of atoms
• all subsets of atoms

If atoms are oligomorphic, 
orbit-finiteness does not depend on S

oligomorphic atoms  



possibly illegal sets with atoms

hereditarily finitely supported 
sets with atoms

classical (atomless) sets finite sets

orbit-finite sets
hereditarily

orbit-finite sets
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Hereditarily orbit-finite sets
oligomorphic atoms  



possibly illegal sets with atoms

hereditarily finitely supported 
sets with atoms

classical (atomless) sets finite sets

orbit-finite sets
hereditarily

orbit-finite sets
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Hereditarily orbit-finite = definable 
oligomorphic atoms  

We will confuse these two classes



Definable sets

∅  
{1, 3, 6}, 
{{3}, {3,7}} = 3 7 
{ d :  d atom, d ≠ 2, d ≠ 5, d ≠ 1 } 
{ ab :  a,b atoms, a ≠ b } 

{ {abc, bca, cab} :  a,b,c atoms, a ≠ b, b ≠ c, c ≠ a } 
{ {ab, cd} :  a,b,c,d atoms, pairwise different } 
{ a 1 :  a in atoms, a ≠ 2 } 
{ a : a in atoms, 4.5 < a < 6.1 }

• ∅ 
• three atoms {1, 3, 6}
• a pair (3, 7) of atoms
• atoms∖{2, 5, 1}
• ordered pairs of atoms
• finite words over atoms 
• finite subsets of atoms
• all subsets of atoms
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equality atoms (N, =) 

Examples:

}orbit-infinite

total order atoms (Q, <) 

atoms(3) modulo cyclic shift
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equality atoms (N, =) 
∅-definable ?

∅-definable

{∅-definable

∅-definable
{1,3,6}-definable

{3,7}-definable

{1,2}-definable

∅  
{1, 3, 6}, 
{{3}, {3,7}} = 3 7 
{ d :  d atom, d ≠ 2, d ≠ 5, d ≠ 1 } 
{ ab :  a,b atoms, a ≠ b } 

{ {abc, bca, cab} :  a,b,c atoms, a ≠ b, b ≠ c, c ≠ a } 
{ {ab, cd} :  a,b,c,d atoms, pairwise different } 
{ a 1 :  a in atoms, a ≠ 2 } 
{ a : a in atoms, 4.5 < a < 6.1 }

{2,5,1}-definable

total order atoms (Q, <) 

{4.5, 6.1}-definable



• sets with atoms

• orbit-finite sets 

• definable sets

• representation theorem 

• homogeneous atoms
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orbit of 
atoms(n)

any atoms
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Theorem:  Every equivariant orbit admits 
a surjective equivariant function from an orbit of atoms(n), 
for some n.

a support
of x

Proof:

(a₁ a₂ ... an)

X

Representation theorem 

x

Surjective function = the orbit of the pair ((a₁ a₂ ... an), x)



equality atoms (N, =)
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Theorem:  Every equivariant orbit admits 
a surjective equivariant function from atoms(n), for some n, s.t.
f(a₁ a₂ ... an) = f(b₁ b₂ ... bn)  ⟹  {a₁ a₂ ... an} = {b₁ b₂ ... bn}.

atoms(n)

(a₁ a₂ ... an)
X
x

Representation theorem 

Theorem:  Every equivariant orbit is isomorphic to
 atoms(n) modulo G, for some n and 
 G a group of permutations of {1…n}.

Examples:   atoms(2) /(1 2) = P2(atoms)
atoms(3) /(1 2 3) = atoms(3) modulo cyclic shift
atoms(5) /(1 2 3)(4 5)

n defines dimension
 of an orbit

Straight sets: every orbit isomorphic to atoms(n) for some n

equivariant bijection



equality atoms (N, =)
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Least support

Corollary:  Every set (element) x has the least support supp(x), i.e., 
  support included in every support of x.

  supp( (3, 6, 7, 2) /(1 2 3) )  =  {3, 6, 7, 2}

Theorem:  Every equivariant orbit is isomorphic to
 atoms(n) modulo G, for some n and 
 G a group of permutations of {1…n}.

Straight sets: every orbit isomorphic to atoms(n) for some n

Examples:   atoms(2) /(1 2) = P2(atoms)
atoms(3) /(1 2 3) = atoms(3) modulo cyclic shift
atoms(5) /(1 2 3)(4 5)



• sets with atoms

• orbit-finite sets 

• definable sets

• representation theorem

• homogeneous atoms

�19

recap}



a structure A is oligomorphic
if

A(n) is orbit-finite for every n.
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Oligomorphic atoms

Theorem: orbit-finite sets are stable under Caertesian products and subsets



a relational structure A is homogeneous
if

every isomorphism of finite substructures of A extends 
to an automorphism of the whole structure

Example: (Q, ≤)
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Homogeneous atoms (relational case)

induced substructures



total order atoms (Q, <)

integer atoms (Z, <)

(Q, <, +1)

equality atoms (N, =)

random graph

...
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Homogeneous atoms (relational case)

Examples:

random graph = countable infinite graph yielded 
almost surely if every pair of nodes is connected 
by an edge with independent probability ⅓



and so on ...

