Timed pushdown automata
and
branching vector addition systems

Stawomir Lasota
University of Warsaw

joint work with Lorenzo Clemente, Filip Mazowiecki and Ranko Lazic

AVERTS 2016, Chennai

1



Definable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.



Definable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Dehinable PDA

have decidable non-emptiness problem, by reduction to

an extension of BVASS in dimension 1.



Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1



* reals
* rationals

* Integers

Time domain

dense time

discrete time a0y



e rationals

* Integers

Time domain

dense time

discrete time a0y



Time domain

e rationals

dense time

* Integers discrete time any

No restriction to non-negative!



Time domain

e rationals

dense time

* Integers discrete time any

No restriction to non-negative!

Let input alphabet be reals



Time domain

.@ dense time

° . S
rationals . Og s

* integers discrete time any

No restriction to non-negative!

Let input alphabet be reals

Timed automata assume monotonic input words :

o ® *—0—0 o




Timed automata [ Alur, Dill 1990]

with uninitialized clocks



Timed automata [ Alur, Dill 1990]

with uninitialized clocks

™~



Timed automata [ Alur, Dill 1990]

with uninitialized clocks

_ ¥

‘06
e

WP
Q— @




Timed automata [ Alur, Dill 1990]

with uninitialized clocks

_ eV

‘06
e

WP
‘ ci:= 0 0




Timed automata [ Alur, Dill 1990]

with uninitialized clocks

\S
_ (e
0o
X O

.049\}'
o @
C1 .=

@

J<ci<?

c2:= ()



Timed automata [ Alur, Dill 1990]

with uninitialized clocks

e
et
R
WP
@ cr:= 0 ® 0<ci<? 0 (2<c1<d) A O

c2:= () (Cz=1 VCz=2)




Timed automata [ Alur, Dill 1990]

with uninitialized clocks

ced¥®
pet
R
RS
Q ci:=0 O J<ci<? )O (2<Cl<5)A @
c2:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that




Timed automata [ Alur, Dill 1990]

with uninitialized clocks

ced¥®
pet
R
WP
O ci:=0 G O<ci<? )O (2<Cl<5)A @
co:= 0 (C2=1 VC2=2)

the automaton accepts words t1 t2 t3 € R3 such that




Timed automata [Alur, Dill 1990]

with unimtialized clocks

\S
_ e
K,/
\3&2\\9\&6
WP
Q ci:=0 G O<ci<? )Q (2<Cl<3)A @
c2:= () (C2=1 \Y C2:2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3




Timed automata [Alur, Dill 1990]

with unimtialized clocks

\S
_ e
K,/
\X&@\Q\&e
WP
Q ci:=0 G O<ci<? )G <2<Cl<3)A @
c2:= () (C2=1 \Y C2=2)

the automaton accepts words t1 t2 t3 € R3 such that

2.3




® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 VCz=2)




® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 \ C2=2>
—o —
0 U3 23
¢ — —




® ° ° ° , ° ° °
Deterministic timed automata don’t minimize

@ ci:= 0 ® 0<cr<? 0 (2<c1<d) A O

c2:= () (C2=1 VC2=2)

(C1=O, CQ=%) = ((11:0, Cz=1%)

*—o —o
0 ¥ 2V5
. "~ —0

0 13 2Y3




Towards timed pushdown automata



Towards timed pushdown automata

* timed automata [Alur, Dill 1990]



Towards timed pushdown automata

* timed automata :Alur’ Dill 1990] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]



Towards timed pushdown automata

* timed automata [Alur, Dill 1990] . .

stack alphabet

* pushdown timed automata [Bouajjani, |

Hchahed, Robbana 1994]

* dense-timed pushdown automata [ Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c



Towards timed pushdown automata

* timed automata :Alur’ Dill 19 90] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

* dense-timed pushdown automata [ Abdulla, Atig, Stenman 2012]

. . * clocks can be pushed onto stack
* recursive timed automata * the emptiness problem EXPTIME-c

[ Trivedi, Wojtczak 2010], [ Benerecetti, Minopoli, Peron 2010]



Towards timed pushdown automata

* timed automata

* pushdown timed

 automata | Bouajjani,

:Alur’ Dill 1990] finite stack alphabet
Echahed, Robbana 1994]

* dense-timed pushdown automata [ Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]

Dense-timed pus

equivalent to pus

hdown automata are expressively

hdown timed automata.



Towards timed pushdown automata

* timed automata :Alur’ Dill 19 90] finite stack alphabet

* pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

* dense-timed pushdown automata [ Abdulla, Atig, Stenman 2012]

e clocks can be pushed onto stack

* the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]

Dense-timed pushdown automata are expressively

equivalent to pushdown timed automata.

