Timed pushdown automata
and
branching vector addition systems

Stawomir Lasota
University of Warsaw

joint work with Lorenzo Clemente, Filip Mazowiecki and Ranko Lazic

AVERTS 2016, Chennai

1

Definable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Definable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Dehinable PDA

have decidable non-emptiness problem, by reduction to

an extension of BVASS in dimension 1.

Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

* reals
* rationals

* Integers

Time domain

dense time

discrete time a0y

e rationals

* Integers

Time domain

dense time

discrete time a0y

Time domain

e rationals

dense time

* Integers discrete time any

No restriction to non-negative!

Time domain

e rationals

dense time

* Integers discrete time any

No restriction to non-negative!

Let input alphabet be reals

Time domain

.@ dense time

° . S
rationals . Og s

* integers discrete time any

No restriction to non-negative!

Let input alphabet be reals

Timed automata assume monotonic input words :

o ® *—0—0 o

Timed automata [Alur, Dill 1990]

with uninitialized clocks

Timed automata [Alur, Dill 1990]

with uninitialized clocks

™~

Timed automata [Alur, Dill 1990]

with uninitialized clocks

_ ¥

‘06
e

WP
Q— @

Timed automata [Alur, Dill 1990]

with uninitialized clocks

_ eV

‘06
e

WP
‘ ci:= 0 0

Timed automata [Alur, Dill 1990]

with uninitialized clocks

\S
_ (e
0o
X O

.049\}'
o @
C1 .=

@

J<ci<?

c2:= ()

Timed automata [Alur, Dill 1990]

with uninitialized clocks

e
et
R
WP
@ cr:= 0 ® 0<ci<? 0 (2<c1<d) A O

c2:= () (Cz=1 VCz=2)

Timed automata [Alur, Dill 1990]

with uninitialized clocks

ced¥®
pet
R
RS
Q ci:=0 O J<ci<?)O (2<Cl<5)A @
c2:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that

Timed automata [Alur, Dill 1990]

with uninitialized clocks

ced¥®
pet
R
WP
O ci:=0 G O<ci<?)O (2<Cl<5)A @
co:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that

Timed automata [Alur, Dill 1990]

with unimtialized clocks

\S
_ e
K,/
\3&2\\9\&6
WP
Q ci:=0 G O<ci<?)Q (2<Cl<3)A @
c2:= () (C2=1 \Y C2:2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3

Timed automata [Alur, Dill 1990]

with unimtialized clocks

\S
_ e
K,/
\X&@\Q\&e
WP
Q ci:=0 G O<ci<?)G <2<Cl<3)A @
c2:= () (C2=1 \Y C2=2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3

® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 VCz=2)

® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 \ C2=2>
—o —
0 U3 23
¢ — —

® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 VC2=2)

(C1=O, CQ=%) = ((11:0, Cz=1%)

*—o —o
0 ¥ 2V5
. "~ —0

0 13 2Y3

Towards timed pushdown automata

Towards timed pushdown automata

* timed automata [Alur, Dill 1990]

Towards timed pushdown automata

* timed automata :Alur’ Dill 1990] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

Towards timed pushdown automata

* timed automata [Alur, Dill 1990] . .

stack alphabet

* pushdown timed automata [Bouajjani, |

Hchahed, Robbana 1994]

* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c

Towards timed pushdown automata

* timed automata :Alur’ Dill 19 90] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

. . * clocks can be pushed onto stack
* recursive timed automata * the emptiness problem EXPTIME-c

[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

Towards timed pushdown automata

* timed automata

* pushdown timed

 automata | Bouajjani,

:Alur’ Dill 1990] finite stack alphabet
Echahed, Robbana 1994]

* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]

Dense-timed pus

equivalent to pus

hdown automata are expressively

hdown timed automata.

Towards timed pushdown automata

* timed automata :Alur’ Dill 19 90] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

* dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]

Dense-timed pushdown automata are expressively

equivalent to pushdown timed automata.

