The reachability problem for Petri nets

Sławomir Lasota

University of Warsaw

ACPN 2023, Toruń, 2023-09-05

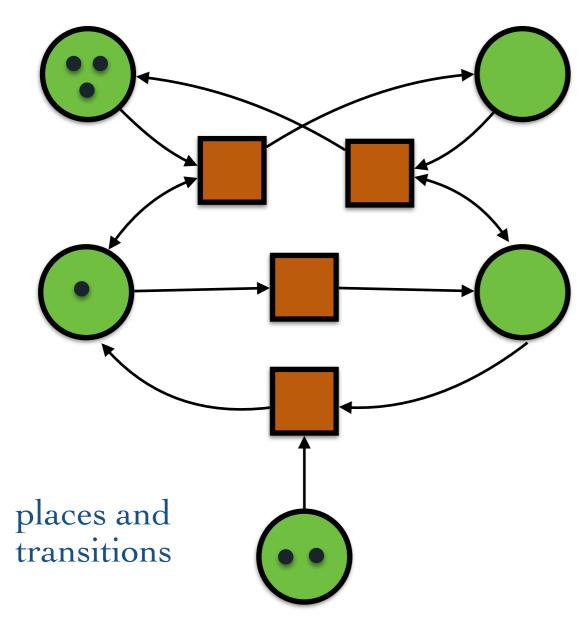
- I. Intro
- II. Decidability
- III. F_{ω} -hardness

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Reachability problem in Petri nets Coverability

Petri net:



configuration : places $\rightarrow \mathbb{N}$ \mathbb{N}^d

step relation between configurations

Decision problem:

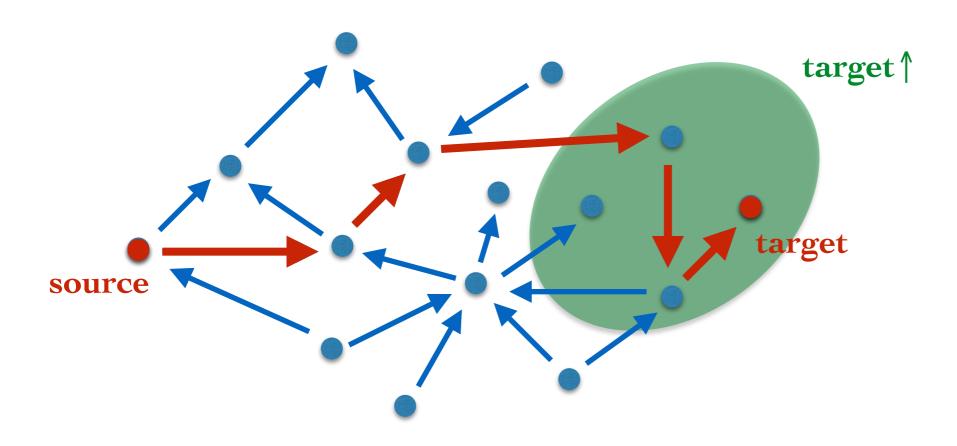
given

- Petri net
- source configuration
- target configuration

check if there is a sequence of steps (run) from source to target ≥ target

Reachability problem in Petri nets Coverability

configuration graph: configurations and steps

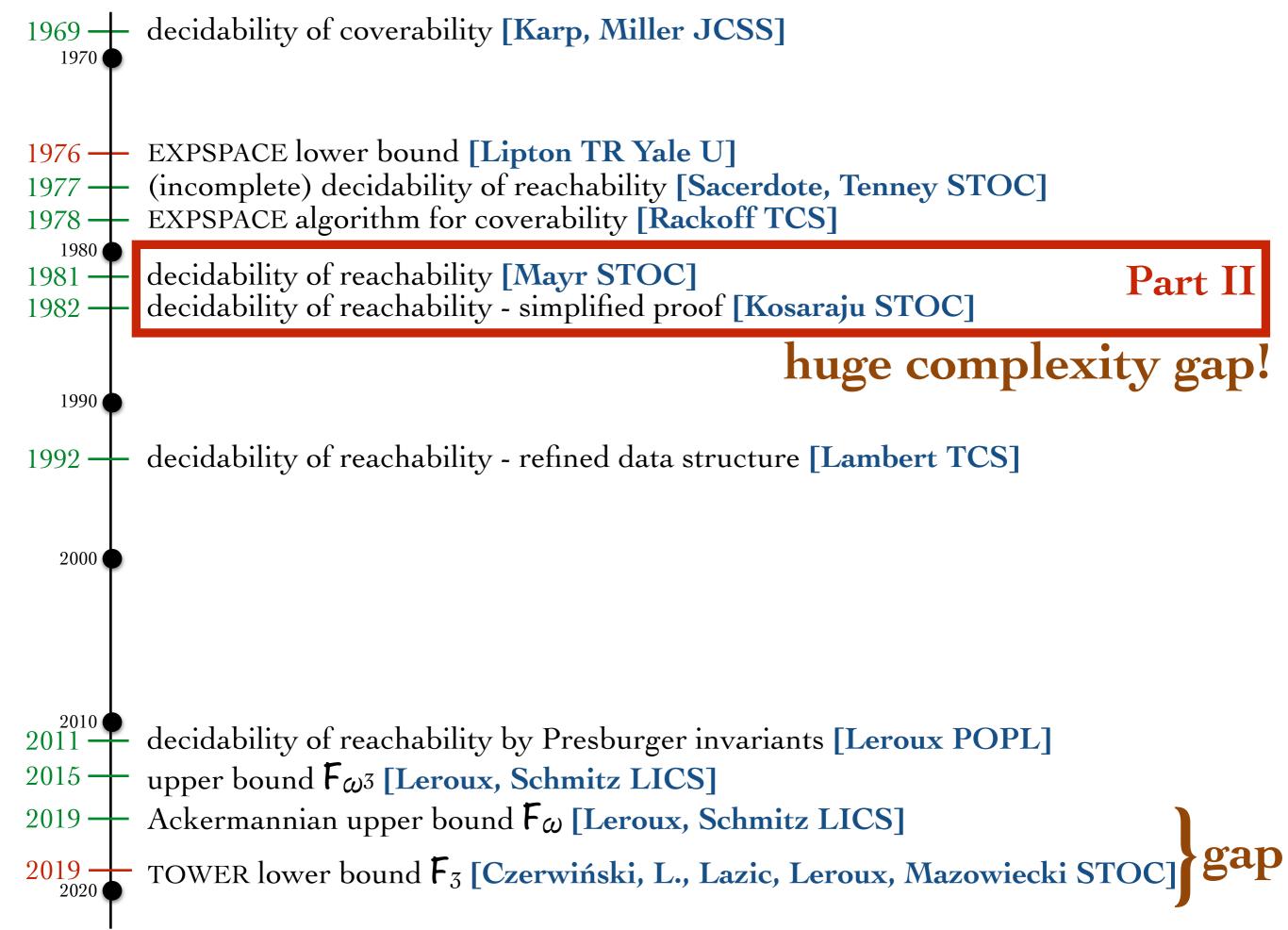


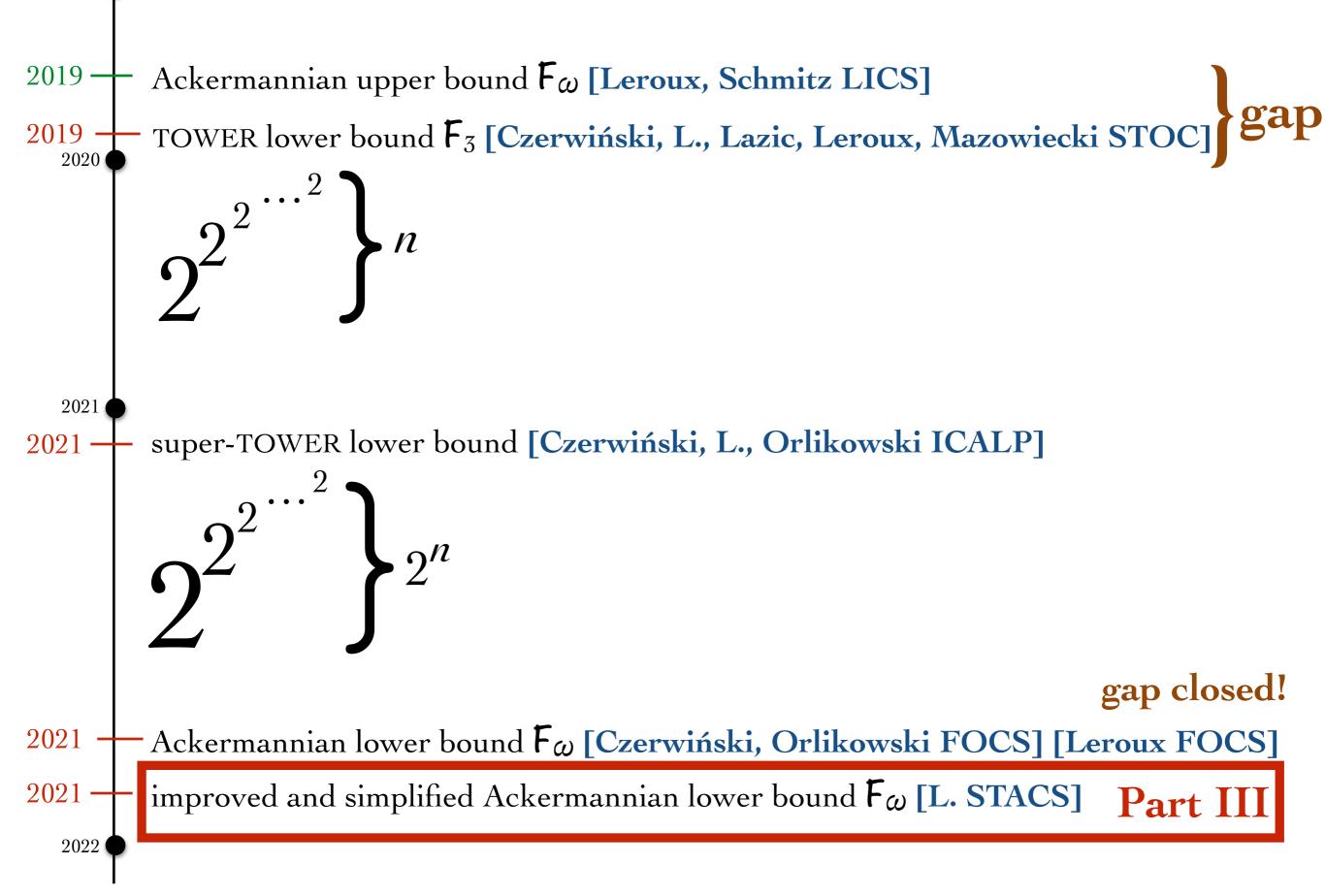
Reachability: is there a path (run) from source to target?

Coverability: is there a path (run) from source to target ??

Why is it important?

- · core verification problem
- equivalent to many other problems in concurrency, process algebra, logic, language theory, linear algebra, etc





Fast growing functions and induced complexity classes

$$A_{I}(n) = 2n$$

$$A_{i+1}(n) = A_{i} \circ A_{i} \circ \dots \circ A_{i}(1) = A_{i}^{n}(1)$$

$$A_{\omega}(n) = A_{n}(n) \quad \text{Ackermann function}$$

$$A_{2}(n) = 2^{n}$$

$$A_{3}(n) = \text{tower}(n)$$

$$= 2^{2}$$

$$= 2^{2}$$

$$A_{4}(n) = \dots$$

$$\mathbf{F}_{i} = \bigcup \text{DTIME}(A_{i} \circ A_{j_{I}} \circ \dots \circ A_{j_{m}})$$

$$j_{1} \dots j_{m} < i$$

$$\mathbf{F}_2 = \text{DTIME}(2^{O(n)})$$

. . .

$$F_{\omega} = ACKERMANN$$

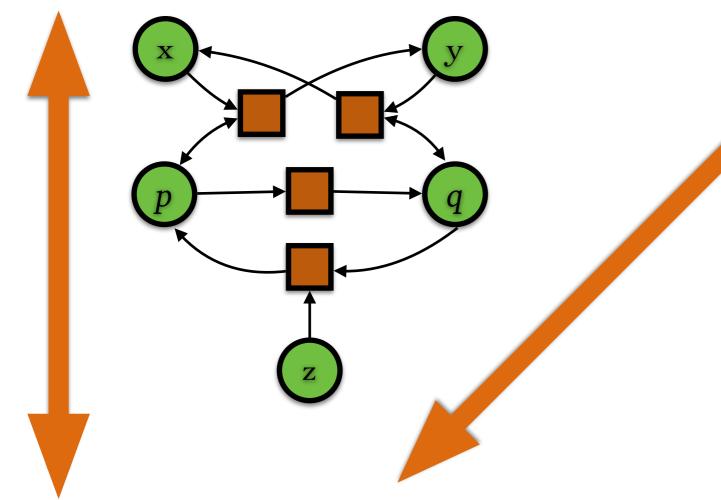
I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Many faces of Petri nets

Part III

• Petri nets:



• counter programs without zero-tests:

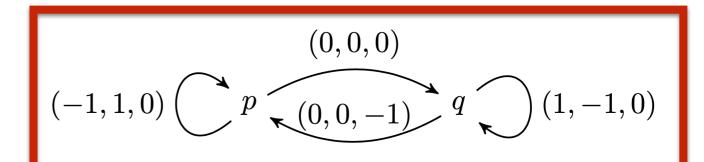
• vector addition systems with states (VASS):

$$(-1,1,0) \bigcap p \underbrace{(0,0,0)}_{(0,0,-1)} q \bigcap (1,-1,0)$$

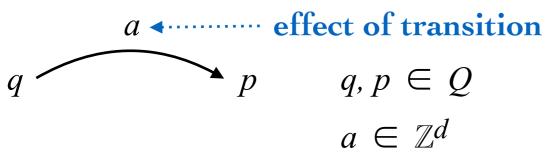
Part II

- vector addition systems
- counter automata without zero-tests
- multiset rewriting
- ..

VASS



- dimension d
- finite set of control states Q
- finite set of transitions of the form:



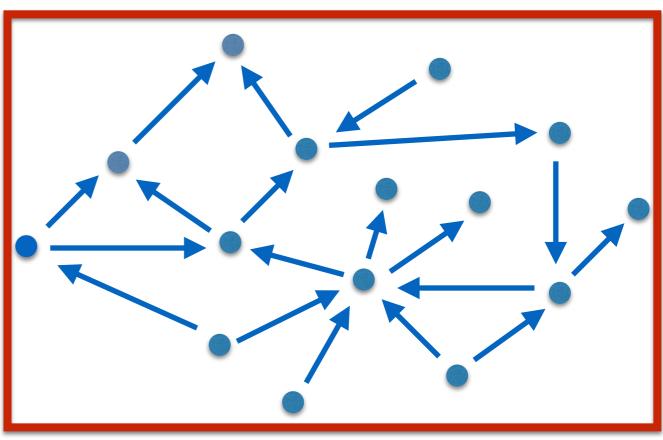
two different graphs!

- configurations $(q, v) = q(v) \in Q \times \mathbb{N}^d$
- step relation:

$$q(v) \longrightarrow p(v+a)$$

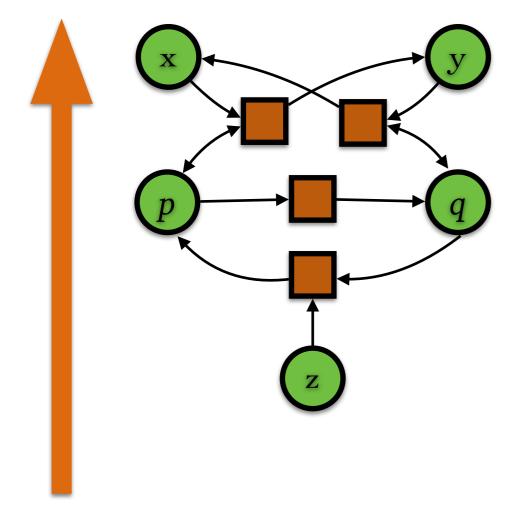
reachability relation:

$$q(v) \longrightarrow^* p(w)$$



Petri nets \leftrightarrows VASS

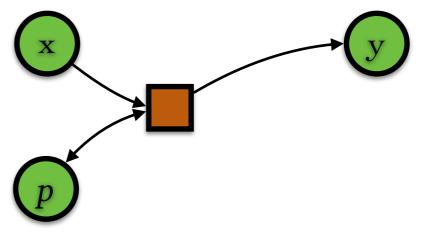
• Petri nets:



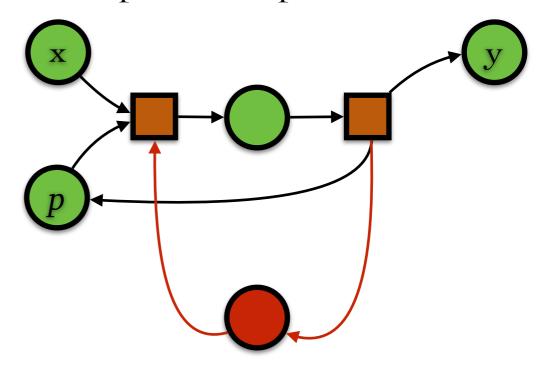
• vector addition systems with states (VASS):

$$(-1,1,0) \bigcap p \overbrace{(0,0,-1)}^{(0,0,0)} q \bigcap (1,-1,0)$$

split every transition



into input and output:



then add one more "global" place

Counter programs without zero-tests

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

```
(increment counter x by n)
x += n
        (\text{decrement counter x by } n) \qquad \text{abort if } x < n
x -= n
goto L or L' (jump to either line L or line L') nondeterminism
```

except for the very last command which is of the form:

```
halt if x_1, \ldots, x_l = 0
                       (terminate provided all
                                                          otherwise abort
                           the listed counters are zero)
```

Example:

Example:

1:
$$x' += 100$$

2: $goto | 5 | or | 3$

3: $x += 1 | x' -= 1$

4: $goto | 2$

5: halt if $x' = 0$.