An accidental combination of e stack discipline

* monotonicity of time
* syntactic restrictions
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dimension
FO(«, +1) formula ¢(x1,..., xf)@es a subset of

n-tuples of reals, for instance

¢($1,£B2) — dx3 (5131 < x3 N\ 9 = X3+ 3)

FO(<, +1) = QF(< +1) = \/ /\ ri —xj € I
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for 1nstance:

O(r1,x2) = 1+3<w9 = T9—121 € (3,00)
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Orbit-finiteness

Automorphisms st of (R, <, +1) acton a
definable set thus splitting 1t into orbits.

For instance, (-1, ¥5) and (3, 4%5) and (1'5, 3) are in the same orbit.

Example:
T +3<x9 = x9—1x1 € (3,00) orbit-infinite
r1+3<x<x1+7 = x92—1x1 € (3,7 orbit-finite

A definable set 1s orbit-finite
144

it 1s defined using bounded intervals only
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* 1n every location, clock valuations are restricted by an orbit-finite
constraint (Invariant)

e number of clocks may vary from one location to another

* the input needs not be monotonic (but can be enforced to be) nor
non-negative

° alphabet letters may be tuples of timestamps
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with uninitialized clocks
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of deterministic timed automata
with uninitialized clocks
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<2 <2
Bojariczyk, L. 2012]
Deterministic definable NFA do minimize.

Likewise, it FO(<, +1) 1s replaced by FO(«, +).
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- =

LFCQ

18



Dehinable PDA

alphabet A da(z1, T
states Q orbit-finite SO (1, ..., Tm)
stack alphabet S ¢S($1, o ,xk)
push & Q x Ax QxS Gpush (T1, -+ Tt ntm+k)
pop & O xSxAxQ ¢p0p(3717---7xmlklnlm)
LFCO Gr(x1y. ., Tm), OF(T1,...,Tm)
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Dehinable PDA

* alphabet A

* stack alphabet S
(<, +1)-definable

e pushC QxAxQ xS

da(rl, ..., Tp)

QPOP OXSXAXO bo(x1,. .., Ton)
¢S<CC1 7777 xk)

i I, F Q Q Ppush (T1, - -+, Trmtntmtk)
prop(xl ----- Lm+k+n+m )

Gr(z1, ..o ), OF(T1,.. .\ Tm)

Acceptance defined as for classical PDA.
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Example

input alphabet: A =R U {g}
language: "ordered palindromes of even length over reals"
states: Q= R W {init, , acc}
stack alphabet: S= RU {1}
transitions: push C QO x A xQ xS

(nit, g, t, L)
in state 1nit, without (t, u, u, u) t<u
reading input, change (¢, u, , 1) t<u

state to an arbitrary
real t, and push L on
stack

iitial state:  init
accepting state: acc
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input alphabet:
language:
states:

stack alphabet:

transitions:

In state , pop a real
t from stack, read the
same t from input, and
stay 1n the same state

initial state:

accepting state:

Example

A =R U {¢}

"ordered palindromes of even length over reals"
O = RU {init, , acc}

S= RUW{Ll}

push C QO xAx QxS

(nit, g, t, L)

(t) u, u, u) t<u

(t, u, , 1) t<u

pop & OxSxAxQ
(finish, t, t )

( , L, g, acc)

it
acc
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Definable prefix rewriting

alphabet A

states O orbit-finite

stack alphabet S (<, +1)-definable

P C O xS* xAxQxS*
I, FC O
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Definable prefix rewriting

* alphabet A

e states O Orbit-ﬁnite

* stack alphabet S (<, +1)-definable

e pC O xS xAxQxSm

- LFCQ

Acceptance defined as for classical prefix rewriting.
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Definable context-free grammars

nonterminal symbols S
Y } orbit-finite

terminal symbols A

an nitial nonterminal symbol

p & Sx(SWUA)*
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Definable context-free grammars

e nonterminal symbols S
Y } orbit-finite

* terminal symbols A

definable in FO(<, +1)

* an initial nonterminal symbol

e 0 C Sx(SWA)="

Generated language defined as for classical PDA.
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Expressiveness of definable models
[Clemente, L. 2015]

palindromes over {a,b}xreals with
the same number of a’'s and b’s
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Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable

PUSthXAXQxS

pop & OxSxAxQ

I)FgQ
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Constrained definable PDA

* alphabet A

e gstates O orbit-finite

* stack alphabet S
orbit-finite?
e pushC QxAxQ xS

e pop £ OxSxAxQ

T T

. LFCQ

Span of transitions 1s bounded. Too strong restriction!

For instance, such PDA do not recognize palindromes over reals.
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Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable
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Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S

PUSthXAXQxS
"orbit-finite
pop & OxSxAxQ

- e v

LFCO orbit-finite
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Constrained definable PDA

alphabet A

states O orbit-finite

stack alphabet S
(<, +1)-definable

push C O xAxQ xS
" orbit-finite
pop & OxSxAxQ

T T

orbit-finite

LFCQ

Theorem 2: [Clemente, L. 2015]

The non-emptiness problem 1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.
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Constrained definable PDA

* alphabet A

e gstates O orbit-finite

* stack alphabet S
(<, +1)-definable

e pushC QxAxQ xS
"orbit-finite
e pop £ OxSxAxQ

orbit-finite

. LFCQ

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem 1s in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Fact: The model subsumes dense-timed PIDA with uninitialized clocks.