An accidental combination of e stack discipline

* monotonicity of time
* syntactic restrictions

7

* do not invent a new definition

* do not invent a new definition

* re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

do not invent a new definition

re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

alphabet A
states Q
transitions 8 € Q x A x Q

LFCQ

do not invent a new definition

re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

alphabet A

states Q definable

transitions 8 € Q x A x Q

LFCQ

do not invent a new definition

re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

alphabet A
orbit-finite

states Q definable

transitions 8 € Q x A x Q

LFCQ

Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

Motivation
NFA re-interpreted in

Definable NFA definable sets

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

Timed automata are register automata
with uninitialized clocks [BO} aﬁczyk, L 2 O 1 2]

. O

O<ci<? (2<c1<d) A
c2:= 0 (c2=1 Vv c2=2)

0O
C1 .=

10

Timed automata are register automata

with uninitialized clocks [BOj a1 Czyk, L. 2012]
@ ci:=0) ® O<cr<? @ (2<c1<3) A O
c2:= 0 (c2=1 Vv c2=2)
t
O @

10

Timed automata are register automata

with uninitialized clocks [BOj a1 Czyk, L. 2012]
@ ci:=0) ® O<cr<? @ (2<c1<3) A O
c2:= 0 (c2=1 Vv c2=2)

10

Timed automata are register automata

with uninitialized clocks [BOj a1 Czyk, L. 2012]
@ ci:=0) ® O<cr<? @ (2<c1<3) A O
c2:= 0 (c2=1 Vv c2=2)

t t t
@ : ©).(2<t-C1<5)/\)©

10

Timed automata are register automata

with uninitialized clocks [BOj a1 Czyk, L. 2012]
@ ci:=0) ® O<cr<? @ (2<c1<3) A O
c2:= () (c2=1 Vv c2=2)

t t t
@ : ©).(2<t-C1<5)/\)©

C2:=1 (t-c2=1 Vv t-c2=2)

10

Timed automata are register automata

with uninitialized clocks [BOj a1 Czyk, L. 2012]
Q ci:= () O O<ci<?)O (2<C1<3)A @
c2:= 0 (c2=1 VvV c2=2)

t t t
@ 0 G(2<t-C1<5)/\)©

Cr:=1 0<t-c1<2
C2:=1 (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g O<t-c1<2 it ci<t<ci+2

10

Timed automata are register automata
with uninitialized clocks .
[Bojariczyk, L. 2012]

. O

Q ci:= 0 G

O<cr<? (2<c1<3) A
c2:= 0 (c2=1 VvV c2=2)
C1 0 < co-c1 <2

t t t
@ 0 G(2<t-C1<5)/\)©

Ci:=1 0<t-c1<2
C2:=1 (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g O<t-c1<2 it ci<t<ci+2

10

Timed automata are register automata
with uninitialized clocks .
[Bojariczyk, L. 2012]

———0 . O

O<cr<? (2<c1<3) A
c2:= 0 (c2=1 VvV c2=2)

the only modifications of a clock: c:=+t

C1 0 < co-c1 <2

t t t
@ 0 O(2<t-01<5)A©

Ci:=1 0<t-c1<2
C2:=1 (t-c2=1 Vv t-c2=2)

the guards use the structure (R, <, + 1)
e.g O<t-c1<2 it ci<t<ci+2

10

(<, +1)-definable sets

dimension
FO(«, +1) formula ¢(x1,..., mmes a subset of

n-tuples of reals, for instance

¢($1,£IZ‘2) — dx3 (561 < x3 N\ 9 = X3+ 3)

11

detinable sets

dimension
FO(«, +1) formula ¢(x1,..., xf)@es a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ 9 = X3+ 3)

11

detinable sets

dimension
FO(«, +1) formula ¢(x1,..., xf)@es a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ 9 = X3+ 3)