1: $x' += 100$

2: loop

4: $x' += 100$

2: loop

4: halt if $x' = 0$.

finally: x' = 0 x = 100 y = 200

Counter programs → VASS

- dimension := number of counters
- control states := control locations
- transitions := commands

• vector addition systems with states (VASS):

$$(-1,1,0) \bigcap p \overbrace{(0,0,-1)} (0,0,-1) q \bigcap (1,-1,0)$$

• counter programs without zero-tests:

Counter programs with zero-tests

zero test command:

```
zero? x (continue if counter x equals 0) otherwise abort
```

Example:

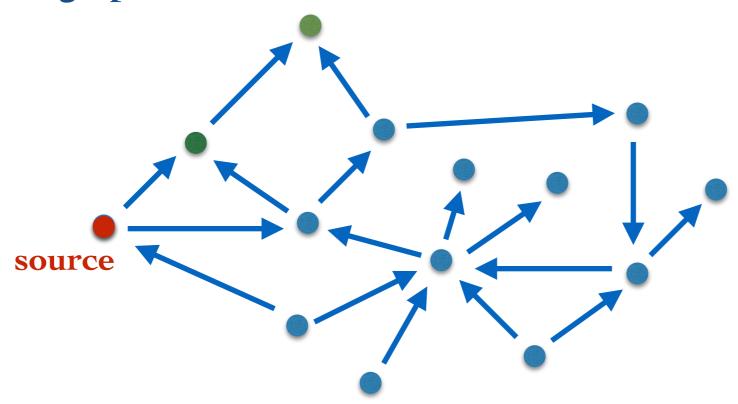
- 1: x += 100
- 2: **goto** 3 **or** 5
- 3: x -= 1
- 4: **goto** 2
- 5: **zero?** x
- 6: x += 1

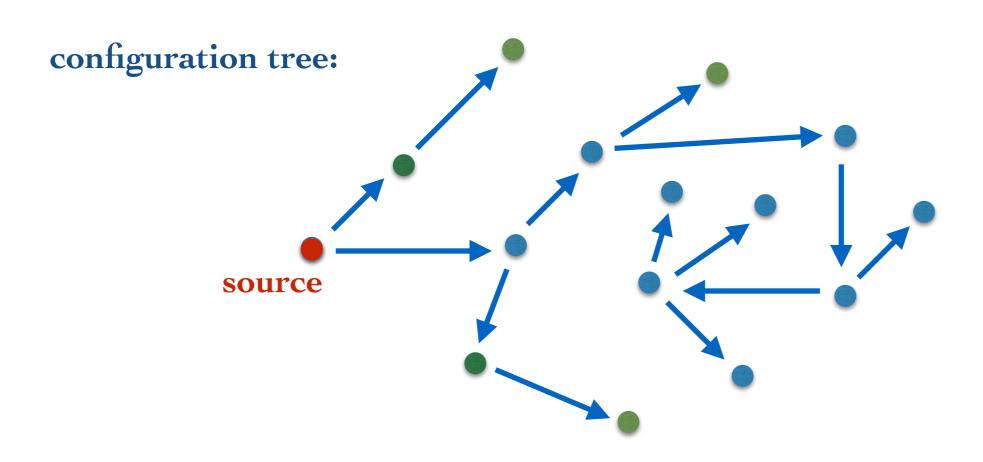
counter programs
with zero-tests are
Turing complete

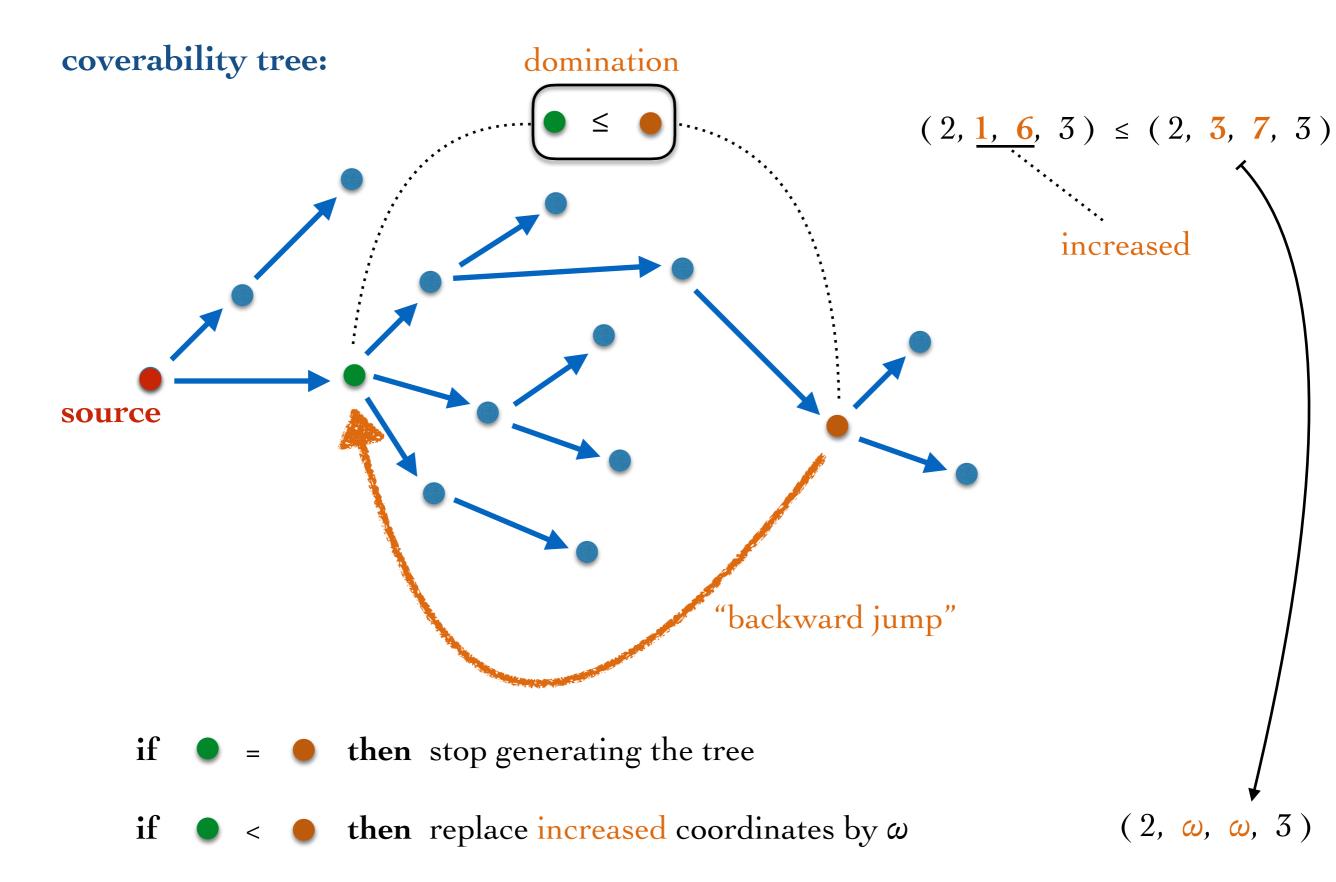
I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

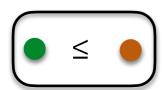
configuration graph:







domination

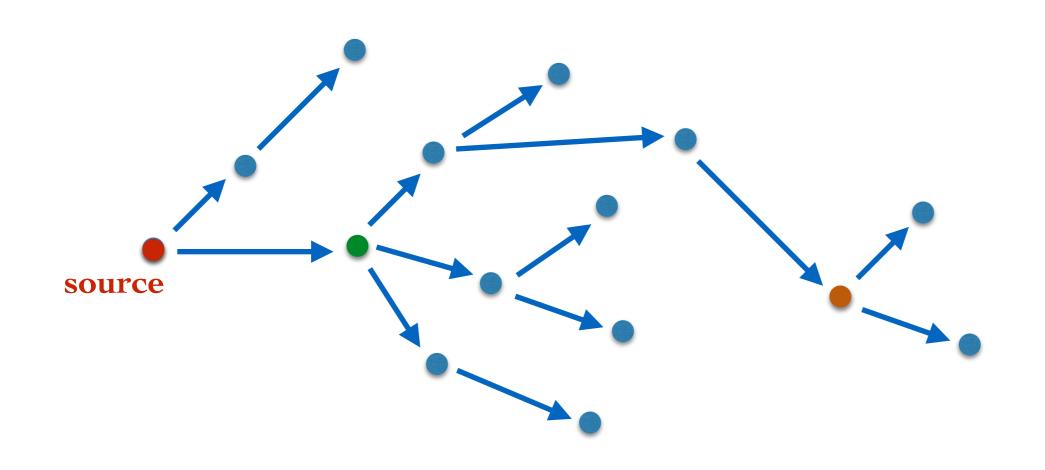


Dickson's Lemma: every infinite sequence of configurations

admits a domination:

$$\bullet_{i} \leq \bullet_{j}$$
 for some $i < j$.