924



Decadability of non-emptiness

[Clemente, L. 2015]

prefix rewriting
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Theorem 3:
The non-emptiness problem of definable PDA
1s 1n 2-EXPTIME.
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Theorem 3:
The non-emptiness problem of definable PDA
1s 1n 2-EXPTIME.

Complexity gap: EXPTIME ... 2-EXPTIME
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Motivation

Definable NFA

Definable PDA

The core problem: equations over sets of integers

Branching vector addition systems in dimension 1
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The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

T = 1 e constants {-1}, {0}, {1}
 set union U

Ty = 1
* point-wise addition +
e |imited intersection N

Ln — in

decide, whether its least solution assigns a non-empty set to 7 ?
for instance:

L1 — {O} U CEQ—|—{1} U Q?Q—I—{—l}
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The core problem: non-emptiness

Given a systems of equations where right-hand sides use:

e constants {-1}, {0}, {1}

r1 = 1
 set union U
Ty = 1
* point-wise addition +
e |imited intersection N
Ln — tn

decide, whether its least solution assigns a non-empty set to 7 ?

for 1nstance:

L1 — {O} U CEQ+{1} U CL’Q—I—{—l}
Lo = CUl—I—{l} U 331—|—{—1}

What 1s the least solution with respect to inclusion?

29
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exponential blowup systems of equations
deﬁnable PDA ﬁ Y q

over sets of integers

(base) Xpp 2 {0}

L X e >V T e >
(transitivity) S JTE Xpr 2 Xpq + Xqr

XX e ) 7
( ush- O ) D @RI ) y
p pop
X, ..... ) y,

think like state = an integer,
capture all differences y - x,
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xponential blowup

definable PDA e_> systems of equations

over sets of integers

(base) o Xpp 2 {0}
. . e X e ) ..... )
(transitivity) ——=—=——  Xpr 2 Xpq + Xar
(push-pop) X, ..... 'Y : Xpqg2 (L + Xesn (J+N)) + L) N -(HM+K)
X ..... ) y

r \ /N' s

Guideline: / Y X

think like state = an integer, / x
p q

capture all differences y - x,

30



The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?
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The core problem - no intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

How to solve the problem in absence of intersections?
r1 = {O} U X9 + {1} J 29 + {—1}
To = T1 -+ {1} U r1 + {—1}

Decidable in P
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The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?
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The core problem - Intersections

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

The problem 1s undecidable for unlimited intersections.

[Jez, Okhotin 2010]
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
ry = U L. .
* point-wise addition +
Ty = b2 e limited intersection N
T, = 1y
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}

e set union U

T = U L iy

* point-wise addition +
Ty = 2 * limited intersection N
Tp = in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{5171 = {O} U CEQ‘l‘{l} U CEQ—|—{—1}
(x1 +{1} U =1 +{-1}) N {1}

33
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{il?l — {O} U CBQ‘l‘{l} U CIZ‘Q—I-{—l}

To = X1+ {1} U 21 + {—1} membership problem
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The core problem - limited intersection

Given a systems of equations e constants {-1}, {0}, {1}
e set union U
Ty = U L. .
* point-wise addition +
T2 = 12  |imited intersection N
Ty, = 1in

decide, whether its least solution assigns a non-empty set to 7 ?

What about limited intersections: _ M I, for I a finite interval?

{5131 — {O} U ZIZ’Q—I—{l} U ZCQ—|—{—1}
L9 — {1}
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definable PDA systems of equations

over sets of integers
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1-BVASS(+ -)

automaton with 1 non-negative counter
run is a tree
in leaves: initial state with counter=1

transition rules:

q

SN N

r

non-emptiness problem: 1s there a run
with a final state in the root?

38
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Theorem 4:
The non-emptiness problem of 1-BVASS(+ -) 1s 1n
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I'he non-emptiness problem of 1-BVASS(+ -) 1s in |
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Non-emptiness of 1-BVASS

Theorem 4:

(+-)

I'he non-emptiness problem of 1-BVASS(+ -) 1s in |

Proof 1dea:
Exponentially bounded witness.

Complexity gap: PSPACE ... EXPTIME

Theorem: [ Goeller, Haase, Lazic, Totzke 2016]

The non-emptiness problem of 1-BVASS(+) 1s in P
(unary encoding).

39
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Defhinable sets

offer a right setting for timed models of computation, like

timed automata, or timed pushdown automata.

Dehnable PDA

have decidable non-emptiness problem, by reduction to

an extension of BVASS in dimension 1.
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