
Sławomir Lasota

Timed pushdown automata
and

branching vector addition systems

joint work with Lorenzo Clemente, Filip Mazowiecki and Ranko Lazic

University of Warsaw

AVERTS 2016, Chennai
1

Definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

2

Definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

2

Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.

Plan

3

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

4

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

4

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Let input alphabet be reals

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Let input alphabet be reals

Timed automata assume monotonic input words :

• reals

• rationals

• integers

}dense time

discrete time

Time domain

any choice of time domain is fine

No restriction to non-negative!

4

Timed automata
with uninitialized clocks

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

[Alur, Dill 1990]

5

?

Timed automata
with uninitialized clocks

inpu
t	al
pha
bet	
=	re
als

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0
inpu
t	al
pha
bet	
=	re
als

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

inpu
t	al
pha
bet	
=	re
als

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

inpu
t	al
pha
bet	
=	re
als

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

inpu
t	al
pha
bet	
=	re
als

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

inpu
t	al
pha
bet	
=	re
als

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

{ 0..2

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

inpu
t	al
pha
bet	
=	re
als

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃

{ 0..2

{
2..3

[Alur, Dill 1990]

5

Timed automata
with uninitialized clocks

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

inpu
t	al
pha
bet	
=	re
als

the automaton accepts words t₁ t₂ t₃ ∈ R³ such that

t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

[Alur, Dill 1990]

5

Deterministic timed automata don’t minimize

t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

6

Deterministic timed automata don’t minimize

⅓0 2⅓

0 2⅓1⅓
t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

6

Deterministic timed automata don’t minimize

⅓0 2⅓

0 2⅓1⅓
t₁ t₂ t₃{1 or 2

{ 0..2

{
2..3

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

(c₁=0, c₂=⅓) ≡ (c₁=0, c₂=1⅓)

6

Towards timed pushdown automata

7

• timed automata [Alur, Dill 1990]

Towards timed pushdown automata

7

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

Towards timed pushdown automata

finite stack alphabet

7

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

Towards timed pushdown automata

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-c

7

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

• recursive timed automata
[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

Towards timed pushdown automata

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-c

7

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

• recursive timed automata
[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

Towards timed pushdown automata

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-c

7

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively
equivalent to pushdown timed automata.

• timed automata [Alur, Dill 1990]

• pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

• dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]

• recursive timed automata
[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

Towards timed pushdown automata

finite stack alphabet

• clocks can be pushed onto stack
• the emptiness problem EXPTIME-c

7

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively
equivalent to pushdown timed automata.

An accidental combination of • stack discipline
• monotonicity of time
• syntactic restrictions

8

• do not invent a new definition

8

• do not invent a new definition

• re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

8

• do not invent a new definition

• re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

8

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

• do not invent a new definition

• re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

8

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q
}definable

• do not invent a new definition

• re-interpret a classical definition in definable sets,
with finiteness relaxed to orbit-finiteness

8

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

}orbit-finite}definable

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

In search of lost definition

9

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

In search of lost definition

NFA re-interpreted in
definable sets

9

Timed automata are register automata

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

c₁ 0 < c₂-c₁ < 2

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

10

with uninitialized clocks

Timed automata are register automata

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

c₁ := 0 0 < c₁ < 2
c₂ := 0

(2 < c₁ < 3) ∧
(c₂ = 1 ∨ c₂ = 2)

c₁ 0 < c₂-c₁ < 2

the guards use the structure (R, <, +1)
e.g. 0 < t-c₁ <2 iff c₁ < t < c₁+2

[Bojańczyk, L. 2012]

10

the only modifications of a clock: c:= t

with uninitialized clocks

(<, +1)-definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

11

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

11

definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

11

definable sets

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =
_

finite

^

finite

xi � xj 2 I

| {z }
zone

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

dimension

11

definable sets

ij

�(x1, . . . , xn)FO(<, +1) formula defines a subset of
n-tuples of reals, for instance

FO(<, +1) = QF(<, +1) =
_

finite

^

finite

xi � xj 2 I

| {z }
zone

�(x1, x2) ⌘ 9x3 (x1 < x3 ^ x2 = x3 + 3)

for instance:

�(x1, x2) ⌘ x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

dimension

11

definable sets

ij

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

12

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

12

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1) orbit-infinite
Example:

12

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

x1 + 3 < x2  x1 + 7 ⌘ x2 � x1 2 (3, 7]

orbit-infinite
orbit-finite

Example:

12

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Orbit-finiteness
π

π

π

Automorphisms π of (R, <, +1) act on a
definable set thus splitting it into orbits.

x1 + 3 < x2 ⌘ x2 � x1 2 (3,1)

x1 + 3 < x2  x1 + 7 ⌘ x2 � x1 2 (3, 7]

A definable set is orbit-finite
iff

it is defined using bounded intervals only

orbit-infinite
orbit-finite

Example:

12

For instance, (-1, ⅓) and (3, 4⅓) and (1⅓, 3) are in the same orbit.