Coverability tree



Theorem: Coverability tree is finite.

Coverable configurations = (coverability tree) ↓

Question: What can be read out from coverability tree?

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Characteristic equation

(-1,1,0) (0,0,0) VASS (0,0,-1) q (2,-1,0)

- dimension d
- finite set of control states Q
- finite set of transitions *T* of the form:

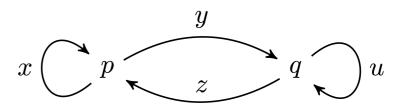
• source q(v), target $p(w) \in Q \times \mathbb{N}^d$ q, p distinct

- one variable per transition in *T*, to represent the number of its applications
- for each control state, an equation

nr of incoming transitions = nr of outgoing transitions except for $p, q \dots$

Example:
$$x + z + 1 = x + y$$

 $y + u = u + z + 1$



• source q(v), target $p(w) \in Q \times \mathbb{N}^d$

q, p distinct

- one variable per transition in T, to represent the number of its applications
- for each control state, an equation

nr of incoming transitions = nr of outgoing transitions except for $p, q \dots$

• *d* equations:

total sum of effects = w - v

Example:

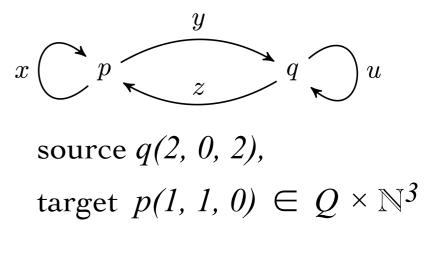
$$x + z + 1 = x + y$$

$$y + u = u + z + 1$$

$$-x + 2u = -1$$

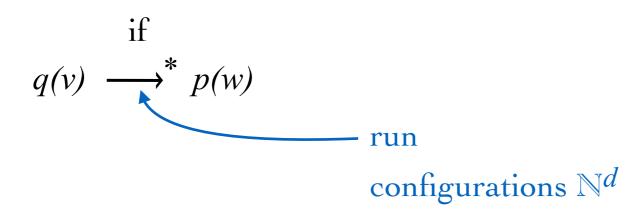
$$x - u = 1$$

$$-z = -2$$



State equation vs reachability

Fact: Characteristic equation has a solution in \mathbb{N}



Lemma: Characteristic equation has a strongly connected solution in \mathbb{N}

iff
$$q(v) \xrightarrow{*} p(w)$$

$$pseudo-run$$

$$pseudo-configurations $\mathbb{Z}^d$$$

Question: Does $q(v) \xrightarrow{*} p(w)$ imply $q(v) \xrightarrow{*} p(w)$?

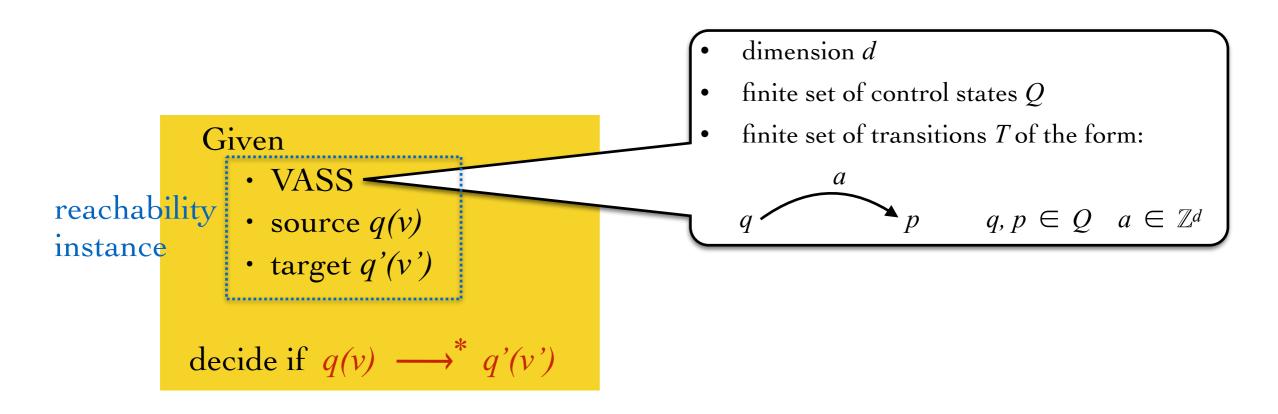
I. Intro

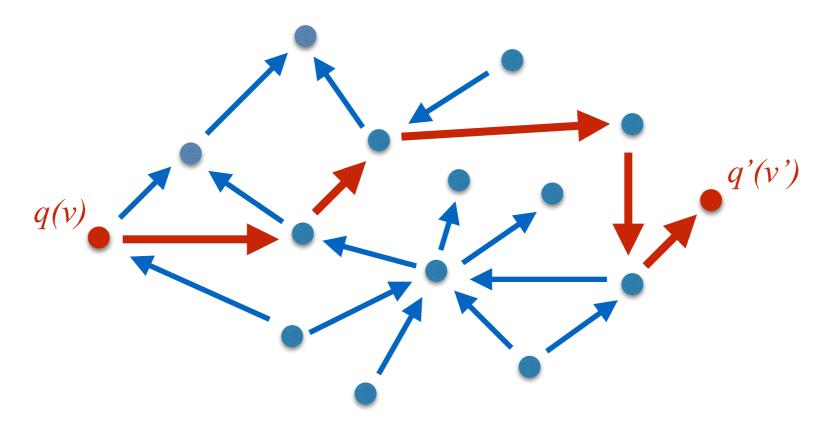
- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

II. Decidability

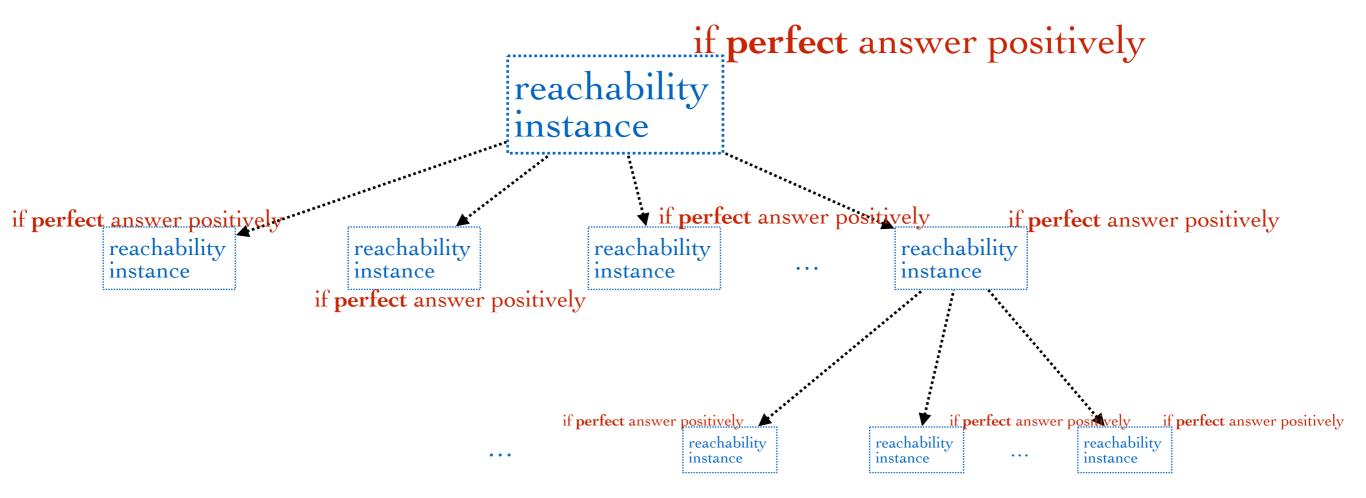
- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Reachability problem for VASS





Decomposition algorithm



. . .

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Perfectness: sufficient condition for reachability

Question: Does $q(v) \xrightarrow{*} p(w)$ imply $q(v) \xrightarrow{*} p(w)$?