FO(<, +1) = QF(<, +1) =

11

detinable sets

dimension
FO(«, +1) formula ¢(x1,..., xf)@es a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ 9 = X3+ 3)

FO(<, +1) = QF(< +1) = \/ /\ ri —xj € I
finite finite
\——

Z011€

11

detinable sets

dimension
FO(«, +1) formula ¢(x1,..., xf)@es a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ 9 = X3+ 3)

FO(<, +1) = QF(< +1) = \/ /\ ri —xj € I
finite finite
\——

Z011€

for 1nstance:

O(r1,x2) = 1+3<w9 = T9—121 € (3,00)

11

Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

12

Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

12

Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1%5, 3) are in the same orbit.

Example:
T +3<x9 = x9—1x1 € (3,00) orbit-infinite

12

Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1%5, 3) are in the same orbit.

Example:
T +3<x9 = x9—1x1 € (3,00) orbit-infinite

r1+3<z<x1+7 = x9—1x1 € (3,7 orbit-finite

12

Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:
T +3<x9 = x9—1x1 € (3,00) orbit-infinite
r1+3<x<x1+7 = x92—1x1 € (3,7 orbit-finite

A definable set 1s orbit-finite
144

it 1s defined using bounded intervals only

12

Deftinable NFA

* alphabet A
* states Q
e transitions 8 C Q x A x Q

- ,FCQ

13

Dehinable NFA

* alphabet A

* states Q (<, +1)-definable
e transitions 8 C Q x A x Q

- ,FCQ

13

Definable NFA

alphabet A
states Q

transitions § € Q x A x Q

LFEQ

¢](QZ’1, c ..

13

GA(X1y. 0., X
¢Q($1, s Lm
Gs(T1, ..y Tmana
, Tm), Or(T1, y Lm

Definable NFA

alphabet A
states Q

transitions § € Q x A x Q

LFEQ

13

(<, +1)-definable

da(xy,...,x
PQ(T1, .- T
Gs(T1y v vy Topana
,Tm), Or(T1, y T

Definable NFA

* alphabet A
* states Q

e transitions 8 C Q x A x Q

- LFCO

(<, +1)-definable

da(xy,...,x
b (T1,. .., Tm
Gs(T1y v vy Topana
,Tm), Or(T1, y T

Runs, acceptance, 1anguage recognized, etc. are deﬁned

exactly as for classical NFA!

13

Definable NFA

* alphabet A
* states Q

e transitions 8 C Q x A x Q

- LFCO

} orbit-finite
(<, +1)-definable

da(xy,...,x
b (T1,. .., Tm
Gs(T1y v vy Topana
,Tm), Or(T1, y T

Runs, acceptance, 1anguage recognized, etc. are deﬁned

exactly as for classical NFA!

13

Register automata = definable NFA

1 Ci 0 <coc1<?2 T

e— @

Ci:=1t

{
0<t-c1<2 (2<t-cl<3)A©
C2:=1t (t-C2=1 \Y t-C2=2)

14

Register automata = definable NFA

1 o1 0 < co-c1 < 2 T

t t 2
@ cr:=t ® 0 < t-c1 <2 G(2<t-C1<3)/\)©
C2:=1 (t-c2=1 Vv t-c2=2)

states: Q={1l} U R U {(c, @eRxR:0<c-cx <2} U {T}

14

Register automata = definable NFA

1 C1 0 < co-c1 <2 T

t t 2
@ cr:=t ® 0 < t-c1 <2 O(2<t-cl<3)A@
C2:=1 (t-c2=1 Vv t-c2=2)

states: Q={1l} U R U {(c, @eRxR:0<c-cx <2} U {T}

Po(cocrLcy =co=ci=caVeorl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

14

Register automata = definable NFA

1 o1 0 < co-c1 < 2 T

t t t
@ cri:=t ® 0 < t-c1 <2 O(2<t-01<3)A@
C2:=1 (t-Cz =1 v t-c2 = 2)

states: Q={1} U R U {(c, 2eRxR:0<co-c: <2} U {T}

Po(cocrLcy =co=ci=caVeorl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,ci):c’=t} U