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

13

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q
}(<, +1)-definable

13

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

13

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q
�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}(<, +1)-definable

13

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

Runs, acceptance, language recognized, etc. are defined
exactly as for classical NFA!

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}(<, +1)-definable

13

Definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

}orbit-finite

Runs, acceptance, language recognized, etc. are defined
exactly as for classical NFA!

�A(x1, . . . , xn)

�Q(x1, . . . , xm)

��(x1, . . . , xm+n+m)

�I(x1, . . . , xm), �F (x1, . . . , xm)

}(<, +1)-definable

13

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata = definable NFA

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}
𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪
 { ((c₁, c₂), t, ⊤) : (2 < t-c₁ < 3) ∧ (t-c₂ = 1 ∨ t-c₂ = 2) }

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

states:

c₁ := t
t

0 < t-c₁ < 2
c₂ := t

t
(2 < t-c₁ < 3) ∧

(t-c₂ = 1 ∨ t-c₂ = 2)

t

transitions:

⊥

Register automata = definable NFA

Q = {⊥} ∪ R ∪ { (c₁, c₂)∊R×R : 0 < c₂-c₁ < 2 } ∪ {⊤}

𝛿 = { (⊥, t, c₁’) : c₁’ = t } ∪
 { (c₁, t, (c₁’, c₂’)) : 0 < t-c₁ < 2 ∧ c₁ = c₁’ ∧ c₂’ = t } ∪
 { ((c₁, c₂), t, ⊤) : (2 < t-c₁ < 3) ∧ (t-c₂ = 1 ∨ t-c₂ = 2) }

𝜙Q(c0, c₁, c₂) ≡ c0 = c₁ = c₂ ∨ c0+1 = c₁ = c₂ ∨ c0+2 = c₁ < c₂ < c₁+2 ∨ c0+3 = c₁ = c₂

𝜙𝛿(c0, c₁, c₂, t, c0’, c₁’, c₂’) ≡ ...

14

⊥ c₁ 0 < c₂-c₁ < 2 ⊤

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

15

Timed automata vs. definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

15

Timed automata vs. definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

15

Timed automata vs. definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another
• the input needs not be monotonic (but can be enforced to be) nor

non-negative

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

15

Timed automata vs. definable NFA

• in every location, clock valuations are restricted by an orbit-finite
constraint (invariant)

• number of clocks may vary from one location to another
• the input needs not be monotonic (but can be enforced to be) nor

non-negative
• alphabet letters may be tuples of timestamps

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

15

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA

16

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA{
integer

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2
...

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2
...

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

closed under
minimization

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2
...

deterministic

deterministic

16

definable NFA

timed automata
with uninitialized clocks

closed under
minimization

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2
...

deterministic

deterministic

16

Theorem: [Bojańczyk, L. 2012]
Deterministic definable NFA do minimize.

definable NFA

timed automata
with uninitialized clocks

closed under
minimization

minimal automata for languages
of deterministic timed automata

with uninitialized clocks

Timed automata vs. definable NFA{
integer

{< 2 {< 2
...

deterministic

deterministic

16

Likewise, if FO(<, +1) is replaced by FO(<, +).

Theorem: [Bojańczyk, L. 2012]
Deterministic definable NFA do minimize.

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

17

In search of lost definition

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

PDA re-interpreted in
definable sets

17

In search of lost definition

Definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)definable

}orbit-finite

18

Definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite
�A(x1

, . . . , xn)

�Q(x1

, . . . , xm)

�S(x1

, . . . , xk)

�

push

(x
1

, . . . , xm+n+m+k)

�

pop

(x
1

, . . . , xm+k+n+m)

�I(x1

, . . . , xm), �F (x1

, . . . , xm)

18

Definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite

Acceptance defined as for classical PDA.