Perfectness

 (Θ_1) For every m, $q(v) \xrightarrow{*} q'(v')$ using every transition $\geq m$ times unboundedness

 $(\boldsymbol{\Theta}_1) \Rightarrow \text{VASS}$ is strongly connected

Example:

$$(-1,1,1) \bigcirc q' \underbrace{(0,0,0)}_{q' \underbrace{(0,0,-1)}} q \bigcirc (1,-1,0)$$
 source $q(2, 0, 2)$ target $q'(1, 1, 0)$

Perfectness

 $(\boldsymbol{\Theta}_1)$ For every m, $q(v) \xrightarrow{*} q'(v')$ using every transition $\geq m$ times unboundedness

 $(\boldsymbol{\Theta}_2)$ For some $\boldsymbol{\Delta}$, $\boldsymbol{\Delta}' \geq \boldsymbol{1}$,

$$q(v) \longrightarrow^* q(v + \Delta)$$

$$q'(v' + \Delta') \longrightarrow^* q'(v')$$

forward pumpability backward pumpability

Examples:

$$(-1,1,0) \bigcap p \overbrace{(0,0,-1)} q \bigcap (2,-1,0)$$

source q(2, 0, 2)

$$(0,0)$$

$$(-1,1) \bigcirc p \bigcirc (0,0) \qquad q \bigcirc (2,-1)$$

$$(2,0) \qquad (2,0) \qquad (0,2) \qquad (0,2)$$

$$(2,1) \qquad (4,0) \qquad (4,0)$$

$$(3,1) \qquad (3,1)$$

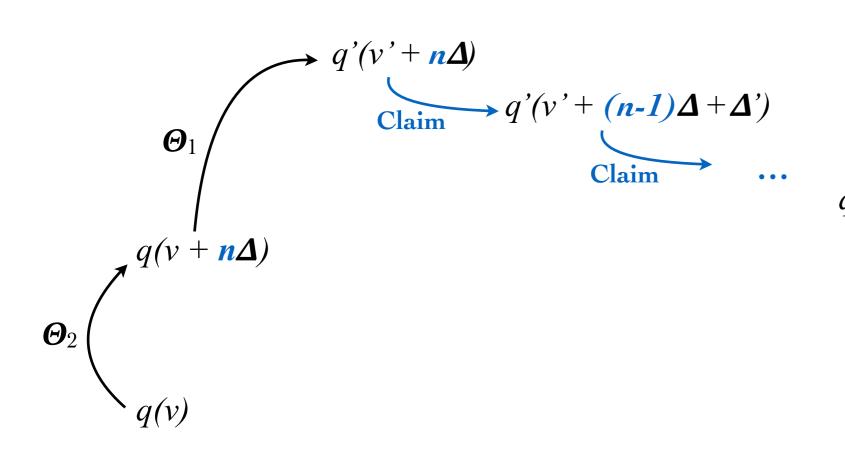
source q(2, 0)

Perfectness: sufficient condition for reachability

Lemma: $(\boldsymbol{\Theta}_1) \wedge (\boldsymbol{\Theta}_2) \Rightarrow q(v) \longrightarrow^* q'(v').$

Proof:

Choose sufficiently large *n*



- (Θ_1) For every m, $q(v) \rightarrow q'(v')$ using every transition $\geq m$ times
- $(\boldsymbol{\Theta}_2)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}' \geq \boldsymbol{1},$ $q(v) \longrightarrow^* q(v + \boldsymbol{\Delta})$ $q'(v' + \boldsymbol{\Delta}') \longrightarrow^* q'(v')$

Claim:
$$q'(\Delta) \xrightarrow{*} q'(\Delta')$$
.

$$q'(v' + \Delta + (n-1)\Delta')$$

$$Q'(v' + n\Delta')$$

$$Q'(v' + n\Delta')$$

$$Q'(v')$$

$$Q'(v')$$

Claim:
$$q'(\Delta) \xrightarrow{*} q'(\Delta')$$
.

Proof:

Folding of a pseudo-run a: $F(a) \in \mathbb{N}^T$

Effect of a pseudo-run a: $E(a) \in \mathbb{Z}^d$

Observation: Given pseudo-runs $q(\underline{\ })$ β $q'(\underline{\ })$ such that $F(\alpha) - F(\beta) \ge 1$,

there is a pseudo-run $\gamma = q'(\underline{\ })$ such that $F(\gamma) = F(\alpha) - F(\beta)$

 $(\boldsymbol{\Theta}_1)$ For every m, $q(v) \longrightarrow^* q'(v')$

 (Θ_2) For some Δ , $\Delta' \geq 1$,

using every transition $\geq m$ times

 Π' : $q'(v' + \Delta') \longrightarrow^* q'(v')$

 Π : $q(v) \rightarrow^* q(v + \Delta)$

$$(\Theta_1) \Rightarrow q(v)$$
 β $q'(v')$ such that $F(\alpha) - F(\beta)$ arbitrarily large

$$F(\alpha) - F(\beta) - F(\Pi) - F(\Pi') \ge 1$$

$$F(\alpha) - F(\Pi \beta \Pi') \ge 1$$

By Observation,
$$q'(\underline{\ })$$
 such that $F(\gamma) = F(\alpha) - F(\beta) - F(\Pi) - F(\Pi')$

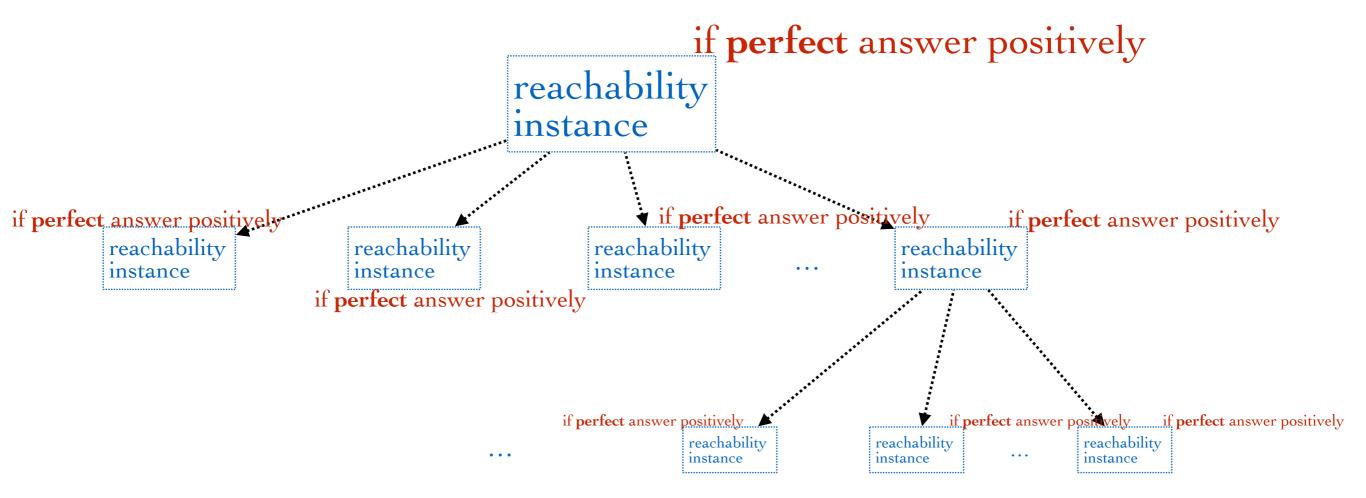
$$E(\gamma) = E(\alpha) - E(\beta) - E(\Pi) - E(\Pi') = 0$$

$$0 - \Delta - (-\Delta') = \Delta' - \Delta$$

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Decomposition algorithm



Question: Is $(\boldsymbol{\Theta}_1) \wedge (\boldsymbol{\Theta}_2)$ decidable?

Decidability of $(\boldsymbol{\Theta}_1) \wedge (\boldsymbol{\Theta}_2)$

Question: How to decide (Θ_2) ? Using coverability tree!

Question: How to decide (Θ_1) ? Using characteristic equation!

Example:

$$x \bigcap_{p} \underbrace{z}_{q} \bigcap_{u}$$

$$z - y = 1$$

$$z - \chi = 2$$

(
$$\Theta_1$$
) For every m , $q(v) \longrightarrow^* q'(v')$ using every transition $\geq m$ times

$$(\boldsymbol{\Theta}_2)$$
 For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}' \geq \boldsymbol{1},$

$$q(v) \longrightarrow^* q(v + \boldsymbol{\Delta})$$

$$q'(v' + \boldsymbol{\Delta}') \longrightarrow^* q'(v')$$

source q(2, 0, 2)target p(1, 1, 0)

homogeneous system:

$$z - y = 1$$

$$x - u = 1$$

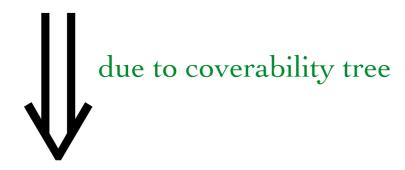
$$z - y = 0$$

$$x - u = 0$$

 $(\boldsymbol{\Theta}_2)$ fails:

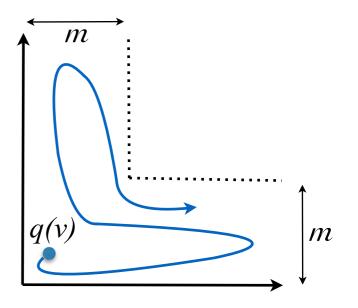
computable - how?