14

Register automata = definable NFA

1 o1 0 < co-c1 < 2 T

t t t
@ cri:=t ® 0 < t-c1 <2 O(2<t-cl<3)A©
C2:=1 (t-Cz =1 v t-c2 = 2)

states: Q={1} U R U {(c, 2eRxR:0<co-c: <2} U {T}

Po(cocrLcy =co=ci=caVeorl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,ci):c’=t} U
(e, t, (¢, c2)):0<t-ci<2Aci=cir A=t} U

14

Register automata = definable NFA

1 C1 0 < co-c1 <2 T

t t t
@ cri:=t ® 0 < t-c1 <2 O(2<t-cl<5)A©
C2:=1 (t-Cz =1 v t-c2 = 2)

states: Q={1} U R U {(c, 2eRxR:0<co-c: <2} U {T}

Po(cocrLcy =co=ci=caVeorl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,ci):c’=t} U

(e, t, (¢, c2)):0<t-ci<2Aci=cir A=t} U
{ ((Cl, CQ), t, T) : (2 < t-C1< 5) A (t-CQ =1 Vv t-co= 2) }

14

Register automata = definable NFA

1 C1 0 < co-c1 <2 T

t t t
@ cri:=t ® 0 < t-c1 <2 O(2<t-cl<5)A©
C2:=1 (t-Cz =1 v t-c2 = 2)

states: Q={1} U R U {(c, 2eRxR:0<co-c: <2} U {T}

Po(cocrLcy =co=ci=caVeorl =ci=caVeo+2 =ci < ca<ci+2 V co+3 = ¢1 = 2

transitions: 6={ (L, t,ci):c’=t} U

(e, t, (¢, c2)):0<t-ci<2Aci=cir A=t} U
{ ((Cl, CQ), t, T) : (2 < t-C1< 5) A (t-CQ =1 Vv t-co= 2) }

@s(co,c1,cot, C0y 01, 02) = ...

14

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

16

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

16

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

e number of clocks may vary from one location to another

16

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

e number of clocks may vary from one location to another

* the input needs not be monotonic (but can be enforced to be) nor
non-negative

15

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

e number of clocks may vary from one location to another

* the input needs not be monotonic (but can be enforced to be) nor
non-negative

° alphabet letters may be tuples of timestamps

15

Timed automata vs. definable NFA

definable NFA

16

Timed automata vs. definable NFA

deterministic definable NFA

16

deterministic definable NFA

deterministic timed automata
with uninitialized clocks

Integer

16

deterministic definable NFA

deterministic timed automata
with uninitialized clocks

Integer

16

deterministic definable NFA

deterministic timed automata
with uninitialized clocks

Integer

16

deterministic definable NFA

deterministic timed automata
with uninitialized clocks

Integer

16

deterministic definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

16

T

Integer

deterministic definable NFA

deterministic timed automata

with uninitialized clocks

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

16

T

ClOSGd under

Integer

deterministic definable NFA closed under

deterministic timed automata
with uninitialized clocks

minimal automata for languages

Integer

of deterministic timed automata
with uninitialized clocks

\— e \— p—

<2 <2
[Bojariczyk, L. 2012]

Deterministic definable NFA do minimize.

16

deterministic definable NFA closed under

deterministic timed automata
with uninitialized clocks

Integer

minimal automata for languages

of deterministic timed automata
with uninitialized clocks

\— s \e— g—

<2 <2
Bojariczyk, L. 2012]
Deterministic definable NFA do minimize.

Likewise, it FO(<, +1) 1s replaced by FO(«, +).

