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Atoms

Atoms are a fixed logical structure

atoms

atom automorphisms

equality atoms (NN, =)

all byections

integer atoms (Z, <)

translations

integers with successor (Z, +1)

translations

total order atoms (Q, <)

monotonic bijections

timed atoms (Q, <, +1)

monotonic bijections preserving
integer differences

vector space (Q", +, q-_)

linear bijections

Atoms are a parameter 1n the following




any atoms

Sets with atoms

Classical sets are built using & and { }

an atom contains

e.g- {9, {9}, {G}}, (9.{D}}} no elements

Sets with atoms are built using & and { } and atoms

Examples: o ¥

* three atoms {a, b, c},

* a pair (a, b) of atoms, encoded eg. as {a, {a,b}}
* atoms\{a, b, ¢}

* ordered pairs of atoms

 finite words over atoms

 finite subsets of atoms

o all subsets-obatoms—— legality depends on
* ... illegal for (N, =) atom automorphisms
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Support

Extend atom automorphisms nt to all sets element-wise, e.g.

n({a, b, c}) = {n(a), n(b), n(c)}

n(atoms\{a, b, ¢}) = atoms\ {n(a), n(b), n(c)}

n({{a}, {a,b}}) = {{n(a)}, {n(a), n(b)}]

A set X 1s supported by a finite set S of atoms, 1f

every atom S-automorphism (= identity on S) preserves X:

(n(a) =aforall aeS) = =(X) = X

A set X 1s legal 1f 1t 1s hereditarily finitely supported:
- X 1s finitely supported,

- 1ts elements are finitely supported,
- and so on...

Sets supported by & are called equivariant

any atoms




equality atoms (N, =)

Support

Examples:

. >
* three atoms {1, 3, 6} (1
* a pair (3, 7) of atoms (3
e atoms\ {2, 5, 1} (2
* ordered pairs of atoms %,
e finite words over atoms %
 finite subsets of atoms %
 all subsets of atoms J

support = atoms that you use in order to "define” a set



Legal sets with atoms

possibly illegal sets with atoms

hereditarily finitely supported

sets with atoms

classical (atomless) sets




any atoms

Orbits

x, y are 1n the same S-orbit
if

n(x) =y for an S-automorphism

-orbits we call orbits



Oligomorphic atoms

a structure A 1s oligomorphic
if
A split into finitely many @-orbits for every n.

Example: for atoms (Q, <), atoms(n) has n! orbits

Example: for atoms (Q, <, +1), atoms(2) has infinitely many orbits

(7,6Y5) (7.7 (7.8) (7,8%) ...



oligomorphic atoms

Orbit-hnite sets

x, y are 1n the same S-orbit if n(x) = y for an S-automorphism =

A set 1s orbit-finite 1f its partition into orbits 1s finite

It atoms are oligomorphic,
orbit-finiteness does not depend on S

Examples:

o I

* three atoms {1, 3, 6} } .

) finite

* a pair (3, 7) of atoms

* atoms\ {2, 5, 1}

e ordered pairs of atoms orbit-finite for oligomorphic atoms
e finite words over atoms
e finite subsets of atoms

} orbit-infinite

e all subsets of atoms
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oligomorphic atoms

Hereditarily orbit-finite sets

possibly illegal sets with atoms

hereditarily fimtely supported

sets with atoms

classical (atomless) sets
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oligomorphic atoms

Hereditarily orbit-finite = definable

possibly illegal sets with atoms

hereditarily finitely supported

sets with atoms

classical (atomless) sets
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equality atoms (N, =)
Deﬁnable sets total order atoms (Q, <)

Examples:

. O %

* three atoms {1, 3, 6} {1, 3, 6},

* aparr (3,7) of atoms  {{3} {3, 71} =37

* atoms\ {2, 5, 1} {d: datom,d#2,d#5,d= 1}

* ordered pairs of atoms {ab: a b atoms,a#b}
atoms () modulo cycl@

e finite words over atoms
e finite subsets of atoms } orbit-infinite
e all subsets of atoms

{{abc, bca, cab}: a,b,catoms,a#zb,b#c,c#a}
{{ab, cd}: a,b,c,d atoms, pairwise different }
{al: ainatoms,a=2}
{a:ainatoms,45<a<6.1}
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equality atoms (N, =)
@ 'deﬁnable ? total order atoms (Q, <)