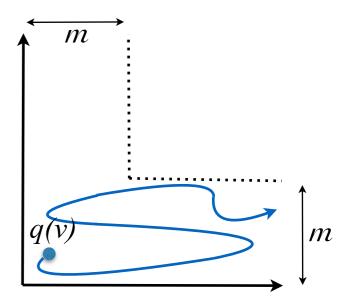
there exists m s.t. every configuration reachable from q(v) has some coordinate < m



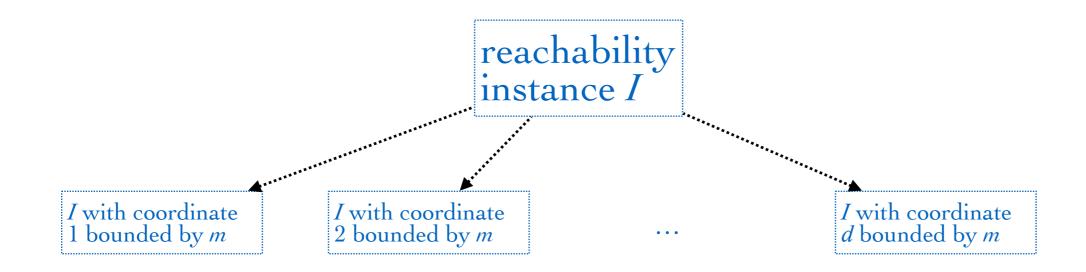
there exists m s.t. every run from q(v) has some coordinate < m

- $(\boldsymbol{\Theta}_1)$ For every m, $q(v) \longrightarrow^* q'(v')$ using every transition $\geq m$ times
- $(\boldsymbol{\Theta}_2)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}' \geq \boldsymbol{1},$ $q(v) \longrightarrow^* q(v + \boldsymbol{\Delta})$ $q'(v' + \boldsymbol{\Delta}') \longrightarrow^* q'(v')$





 (Θ_2) fails: there exists m s.t. every run from q(v) has some coordinate < m



 (Θ_1) fails:

computable, using a bound on minimal solutions of state equation

there exists m s.t. every pseudo-run $q(v) \longrightarrow^* q'(v')$ uses some transition < m times

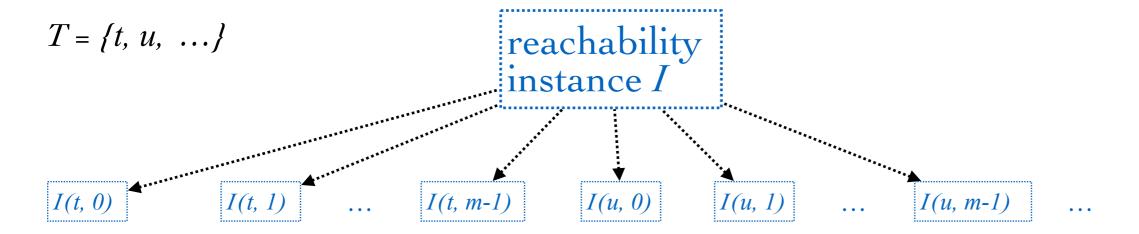
- (Θ_1) For every m, $q(v) \rightarrow^* q'(v')$ using every transition $\geq m$ times
- $(\boldsymbol{\Theta}_2)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}' \geq \boldsymbol{1},$ $q(v) \longrightarrow^* q(v + \boldsymbol{\Delta})$ $q'(v' + \boldsymbol{\Delta}') \longrightarrow^* q'(v')$

reachability instance *I*

$$t \in T$$
, $k < m$

$$I(t, k) := I \xrightarrow{t} I \xrightarrow{t} \dots \xrightarrow{t} I \xrightarrow{t} \dots$$
(t appears k times)

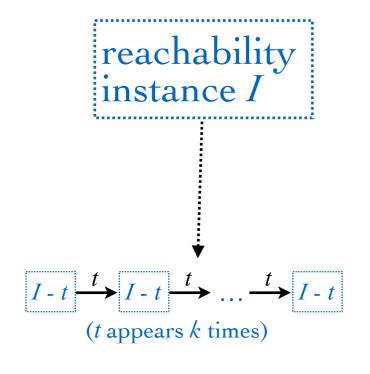
some cheating here!



are these instances smaller?

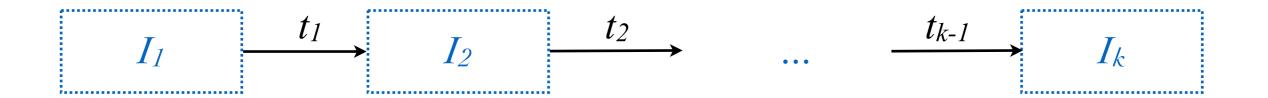
 $(\boldsymbol{\Theta}_1)$ fails:

there exists m s.t. every pseudo-run $q(v) \longrightarrow^* q'(v')$ uses some transition < m times



is this instance smaller? is this an instance at all?

- (Θ_1) For every m, $q(v) \rightarrow q'(v')$ using every transition $\geq m$ times
- $(\boldsymbol{\Theta}_2)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}' \geq 1$, $q(v) \longrightarrow^* q(v + \boldsymbol{\Delta})$ $q'(v' + \boldsymbol{\Delta}') \longrightarrow^* q'(v')$



I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- state equation

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

III. F_ω-hardness

Reachability problem for counter programs

Reachability problem: given a counter program without zero tests,

```
1: x' += 100

2: goto 5 or 3

3: x += 1 x' -= 1 y += 2

4: goto 2

5: halt if x' = 0.
```

can it halt? (successfully execute its halt command)

Coverability problem: given a counter program without zero tests with trivial halt command,

```
1: x' += 100
2: goto 5 or 3
3: x += 1 x' -= 1 y += 2
4: goto 2
5: halt.
```

can it halt?

Loop programs

```
1: x' += 100

2: goto 5 or 3

3: x += 1 x' -= 1 y += 2

4: goto 2

5: halt if x' = 0.
```


1:
$$x' += 100$$

2: **loop**

3:
$$x += 1$$
 $x' -= 1$ $y += 2$

4: **halt if** x' = 0.

III. F_{ω} -hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

 F_{ω} -hardness of reachability

counter programming

counter program with **zero-tests** of size *n*

counter program without zero-tests

$$A_{\omega}(n) = A_{n}(n)$$

can it halt in $A_n(n)$ steps? can it halt in $A_n(n)/2$ steps? can it halt after $A_n(n)/2$ zero-tests?

1:
$$x += 1$$
 $y += 1$
2: loop
3: $x += 1$ $y += 1$
4: for $i := n$ down to 1 do
5: loop
6: $x -= 1$
7: loop
8: $x += i + 1$ $z -= i$
9: loop
10: $x -= n + 1$ $y -= 1$
11: halt if $y = 0$.

can it halt?

P can halt after $A_n(n)/2$ zero-tests iff P can halt

III. F_{ω} -hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

The set computed by a counter program

initial valuation: all counters 0

```
1: x += 1  y += 1

2: loop

3: x += 1  y += 1

4: for i := n down to 1 do

5: loop

6: x -= 1  z += 1

7: loop

8: x += i + 1  z -= i

9: loop

10: x -= n + 1  y -= 1

11: halt if y = 0.
```

consider all runs
(nondeterminism)

the set of all valuations at successful halt

B-multiplier

$B \in \mathbb{N}$ - fixed positive integer

initial valuation: all counters 0

1:
$$b += B$$
 $d += B$ $c += 1$

2: $loop$

3: $d += B$ $c += 1$

11: $halt if y = 0$.

• $b -B$ • $b > 0$?