16

Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

17

Motivation

Definable NFA

PDA re-interpreted in
Definable PDA definable sets

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

17

Dehinable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)definable

push C O xAxQ xS
pop & OxSxAxQ

- =

LFCQ

18

Dehinable PDA

alphabet A da(z1, T
states Q orbit-finite SO (1, ..., Tm)
stack alphabet S ¢S($1, o ,xk)
push & Q x Ax QxS Gpush (T1, -+ Tt ntm+k)
pop & O xSxAxQ ¢p0p(3717---7xmlklnlm)
LFCO Gr(x1y. ., Tm), OF(T1,...,Tm)

18

Dehinable PDA

* alphabet A

* stack alphabet S
(<, +1)-definable

e pushC QxAxQ xS

da(rl, ..., Tp)

QPOP OXSXAXO bo(x1,. .., Ton)
¢S<CC1 7777 xk)

i I, F Q Q Ppush (T1, - -+, Trmtntmtk)
prop(xl ----- Lm+k+n+m)

Gr(z1, ..o), OF(T1,.. .\ Tm)

Acceptance defined as for classical PDA.

18

Example

input alphabet: A =R U {g}

language: "ordered palindromes of even length over reals"

states:
stack alphabet:

transitions:

initial state:

accepting state:

19

Example

input alphabet: A =R U {g}

language: "ordered palindromes of even length over reals"
states: Q= R W {init, , acc}
stack alphabet:
transitions:

iitial state: init
accepting state: acc

19

Example

input alphabet: A =R U {g}

language: "ordered palindromes of even length over reals"
states: Q= R W {init, , acc}
stack alphabet: S= RU {1}
transitions:

iitial state: init
accepting state: acc

19

Example

input alphabet: A =R U {g}
language: "ordered palindromes of even length over reals"
states: Q= R W {init, , acc}
stack alphabet: S= RU {1}
transitions: push C QO x A xQ xS

(nit, g, t, L)
in state 1nit, without (t, u, u, u) t<u
reading input, change (¢, u, , 1) t<u

state to an arbitrary
real t, and push L on
stack

iitial state: init
accepting state: acc

19

input alphabet:
language:
states:

stack alphabet:

transitions:

In state , pop a real
t from stack, read the
same t from input, and
stay 1n the same state

initial state:

accepting state:

Example

A =R U {¢}

"ordered palindromes of even length over reals"
O = RU {init, , acc}

S= RUW{Ll}

push C QO xAx QxS

(nit, g, t, L)

(t) u, u, u) t<u

(t, u, , 1) t<u

pop & OxSxAxQ
(finish, t, t)

(, L, g, acc)

it
acc

19

Definable prefix rewriting

alphabet A

states O orbit-finite

stack alphabet S (<, +1)-definable

P C O xS* xAxQxS*
I, FC O

20

Definable prefix rewriting

alphabet A

states O orbit-finite

stack alphabet S (<, +1)-definable

PC QxS xAxQxSm

LFCOQ

20

Definable prefix rewriting

* alphabet A

e states O Orbit-ﬁnite

* stack alphabet S (<, +1)-definable

e pC O xS xAxQxSm

- LFCQ

Acceptance defined as for classical prefix rewriting.

20

Definable context-free grammars

nonterminal symbols S
Y } orbit-finite

terminal symbols A

an nitial nonterminal symbol

p & Sx(SWUA)*

21

definable in FO(<, +1)

Definable context-free grammars

e nonterminal symbols S
Y } orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

e 0 C Sx(SWA)="

Generated language defined as for classical PDA.

21

Expressiveness of definable models
[Clemente, L. 2015]

prefix rewriting

22

Expressiveness of definable models
[Clemente, L. 2015]

prefix rewriting

palindromes

22

Expressiveness of definable models
[Clemente, L. 2015]

prefix rewriting ,
.............................. palindromes

llll
PR
.
.®
.
.
.
.
.
.
.
.
.
.
.
.*
.