-definable 9
{1,3,6}-definable {1, 3, 6},
{3,7}-definable {{3},{3,71 =37
{2,5,1}-C-Leﬁnaw:);e { d: d atom, d # 2, d# 5, d=1 }
definable {ab: abatoms,a=b}

3-definab { {{abc, bca, cab}: a,b,catoms,a#b,b#c,c#a}
~EEnable {{ab, cd}: a,b,c,d atoms, pairwise different }

{1,2}-definable {a1: ainatoms,a =2}
(4.5, 6.1}-definable {a:ainatoms, 45<a<6.1}
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any atoms

Representation theorem

Theorem: Every equivariant orbit admits
a surjective equivariant function from an orbit of atoms (n),

fOI’ SOIme 1.

Proof: orbit of
atoms(®) X
a support (a1 az ... an) > e
of x r @ -

Surjective function = the orbit of the pair ((a1 a2 ... an), x)
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. equality atoms (N, =)
Representation theorem

Theorem: Every equivariant orbit admits

a surjective equivariant function from atoms (n), for some n, s.t.

f(a1 a2 ... an) = f(b1 b2 ... bn) = {ai1 a2 ... an} = {b1 b2 ... bn}.

atoms (n) X
(a1 a . an) > ®

n defines dimension
of an orbit
equivariant bij@

Theorem: Every equivariant orbit is isomorphic to

atoms ™ modulo G, for some n and

G a group of permutations of {I...n}.

Examples: atoms? / (12) = Po(atoms)
atoms® / (123) = atoms® modulo
atoms(5) / (123)(45)

Straight sets: every orbit isomorphic to atoms(™ for some n
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equality atoms (N, =)

[east support

Theorem: Every equivariant orbit is isomorphic to

atoms(™) modulo G, for some n and
G a group of permutations of {1...n}.

Examples: atoms 2) / (12) = Po(atoms)

atoms® / (12 3) = atoms (3) modulo cychic shitt
atoms(5) / (123)(45)

Straight sets: every orbit isomorphic to atoms(™ for some n

Corollary: Every set (element) x has the least support supp(x), 1.e.,
support included 1n every support of x.

supp((3,6,7,2)/(123)) = {3,6,7, 2]
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sets with atoms
orbit-finite sets recap
definable sets
representation theorem

homogeneous atoms
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Oligomorphic atoms

a structure A 1s oligomorphic
if
A™) is orbit-finite for every n.

Theorem: orbit-finite sets are stable under Caertesian products and subsets
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HOmOgeneOUS atoms (relational case)

. . induced substru@
a relational structure A 1s homogeneous -
1t

every 1somorphism of finite substructures of A extends

to an automorphism of the whole structure

Example: (Q, <)
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Homogeneous atoOmMs (relational case)

Examples:

total order atoms (Q, <)
——nteger-atomsL<)—

(O
<

)

- 1
~) TL/

equality atoms (N, =)

random graph

~ graph = countable infinite graph

almost surely if every pair of nodes 1s connected
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Homogeneous atOMS (relational case)

i extension property

Vi




HOmOgeneOUS atoms (general case)

a structure A 1s homogeneous
if
every isomorphism of finitely generated substructures of A extends

to an automorphism of the whole structure

Example: bit vectors (V, +)

V = inhinite-dimensional linear space over Z9 =
infinite sequences over {0,1} with finitely many 1’s

01010011010000111011 10000000 ...

substructure generated by {01010..., 01100...} =
{01010...,01100..., 00110..., 00000...}

substructure generated by X =7 subspace spanned by X

Example: (Z, +1)
substructure generated by {7} = {7, 8§, ...}
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bit-vector atoms (V, +)

[east SUPPOIT? 010100110100001110111000 ...

supp( (01010..., 01100...) ) = ?

Theorem: Every set x has the least closed support supp(x), 1.e.,
closed support included 1n every closed support of x.

supp( (01010..., 01100...) ) = {01010..., 01100..., 00110..., 00000...}
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Quantifier elimination

/.

|
o
W —

Observation: When atoms are homogeneous

two tuples in atoms(n) . the tuples generate
itt

are 1n the same orbit isomorphic substructures

there 1s a function b such that substructures

generated by n atoms have size bounded by b(n)

Corollary: When atoms are éneous, have finite vocabulary and

bounded substructures,

* atoms are oligomorphic

* legal subsets of atoms? = quantifier-free definable subsets of atomsn

Example: For bit-vector atoms (V, =), whatis b(n)? (n) = 20
Integer atoms (Z, +1) ?