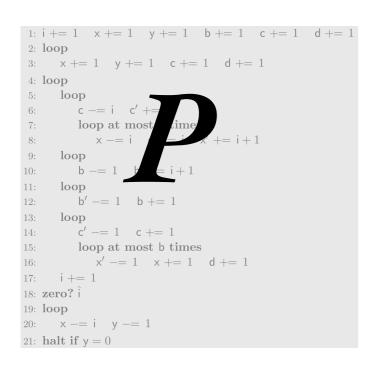
• $c > 0$
• $d = b \cdot c$
• all other counters 0

• $d = b \cdot c$
• all other counters 0

One can compute $A_n(n)$ -multiplier of size O(n)

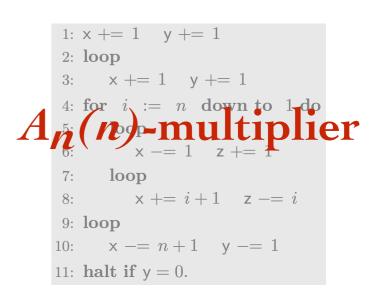
F_{ω} -hardness of reachability

program of size *n* with two **zero-tested** counters:



can halt after $A_n(n)/2$ zero-tests?

program without zero-tests:



RATIO(b, c, d, $A_n(n)$)

```
1: i + = 1  x + = 1  y + = 1  b + = 1  c + = 1  d + = 1

2: loop

3: x + = 1  y + = 1  c + = 1  d + = 1

4: loop

5: loop

6: c - = i  c' + = 1

7: loop  at most b  mes

8: x - = i  d  b' + = i + 1

9: loop

10: b - = 1  b' + = i + 1

11: loop

12: b' - = 1  b + = 1

13: loop  b' - = 1  b + = 1

14: loop  b' - = 1  b + = 1

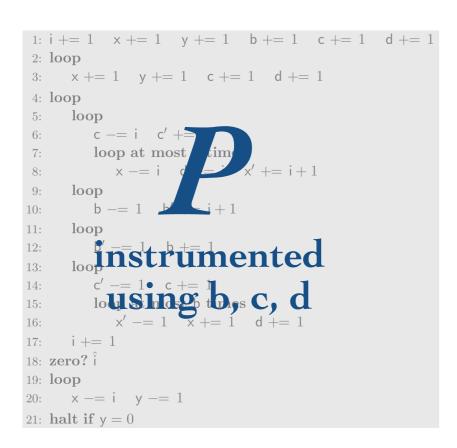
15: loop  at most b times

16: loop  at  at
```

can halt?

Instrumentation - simulation of zero tests

- b = $A_n(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **zero-tested** counters



Aim:

simulate $A_n(n)/2$ zero-tests on x, y

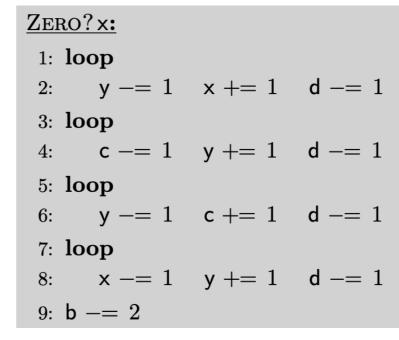
instrument increments and decrements:

command	replaced by	
x += 1	x += 1	c -= 1
x -= 1	x -= 1	c += 1

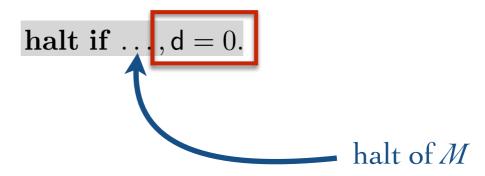
put x, y on **budget** c

• replace zero? x by

$$c + x + y$$
 const



replace halt by

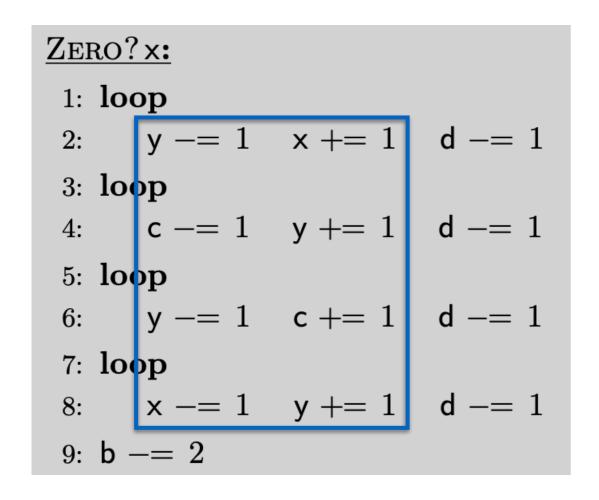


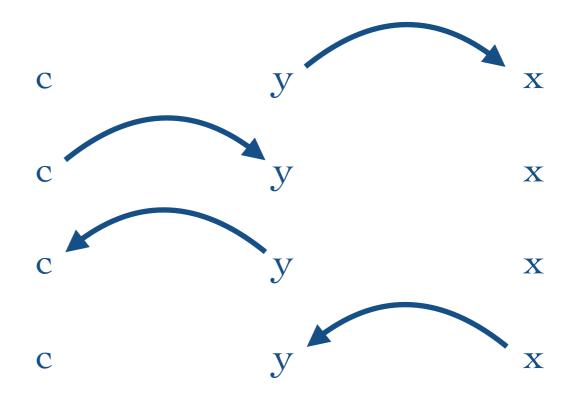
- simulation of zero tests

put x, y on **budget** c

$$d = b \cdot (c + x + y)$$

$$const$$





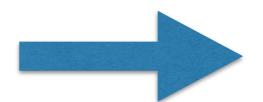
d decreases by $\neq 2 \cdot (c + x + y)$ b decreases by 2

- d decreases by $2 \cdot (c + x + y)$ \longrightarrow x = 0 initially and finally, y preserved
- d decreases by $< 2 \cdot (c + x + y)$

x = 0 initially and finally, y preserved halt if ..., d = 0. will surely fail

F_{ω} -hardness of reachability

program of size *n* with two **zero-tested** counters:



One can compute $A_n(n)$ -multiplier of size O(n)

can halt after $A_n(n)/2$ zero-tests?

program without zero-tests:

```
1: x += 1  y += 1
2: loop
3: x += 1  y += 1
4: for i := n down to 1 do
5: (**Pos-multiplier*)
7: loop
8: x += i + 1  z -= i
9: loop
10: x -= n + 1  y -= 1
11: halt if y = 0.
```

RATIO(b, c, d, $A_n(n)$)

can halt?

III. F_{ω} -hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

$$A_n(n)$$
-multiplier

A 1-amplifier

$$A_{I}(n) = 2n$$

$$A_{i+1}(n) = A_{i} \circ A_{i} \circ \dots \circ A_{i}(1) = A_{i}^{n}(1)$$

One can compute
$$A_n(n)$$
-multiplier of size $O(n)$

$$A_n$$
-amplifier $\longrightarrow A_n(n)$ -multiplier $\longrightarrow A_2$ -amplifier $\longrightarrow A_2$ -amplifier

The set computed by a counter program from a set I

a set I of initial valuations initial valuation: all counters 0

```
1: x += 1  y += 1

2: loop

3: x += 1  y += 1

4: for i := n down to 1 do

5: loop

6: x -= 1  z += 1

7: loop

8: x += i + 1  z -= i

9: loop

10: x -= n + 1  y -= 1

11: halt if y = 0.
```

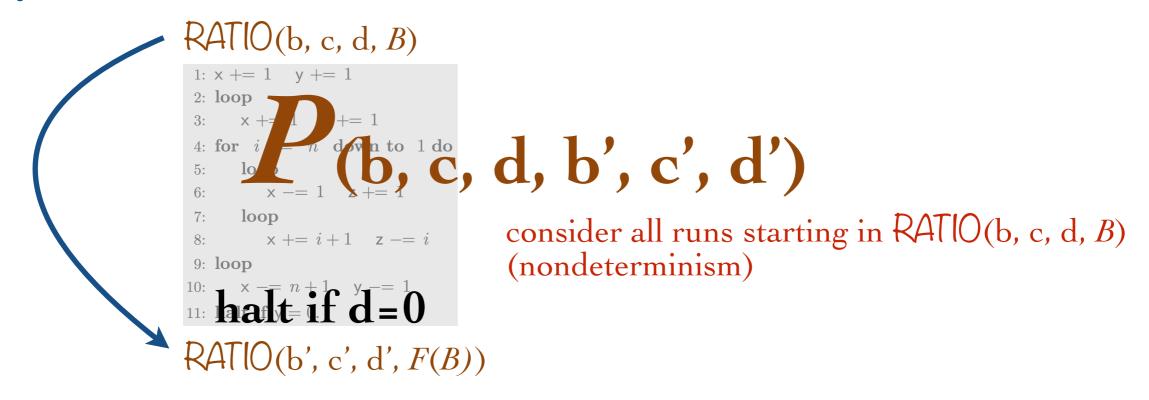
consider all runs **starting in I** (nondeterminism)