22

Expressiveness of definable models
[Clemente, L. 2015]

palindromes over {a,b}xreals with
the same number of a’'s and b’s

prefix rewriting .
............................ palindromes

=
"""
P
.
.®
.
.
.
.
.
.
.
.
.
.
.
.®
.

e
L]
"
.
.
L]
L]
LI
]
-
“
-
L]
-
]
]
.

constrained PDA

22

Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable

PUSthXAXQxS

pop & OxSxAxQ

I)FgQ

23

Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
orbit-finite?

PUSthXAXQxS
pop & OxSxAxQ

- e v

I)FgQ

23

Constrained definable PDA

* alphabet A

* stack alphabet S
orbit-finite?
e pushC O xAxQ xS
e pop £ OxSxAxQ

-

- LFCO

Span of transitions 1s bounded. Too strong restriction!

23

Constrained definable PDA

* alphabet A

e gstates O orbit-finite

* stack alphabet S
orbit-finite?
e pushC QxAxQ xS

e pop £ OxSxAxQ

T T

. LFCQ

Span of transitions 1s bounded. Too strong restriction!

For instance, such PDA do not recognize palindromes over reals.

23

Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable

PUSthXAXQxS

pop & OxSxAxQ

I)FgQ

24

Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S

PUSthXAXQxS
"orbit-finite
pop & OxSxAxQ

- e v

LFCO orbit-finite

24

(<, +1)-definable

Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable

push C O xAxQ xS
" orbit-finite
pop & OxSxAxQ

T T

orbit-finite

LFCQ

Theorem 2: [Clemente, L. 2015]

The non-emptiness problem 1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

24

Constrained definable PDA

* alphabet A

e gstates O orbit-finite

* stack alphabet S
(<, +1)-definable

e pushC QxAxQ xS
"orbit-finite
e pop £ OxSxAxQ

orbit-finite

. LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem 1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PIDA with uninitialized clocks.

924

Decadability of non-emptiness

[Clemente, L. 2015]

prefix rewriting

25

Decadability of non-emptiness

[Clemente, L. 2015]

prefix rewriting

25

Decadability of non-emptiness

[Clemente, L. 2015]

prefix rewriting

25

Decadability of non-emptiness

[Clemente, L. 2015]

25

Decadability of non-emptiness

[Clemente, L. 2015]

25

Decadability of non-emptiness

[Clemente, L. 2015]

25

26

Theorem 3:
The non-emptiness problem of definable PDA
1s 1n 2-EXPTIME.

26

Theorem 3:
The non-emptiness problem of definable PDA
1s 1n 2-EXPTIME.

Complexity gap: EXPTIME ... 2-EXPTIME

26

Towards decision procedure

27

Towards decision procedure

Notation: q - p — there 1s a run from state p to state q that
starts and ends with the empty stack

27

Towards decision procedure

Notation: q - p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

27

Towards decision procedure

Notation: q ~> p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

X) X

. . . X e))
(transitivity) Ty Jyre
X) Z

27

Towards decision procedure

Notation: q > p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

X) X

. . . X e))
(transitivity) Ty Jyre
X) Z

(push-pop) XY if push(x’, x, 5) and pop(y, s, y)

X >y for some stack symbol S

27

Towards decision procedure

Notation: q > p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

X) X

(transitivit}]) XX e > y y > 4

X) Z
(push-pop) X >y if push(x, %, s) and pop(y, s, y')
X >y for some stack symbol s

Problem: how to make this work for orbit-finite state space?

27

Towards decision procedure

Notation: q > p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

X) X

(transitivit}]) XX e > y y > 4

X) Z
(push-pop) X >y if push(x, %, s) and pop(y, s, y')
X >y for some stack symbol s

Problem: how to make this work for orbit-finite state space?

Guideline: think like state = an integer

27

Towards decision procedure

Notation: q > p — there 1s a run from state p to state q that
starts and ends with the empty stack

(base)

X) X

(transitivit}]) XX e > y y > 4

X) Z
(push-pop) X >y if push(x, %, s) and pop(y, s, y')
X >y for some stack symbol s

Problem: how to make this work for orbit-finite state space?