26



In the sequel, atoms are well-behaved:

* have finite vocabulary
* are homogeneous

» have bounded substriuctures

e are effective

hence quantifier-free

logic decidable

i

hence oligomorphic and

FO = quantifier free logic

orbits of atoms (n) = substructures
generated by n atoms

there 1s a function b such that

substructures generated by n atoms

have size bounded by b(n)

ﬁnitely generated substructures
of atoms are computable
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Age = hmitely generated substructures

atoms ﬁnitely generated substructures
equality atoms (NN, =) finite pure sets

integer atoms (Z, <) finite total orders %
total order atoms (Q, <) finite total orders “;‘3—
vector space (Q", +, q-_)| vector spaces over Q of dim < n 5:1.

bit vectors (V, +) finite vector spaces over Z 9 (%

? finite graphs %

? finite trees Z

? finite partial orders
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Amalgamation class

solution
1 structure

and 2 embeddings

/N

amalgamation
Instance

3 structures
\ / and 2 embeddings

+ class 1s closed under amalgamation if every instance has a solution

» amalgamation class = class of finitely generated structures closed under
150, substructures and amalgamation
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Amalgamation classes

* finite total orders

» finite pure sets

ey




Amalgamation classes

* finite total orders

* paths?




Amalgamation classes

» finite graphs

» finite planar graphs




Amalgamation classes

* finite trees (child relation)? » finite trees (Ica function)

............

* finite trees (descendant relation)?
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Homogeneity vs amalgamation

(X} Ve . A‘qe =
Theorem (Frelsse). ﬁmtely generated
substructur_)es amalgamation classes of
homogeneous :
finitely generated
structures
structures

* Age yields an amalgamation class

Q\ /Q



Homogeneity vs amalgamation

Theorem (Freissé): - Age =
ﬁmtely generated
—)substructures amalgamation classes of
homogeneous

structures finitely generated

a homogeneous structure is
& tructures

uniquely determined by its finitely
generated substructures

* Age 1s 1njectiv 0 1s0): consider 2 homogeneous structures with

the same age

and SO On ...



Homogeneity vs amalgamation

Theorem (Freissé): ﬁnitelgjl gfe;erated
homogencous substructur_)es am.algamation classes of
finitely generated
structures Freissé limit structures

* Age 1s surjective:

enumerate all
such triples



Homogeneity vs amalgamation

Theorem (Freissé): . Age =
ﬁmt%ly generated
M) amalgamation classes of
homogeneous :
finitely generated
structures Freissé limi
reisse himit Structures
atoms amalgamation class
equality atoms (N, =) finite pure sets
—mtegeratoms o —<— finite total orders
total order atoms (Q, <) finite total orders
bit vectors (V, +) finite vector spaces over Z 9
random (universal) graph finite graphs
universal tree finite trees
universal partial order finite partial orders
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classification challenge

Theorem: [ Lachlan, Woodrow'80] Let A be an infinite countable

homogeneous graph. Then either A or its complement 1s isomorphic to one of:

* universal (random) graph
* universal graph excluding n-clique, for some n

* disjoint union of cliques of the same (finite or infinite) size

An analogous (but more complex) classification exists for directed graphs

[Cherlin’98].

A classification of all homogeneous structures remains a great challenge.
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WQO solvable problems:

* emptiness of 1-dim alternating automata

* coverability of Petri nets

WQO Dichotomy Conjecture:

For a homogeneous structure A, exactly one of the following
conditions holds:

e Age(A), ordered by embeddings, 1s a WQO
* WQO solvable problems are undecidable.

The conjecture confirmed for:
* graphs
* directed graphs
* 2-colored graphs
* 5-colored finitely bounded graphs

* when all relations are equivalences
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?

@
Random graph = universal graph?

Question: Why Age(the random graph) = all finite graphs?
Why 1s the random graph homogeneous?
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?

O
Assume atoms to be a relational structure.

Question: Closure under singleton amalgamation implies
closure under (arbitrary) amalgamation?
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Consider Age(atoms) ordered by embeddings.

Question: In which case below Age(atoms) 1s a WQO?
What about colored Age(atoms)?

* equality atoms (NN, =)

* total order atoms (Q, <)

* universal graph atoms

* universal partial order atoms
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