the set of all valuations at successful halt

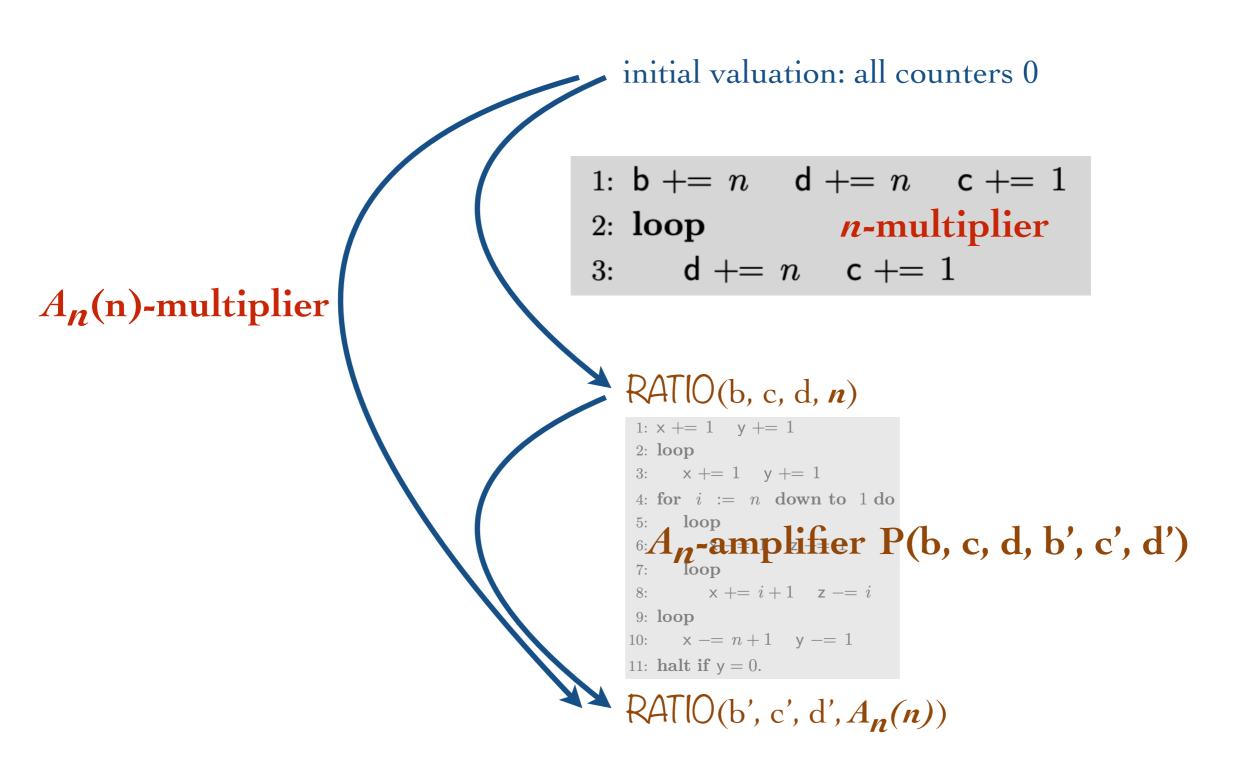
F-amplifier

 $F: \mathbb{N} \to \mathbb{N}$ - fixed function

For every fixed *B*:



A_n -amplifier \longrightarrow $A_n(n)$ -multiplier



A_n -amplifier

$$A_{1}(n) = 2n$$

$$A_{k+1}(n) = A_{k} \circ A_{k} \circ \dots \circ A_{k}(4) = A_{k}^{n/4}(4)$$

$$n/4$$

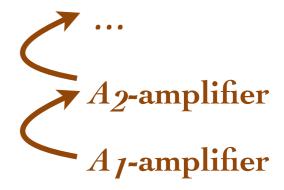
One can compute A_n -amplifier P(b, c, d, b', c', d') with 3n+2 counters, of size O(n)

• A_1 -amplifier:

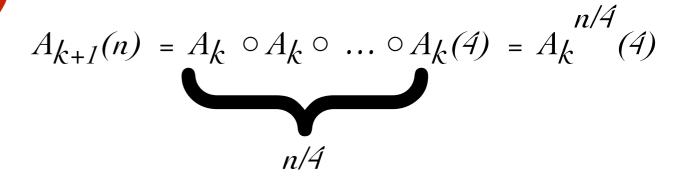
```
1: loop
2: loop
3: c -= 1 c' += 1 d -= 1 d' += 2
4: loop
5: c' -= 1 c += 1 d -= 1 d' += 2
6: b -= 2 b' += 4
7: loop
8: c -= 1 c' += 1 d -= 2 d' += 4
9: b -= 2 b' += 4
```

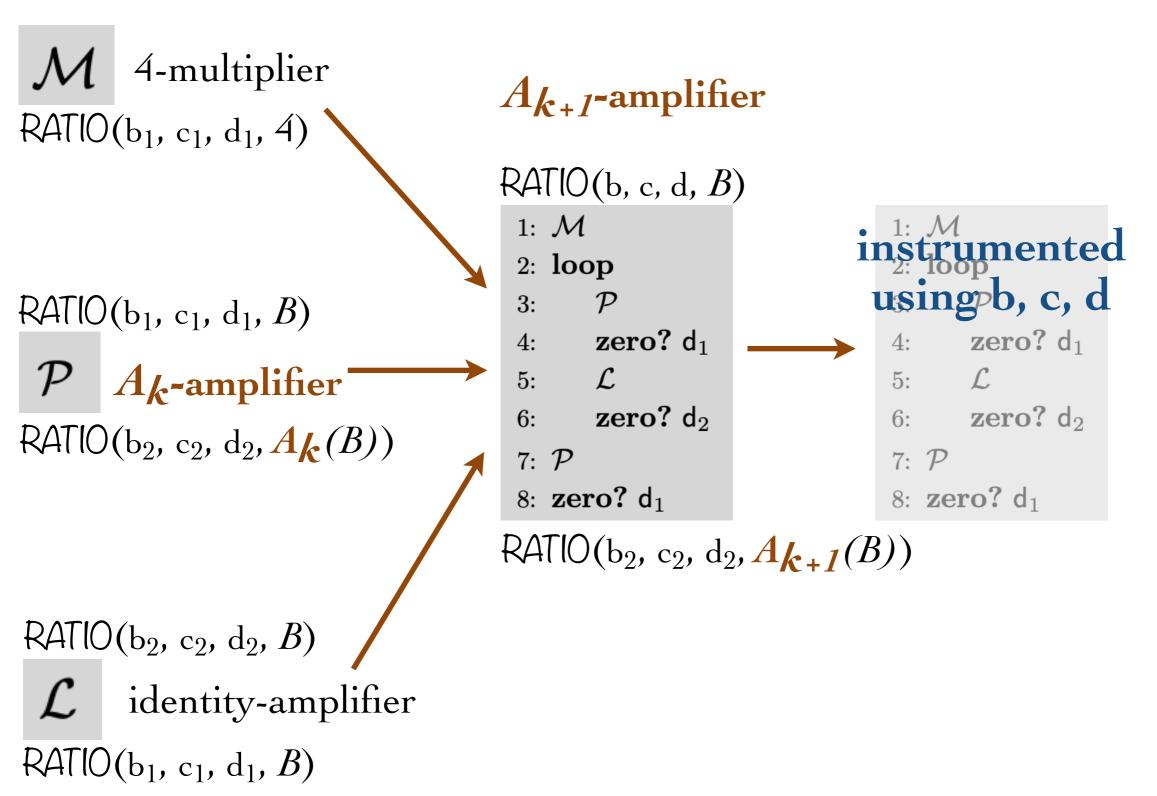
• amplifier lifting:

 A_{k+1} -amplifier



Amplifier lifting



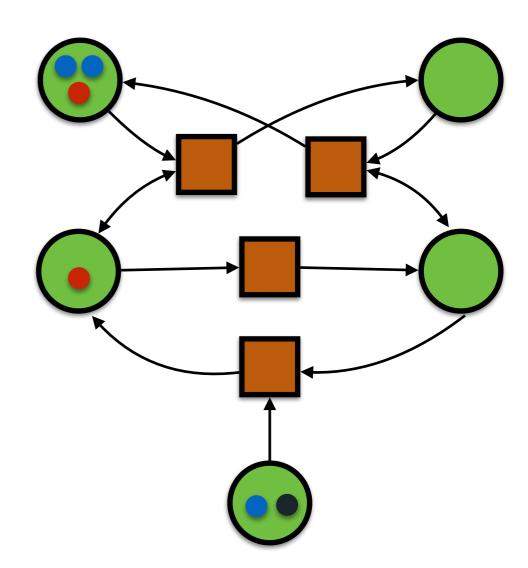


III. F_{ω} -hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

Open questions

- dimension-parametric complexity: \mathbf{F}_{k} -hardness for which dimension?
- small fixed dimension
- extensions:
 - data Petri nets
 - pushdown Petri nets
 - branching Petri nets



I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

III. F_{ω} -hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

PC PARTICIPATION

INVITED TALKS

Positions
I offer a postdoc position (details) and a PhD
position (details) in automata and concurrency
theory.

Slides

The reachability problem for Petri nets

Orbit-finite linear programming

Frontiers of automatic analysis of concurrent systems

Solvability of orbit-finite systems of linear equations

Some recent advances in register automata

Improved Ackermannian lower bound for the Petri nets re Lower bounds for reachability in VASS in fixed dimension

Computation theory with atoms I

Computation theory with atoms II

The reachability problem for Petri nets is not elementary

Timed pushdown automata and branching vector addition

Homomorphism problems for FO definable structures

Decidability border for Petri nets with data: WQO dichotor

Automata with timed atoms

Reachability analysis of first-order definable pushdown au

Computation with aton

Turing machines over infinite alphabets

of zero-tests