Guideline: think like state = an integer

27

Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1

28

The core problem: non-emptiness

Given a systems of equations

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}

e set union U

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}
 set union U

* point-wise addition +

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}
e set union U
* point-wise addition +

e]imited intersection N

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

T = 1 e constants {-1}, {0}, {1}
 set union U

Ty = 1
* point-wise addition +
e limited intersection N

Ln — in

decide, whether its least solution assigns a non-empty set to 7 ?

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

T = 1 e constants {-1}, {0}, {1}
 set union U

Ty = 1
* point-wise addition +
e |imited intersection N

Ln — in

decide, whether its least solution assigns a non-empty set to 7 ?
for instance:

L1 — {O} U CEQ—|—{1} U Q?Q—I—{—l}
Lo = CUl—I—{l} U £Ul—|—{—1}

29

The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}

r1 = 1
 set union U
Ty = 1
* point-wise addition +
e |imited intersection N
Ln — tn

decide, whether its least solution assigns a non-empty set to 7 ?

for 1nstance:

L1 — {O} U CEQ+{1} U CL’Q—I—{—l}
Lo = CUl—I—{l} U 331—|—{—1}

What 1s the least solution with respect to inclusion?

29

exponential blowup systems of equations
deﬁnable PD A ﬁ Y q

over sets of integers

30

exponential blowup systems of equations
deﬁnable PDA ﬁ Y q

over sets of integers

(base)

(transitivit‘}l) X e) y y) 7

(push-pop)

30

exponential blowup systems of equations
deﬁnable PDA ﬁ Y q

over sets of integers

(base)

(transitivit‘}l) X e) y y) 7

XX e) 7
(ush- O) D @RI) y
p pop
X,) y,

think like state = an integer,
capture all differences y - x,

30

exponential blowup systems of equations
deﬁnable PDA ﬁ Y q

over sets of integers

(base)

(transitivit‘}l) X e) y y) 7

XX e) 7
(ush- O) D @RI) y
p pop
X,) y,

think like state = an integer,
capture all differences y - x,

30

exponential blowup systems of equations
deﬁnable PDA ﬁ Y q

over sets of integers

(base) Xpp 2 {0}

L X e >V T e >
(transitivity) S JTE Xpr 2 Xpq + Xqr

XX e) 7
(ush- O) D @RI) y
p pop
X,) y,

think like state = an integer,
capture all differences y - x,

30

xponential blowup

definable PDA e_> systems of equations

over sets of integers

(base) o Xpp 2 {0}
. . e X e))
(transitivity) ——=—=—— Xpr 2 Xpq + Xar
(push-pop) X, 'Y : Xpqg2 (L + Xesn (J+N)) + L) N -(HM+K)
X) y

r \ /N' s

Guideline: / Y X

think like state = an integer, / x
p q

capture all differences y - x,

30

The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

31

The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

How to solve the problem in absence of intersections?

31

The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

How to solve the problem in absence of intersections?

r1 = {O} U CE‘Q—|—{1} U £L“2-|—{—1}
Lo = a:1+{1} U CCl—|—{—1}

31

The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

How to solve the problem in absence of intersections?
r1 = {O} U X9 + {1} J 29 + {—1}
To = T1 -+ {1} U r1 + {—1}

Decidable in P

31

The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

32

The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

The problem 1s undecidable for unlimited intersections.

[Jez, Okhotin 2010]

32

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L. .
* point-wise addition +
Ty = b2 e limited intersection N
T, = 1y

decide, whether its least solution assigns a non-empty set to 7 ?