�A(x1

, . . . , xn)

�Q(x1

, . . . , xm)

�S(x1

, . . . , xk)

�

push

(x
1

, . . . , xm+n+m+k)

�

pop

(x
1

, . . . , xm+k+n+m)

�I(x1

, . . . , xm), �F (x1

, . . . , xm)

}(<, +1)-definable

18

language: "ordered palindromes of even length over reals"
input alphabet: A = R ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state:

Example

19

language:

Q = R ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = R ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

Example

19

language:

Q = R ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = R ⨄ {ε}

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = R ⨄ {⊥}

Example

19

language:

Q = R ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = R ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = R ⨄ {⊥}

in state init, without
reading input, change
state to an arbitrary
real t, and push ⊥ on
stack

Example

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

19

language:

Q = R ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet: A = R ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

S = R ⨄ {⊥}

Example

(finish, t, t, finish)
(finish, ⊥, ε, acc)

pop ⊆ Q × S × A × Q

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

in state finish, pop a real
t from stack, read the
same t from input, and
stay in the same state

19

Definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}(<, +1)-definable
}orbit-finite

20

Definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}(<, +1)-definable
}orbit-finite

≤n ≤m

20

Definable prefix rewriting

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S* × A × Q × S*

• I, F ⊆ Q

}(<, +1)-definable
}orbit-finite

Acceptance defined as for classical prefix rewriting.

≤n ≤m

20

orbit-finite	set	of	symbols	S

Definable context-free grammars

• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

21

orbit-finite	set	of	symbols	S

Definable context-free grammars

• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

Generated language defined as for classical PDA.

21

≤n

prefix rewriting

CFG

Expressiveness of definable models

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

22

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

22

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

constrained PDA

22

[Clemente, L. 2015]

prefix rewriting

CFG

Expressiveness of definable models

palindromes

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
timeless stack

(finite stack alphabet)

PDA

constrained PDA

palindromes over {a,b}×reals with
the same number of a’s and b’s

22

[Clemente, L. 2015]

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)-definable

}orbit-finite

23

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

23

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

Span of transitions is bounded. Too strong restriction!

23

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}orbit-finite}orbit-finite?

Span of transitions is bounded. Too strong restriction!
For instance, such PDA do not recognize palindromes over reals.

23

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)-definable

}orbit-finite

24

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)-definable

}orbit-finite

}

orbit-finite

}

orbit-finite

24

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)-definable

}orbit-finite

}

orbit-finite

}

orbit-finite

 Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

24

Constrained definable PDA

• alphabet A

• states Q

• stack alphabet S

• push ⊆ Q × A × Q × S

• pop ⊆ Q × S × A × Q

• I, F ⊆ Q

}(<, +1)-definable

}orbit-finite

}

orbit-finite

}

orbit-finite

 Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PDA with uninitialized clocks.
24

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

25

[Clemente, L. 2015]

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA in NEXPTIME

25

[Clemente, L. 2015]

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

25

[Clemente, L. 2015]

undecidable

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

25

[Clemente, L. 2015]

undecidable

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

25

[Clemente, L. 2015]

undecidable

Decidability of non-emptiness

prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

25

[Clemente, L. 2015]

in 2-EXPTIME

26

undecidable
prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

in 2-EXPTIME

26

undecidable
prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

in 2-EXPTIME

 Theorem 3:
The non-emptiness problem of definable PDA
is in 2-EXPTIME.

26

undecidable
prefix rewriting

CFG

dense-timed PDA
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

in 2-EXPTIME

 Theorem 3:
The non-emptiness problem of definable PDA
is in 2-EXPTIME.

 Complexity gap: EXPTIME … 2-EXPTIME

27

Towards decision procedure

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

Towards decision procedure

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

Towards decision procedure

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

Towards decision procedure

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s

Towards decision procedure

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s

Towards decision procedure

Problem: how to make this work for orbit-finite state space?

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s

Towards decision procedure

Problem: how to make this work for orbit-finite state space?
Guideline: think like state = an integer

27

Notation: q ⤑ p — there is a run from state p to state q that
 starts and ends with the empty stack

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s

Towards decision procedure

Problem: how to make this work for orbit-finite state space?
Guideline: think like state = an integer

 capture all differences y - x, for x ⤑ y

Towards decision procedure

28

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

29

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

29

where right-hand sides use:

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

29

where right-hand sides use:

for instance:

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

29

where right-hand sides use:

for instance:

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

What is the least solution with respect to inclusion?

