Which extensions of vector addition systems have decidable reachability?

Which extensions of vector addition systems have decidable reachability?

$$(0,0,1) \qquad (2,-1,0) \qquad VA_{(2,-1,0)} = \{(x,y) \mid y = x + (2,-1,0)\}$$

$$\subseteq \mathbb{N}^3 \times \mathbb{N}^3$$

$$(2,-1,0) \quad VA_{(2,-1,0)} = \{(x,y) \mid y = x + (2,-1,0)\}$$

$$\subseteq \mathbb{N}^3 \times \mathbb{N}^3$$

$$VA_{(0,0,0)}$$
 $VA_{(-1,1,0)}$
 p
 $VA_{(0,0,-1)}$
 $VA_{(0,0,-1)}$
 $VA_{(0,0,-1)}$

Vector Addition relations
$$VA = \{ VA_v \mid v \in \mathbb{N}^d \}$$

$$(2,-1,0) \quad VA_{(2,-1,0)} = \{(x,y) \mid y = x + (2,-1,0)\}$$

$$\subseteq \mathbb{N}^3 \times \mathbb{N}^3$$

Vector Addition relations
$$VA = \{ VA_v \mid v \in \mathbb{N}^d \}$$

VASS = VA-systems (with states)

$$(2,-1,0) \quad VA_{(2,-1,0)} = \{(x,y) \mid y = x + (2,-1,0)\}$$

$$\subseteq \mathbb{N}^3 \times \mathbb{N}^3$$

Vector Addition relations
$$VA = \{ VA_v \mid v \in \mathbb{N}^d \}$$

VASS = VA-systems (with states)

? = VM-systems

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$R_1, R_2, R_3, R_4 \in \mathcal{C}$$

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$R_1, R_2, R_3, R_4 \in \mathcal{C}$$

admitting finite presentations

Question: For which classes *C*, *C*-systems have decidable reachability?

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$R_1, R_2, R_3, R_4 \in \mathcal{C}$$

admitting finite presentations

Question: For which classes *C*, *C*-systems have decidable reachability?

C = Semilinear ?

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$R_1, R_2, R_3, R_4 \in \mathcal{C}$$

admitting finite presentations

Question: For which classes *C*, *C*-systems have decidable reachability?

C = Semilinear?

Semilinear includes VA ∪ ZT!

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$
 step relations

$$R_1, R_2, R_3, R_4 \in \mathcal{C}$$

admitting finite presentations

Question: For which classes *C*, *C*-systems have decidable reachability?

C = Semilinear ?

Semilinear includes VA ∪ ZT !

Semilinear-systems include counter machines!

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $(x,y) \in R, \ v \in \mathbb{N}^d$ $\downarrow \downarrow$ $(x+v,y+v) \in R$

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

Fact: monotone Semilinear-systems = VASS

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

Fact: monotone Semilinear-systems = VASS

Question: For which classes *C*, monotone *C*-systems have decidable reachability?

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2. fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

Theorem:

sections of **monotone** *C*-systems have decidable emptiness iff

C have decidable emptiness

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

Theorem:

sections of **monotone** *C*-systems have decidable emptiness iff

C have decidable emptiness

($C = Semilinear \implies VASS reachability)$

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

Theorem:

sections of **monotone** *C*-systems have decidable emptiness iff

C have decidable emptiness

($C = Semilinear \implies VASS reachability)$

Proof: KLM decomposition

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

Theorem:

sections of monotone C-systems have decidable emptiness

iff

C have decidable emptiness

(C = Semilinear ⇒ VASS reachability)

have hybridlinear overapproximations

Proof: KLM decomposition

$$VA \subseteq \mathcal{C} \subseteq \mathbb{N}^d \times \mathbb{N}^d$$

Proof: KLM decomposition

 $C \mapsto$ sections of **monotone** C-systems

relations obtainable as follows:

- 1. start with the reachability relation
- 2.fix some input/output coordinates
- 3. project away some coordinates

Question: For which classes *C*, sections of monotone *C*-systems have decidable emptiness?

Theorem: assuming C is closed under intersections with semilinear sets, sections of monotone C-systems have decidable emptiness

iff C have decidable emptiness

($C = Semilinear \Rightarrow VASS reachability$)

have hybridlinear overapproximations

Theorem: assuming *C* is closed under intersections with semilinear sets, sections of **monotone** *C*-systems have hybridlinear overapproximations iff

C have hybridlinear overapproximations

Theorem: assuming C is closed under intersections with semilinear sets, sections of **monotone** C-systems have hybridlinear overapproximations

iff

C have hybridlinear overapproximations

Corollary: VASS with nested zero tests have hybridlinear overapproximations

Theorem: assuming C is closed under intersections with semilinear sets, sections of **monotone** C-systems have hybridlinear overapproximations iff

C have hybridlinear overapproximations

Corollary: VASS with nested zero tests have hybridlinear overapproximations

(k+1)-nested VASS \mapsto monotone (sections of k-nested VASS)-systems

Theorem: assuming C is closed under intersections with semilinear sets,

sections of $\mathbf{monotone}\ \mathcal{C}$ -systems have hybridlinear overapproximations iff

C have hybridlinear overapproximations

Corollary: VASS with nested zero tests have hybridlinear overapproximations

(k+1)-nested VASS \mapsto monotone (sections of k-nested VASS)-systems