33

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

33

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U

T = U L iy

* point-wise addition +
Ty = 2 * limited intersection N
Tp = in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{5171 = {O} U CEQ‘l‘{l} U CEQ—|—{—1}
(x1 +{1} U =1 +{-1}) N {1}

33

=
N
|

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{il?l — {O} U CBQ‘l‘{l} U CIZ‘Q—I-{—l}

To = X1+ {1} U 21 + {—1} membership problem

33

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{5131 — {O} U ZIZ’Q—I—{l} U ZCQ—|—{—1}
L9 — {1}

33

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

34

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

* NP-complete

34

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

* NP-complete

* non-emptiness of constrained definable PDA reduces to
the core problem (with exponential blow-up)

34

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L. .
* point-wise addition +
Ty = b2 e limited intersection N
T, = 1y

decide, whether its least solution assigns a non-empty set to 7 ?

35

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about _ M I, for I an arbitrary interval?

35

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about _ M I, for I an arbitrary interval?

* in EXPTIME, by reduction to 1-BVASS(+ -)

35

The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12 |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about _ M I, for I an arbitrary interval?

* in EXPTIME, by reduction to 1-BVASS(+ -)

* non-emptiness of definable PDA reduces to the core problem
(with exponential blow-up)

35

Decision procedure

definable PDA systems of equations

over sets of integers

36

Decision procedure

exponential blowup

definable PDA — SyStems of equations

over sets of integers

36

Decision procedure

exponential blowup

ﬁ systems Of equations
definable PDA boly over sets of integers
_

36

Decision procedure

exponential blowup

ﬁ systems Of equations
definable PDA boly over sets of integers
_

poly

1-BVASS(+ -)

36

Decision procedure

exponential blowup .
systems of equations

definable PDA .
poly over sets of integers
2
o
oF
effective

1-BVASS(+ -)

36

Decision procedure

exponential blowup .
systems of equations

definable PDA .
poly over sets of integers
>
2
effective
1-BVASS(+ -)

/

non-emptiness in EXPTIME

36

Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of Integers

Branching vector addition systems in dimension 1

37

1-BVASS(+ -)

1-BVASS(+ -)

* automaton with 1 non-negative counter

38

1-BVASS(+ -)

* automaton with 1 non-negative counter

* run 1s a tree

38

1-BVASS(+ -)

* automaton with 1 non-negative counter
* run 1s a tree

* 1n leaves: initial state with counter=1

38

1-BVASS(+ -)

automaton with 1 non-negative counter
run is a tree
in leaves: initial state with counter=1

transition rules:

q

SN N

r

38

1-BVASS(+ -)

automaton with 1 non-negative counter
run is a tree
in leaves: initial state with counter=1

transition rules:

q

SN N

r

non-emptiness problem: 1s there a run
with a final state in the root?

38

Non-emptiness of 1-BVASS(+ -)

Non-emptiness of 1-BVASS(+ -)

Theorem 4:
The non-emptiness problem of 1-BVASS(+ -) 1s 1n

39

L XPTIME.

(-

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

I'he non-emptiness problem of 1-BVASS(+ -) 1s in |

Proof idea:
Exponentially bounded witness.

39

L XPTIME.

(-

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

I'he non-emptiness problem of 1-BVASS(+ -) 1s in |

Proof idea:
Exponentially bounded witness.

Complexity gap: PSPACE ... EXPTIME

39

L XPTIME.

(-

Non-emptiness of 1-BVASS

Theorem 4:

(+-)

I'he non-emptiness problem of 1-BVASS(+ -) 1s in |

Proof 1dea:
Exponentially bounded witness.

Complexity gap: PSPACE ... EXPTIME

Theorem: [Goeller, Haase, Lazic, Totzke 2016]

The non-emptiness problem of 1-BVASS(+) 1s in P
(unary encoding).

39

L XPTIME.

(-

Defhinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Dehnable PDA

have decidable non-emptiness problem, by reduction to

an extension of BVASS in dimension 1.

40

Defhinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Dehnable PDA

have decidable non-emptiness problem, by reduction to

an extension of BVASS in dimension 1.

40 dhank Y ou