30

exponential blowup
definable PDA systems of equations

over sets of integers

30

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop)

exponential blowup
definable PDA systems of equations

over sets of integers

30

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop)

exponential blowup
definable PDA systems of equations

over sets of integers

Guideline:
think like state = an integer,
capture all differences y - x,
for x ⤑ y

30

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop)

exponential blowup
definable PDA systems of equations

over sets of integers

Xpp ⊇ {0}

Guideline:
think like state = an integer,
capture all differences y - x,
for x ⤑ y

30

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop)

exponential blowup
definable PDA systems of equations

over sets of integers

Xpp ⊇ {0}

Xpr ⊇ Xpq + Xqr

Guideline:
think like state = an integer,
capture all differences y - x,
for x ⤑ y

30

x ⤑ x (base)

x ⤑ y y ⤑ z
x ⤑ z

(transitivity)

x ⤑ y
x’ ⤑ y’

(push-pop)

exponential blowup
definable PDA systems of equations

over sets of integers

Xpp ⊇ {0}

Xpr ⊇ Xpq + Xqr

Xpq ⊇ (I + (Xrs ∩ (J+N)) + L) ∩ -(M+K)

Guideline:
think like state = an integer,
capture all differences y - x,
for x ⤑ y

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

31

orbit-finite	set	of	symbols	S

The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}{

Decidable in P
31

orbit-finite	set	of	symbols	S

The core problem - intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

32

orbit-finite	set	of	symbols	S

The core problem - intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

The problem is undecidable for unlimited intersections.
[Jeż, Okhotin 2010]

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

32

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = (x1 + {1} [x1 + {�1}) \ {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = x1 + {1} [x1 + {�1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

membership problem

33

orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [x2 + {1} [x2 + {�1}
x2 = {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

33

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete
• non-emptiness of constrained definable PDA reduces to

the core problem (with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

34

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• in EXPTIME, by reduction to 1-BVASS(+ -)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

orbit-finite	set	of	symbols	S

Given a systems of equations

decide, whether its least solution assigns a non-empty set to ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• in EXPTIME, by reduction to 1-BVASS(+ -)
• non-emptiness of definable PDA reduces to the core problem

(with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition +
• limited intersection ∩

The core problem - limited intersection

35

36

definable PDA systems of equations
over sets of integers

Decision procedure

exponential blowup

36

definable PDA systems of equations
over sets of integers

Decision procedure

exponential blowup

36

definable PDA
poly

systems of equations
over sets of integers

Decision procedure

exponential blowup

36

definable PDA
poly

systems of equations
over sets of integers

po
ly

1-BVASS(+ -)

Decision procedure

exponential blowup

36

definable PDA
poly

systems of equations
over sets of integers

po
ly

1-BVASS(+ -)

Decision procedure

effective

exponential blowup

36

definable PDA
poly

systems of equations
over sets of integers

po
ly

1-BVASS(+ -)

Decision procedure

effective

non-emptiness in EXPTIME

Decision procedure

• Motivation

• Definable NFA

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1

37

38

1-BVASS(+ -)

• automaton with 1 non-negative counter

38

1-BVASS(+ -)

• automaton with 1 non-negative counter

• run is a tree

38

1-BVASS(+ -)

• automaton with 1 non-negative counter

• run is a tree

• in leaves: initial state with counter=1

38

1-BVASS(+ -)

• automaton with 1 non-negative counter

• run is a tree

• in leaves: initial state with counter=1

• transition rules:

38

1-BVASS(+ -)

q

l r
+

q

l r
-

• automaton with 1 non-negative counter

• run is a tree

• in leaves: initial state with counter=1

• transition rules:

• non-emptiness problem: is there a run
with a final state in the root?

38

1-BVASS(+ -)

q

l r
+

q

l r
-

39

Non-emptiness of 1-BVASS(+ -)

39

Non-emptiness of 1-BVASS(+ -)
 Theorem 4:

The non-emptiness problem of 1-BVASS(+ -) is in EXPTIME.

39

Non-emptiness of 1-BVASS(+ -)
 Theorem 4:

The non-emptiness problem of 1-BVASS(+ -) is in EXPTIME.

 Proof idea:
Exponentially bounded witness.

39

Non-emptiness of 1-BVASS(+ -)
 Theorem 4:

The non-emptiness problem of 1-BVASS(+ -) is in EXPTIME.

 Proof idea:
Exponentially bounded witness.

 Complexity gap: PSPACE … EXPTIME

39

Non-emptiness of 1-BVASS(+ -)
 Theorem 4:

The non-emptiness problem of 1-BVASS(+ -) is in EXPTIME.

 Theorem: [Goeller, Haase, Lazic, Totzke 2016]
The non-emptiness problem of 1-BVASS(+) is in P
(unary encoding).

 Proof idea:
Exponentially bounded witness.

 Complexity gap: PSPACE … EXPTIME

Definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

40

Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.

Definable sets
offer a right setting for timed models of computation, like
timed automata, or timed pushdown automata.

40

Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.

thank you!