Homogeneous atoms (relational case)

extension property



a structure A is homogeneous
if

every isomorphism of finitely generated substructures of A extends 
to an automorphism of the whole structure

Example:   bit vectors (V, +)
V = infinite-dimensional linear space over Z2 =
infinite sequences over {0,1} with finitely many 1’s
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Homogeneous atoms (general case)

0101001101000011101110000000 …

Example:   (Z, +1)
substructure generated by {7} = {7, 8, …}

substructure generated by {01010…, 01100…} =
     {01010…, 01100…, 00110…, 00000…} 

substructure generated by X  =  ?                                               subspace spanned by X 



bit-vector atoms (V, +)
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Least support?

Theorem:   Every set x has the least closed support supp(x), i.e., 
  closed support included in every closed support of x.

supp( (01010…, 01100…) )  =  {01010…, 01100…, 00110…, 00000…}

010100110100001110111000 …

supp( (01010…, 01100…) )  =  ?



�26

Quantifier elimination

Corollary:   When atoms are homogeneous, have finite vocabulary and 
bounded substructures,

• atoms are oligomorphic
• legal subsets of atomsn  =  quantifier-free definable subsets of atomsn

Observation:  When atoms are homogeneous

the tuples generate 
isomorphic substructures

two tuples in atoms(n)  
are in the same orbit iff

there is a function b such that substructures 
generated by n atoms have size bounded by b(n)

Example:   For bit-vector atoms (V, =), what is b(n)?   b(n) = 2n

Integer atoms (Z, +1) ?



orbits of atoms(n) = substructures 
generated by n atoms

In the sequel, atoms are well-behaved:
• have finite vocabulary
• are homogeneous
• have bounded substructures
• are effective
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hence oligomorphic and
FO = quantifier free logic}

there is a function b such that 
substructures generated by n atoms 
have size bounded by b(n)

finitely generated substructures 
of atoms are computable

hence quantifier-free 
logic decidable
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atoms finitely generated substructures

equality atoms (N, =) finite pure sets

integer atoms (Z, <) finite total orders

total order atoms (Q, <) finite total orders

vector space (Qn, +, q・_ ) vector spaces over Q of dim ≤ n

bit vectors (V, +) finite vector spaces over Z2

? finite graphs

? finite trees

? finite partial orders

Age = finitely generated substructures
am

algam
ation classes}



• amalgamation class  =  class of finitely generated structures closed under
           iso, substructures and amalgamation
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Amalgamation class

• class is closed under amalgamation if every instance has a solution

amalgamation
instance {

solution

3 structures
and 2 embeddings

1 structure
and 2 embeddings
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Amalgamation classes

• finite total orders

• finite pure sets
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Amalgamation classes

• finite total orders

• paths?
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Amalgamation classes

• finite graphs

• finite planar graphs?
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Amalgamation classes
• finite trees (child relation)?

• finite trees (descendant relation)?

• finite trees (lca function)



Theorem (Freïssé):   

homogeneous 
structures

amalgamation classes of 
finitely generated 
structures

Age = 
finitely generated

substructures

• Age yields an amalgamation class

Homogeneity vs amalgamation



and so on ...

Theorem (Freïssé):   

homogeneous 
structures

amalgamation classes of 
finitely generated 
structures

Age = 
finitely generated

substructures

• Age is injective (up to iso): consider 2 homogeneous structures with
 the same age

Homogeneity vs amalgamation

a homogeneous structure is
uniquely determined by its finitely 

generated substructures



Theorem (Freïssé):   

homogeneous 
structures

amalgamation classes of 
finitely generated 
structures

Age = 
finitely generated

substructures

• Age is surjective:

Homogeneity vs amalgamation

Freïssé limit

enumerate all 
such triples
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Homogeneity vs amalgamation
Theorem (Freïssé):   

homogeneous 
structures

amalgamation classes of 
finitely generated 
structures

atoms amalgamation class

equality atoms (N, =) finite pure sets

integer atoms (Z, <) finite total orders

total order atoms (Q, <) finite total orders

bit vectors (V, +) finite vector spaces over Z2

random (universal) graph finite graphs

universal tree finite trees

universal partial order finite partial orders

… …

Age = 
finitely generated

substructures

Freïssé limit
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classification challenge

Theorem: [Lachlan,Woodrow’80] Let A be an infinite countable 
homogeneous graph. Then either A or its complement is isomorphic to one of:

• universal (random) graph

• universal graph excluding n-clique, for some n

• disjoint union of cliques of the same (finite or infinite) size

An analogous (but more complex) classification exists for directed graphs 
[Cherlin’98]. 

 A classification of all homogeneous structures remains a great challenge. 
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WQO Dichotomy Conjecture:
For a homogeneous structure A, exactly one of the following 
conditions holds:

• Age(A), ordered by embeddings, is a WQO
• WQO solvable problems are undecidable.

The conjecture confirmed for:
• graphs
• directed graphs
• 2-colored graphs 
• 5-colored finitely bounded graphs
• when all relations are equivalences
• ...

WQO solvable problems:
• emptiness of 1-dim alternating automata 
• coverability of Petri nets
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?

Question:  Why Age(the random graph) = all finite graphs?
 Why is the random graph homogeneous?

Random graph = universal graph?
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?

Question:  Closure under singleton amalgamation implies
 closure under (arbitrary) amalgamation?

Assume atoms to be a relational structure.
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?

Question:  In which case below Age(atoms) is a WQO?
 What about colored Age(atoms)?

Consider Age(atoms) ordered by embeddings.

• equality atoms (N, =)
• total order atoms (Q, <)
• universal graph atoms
• universal partial order atoms


