Binary reachability of timed-register pushdown automata,
and branching vector addition systems

LORENZO CLEMENTE” and SLAWOMIR LASOTAT , Wydziat Matematyki, Informatyki i Mechaniki,
University of Warsaw
RANKO LAZIC* , Department of Computer Science, University of Warwick

FILIP MAZOWIECK|§, LABRI, Université de Bordeaux

Timed-register pushdown automata constitute a very expressive class of automata, whose transitions may
involve state, input, and top-of-stack timed-registers with unbounded differences. They strictly subsume
pushdown timed automata of Bouajjani et al., dense-timed pushdown automata of Abdulla et al., and orbit-finite
timed register pushdown automata of Clemente and Lasota. We give an effective logical characterisation of the
reachability relation of timed-register pushdown automata. As a corollary, we obtain a doubly exponential time
procedure for the non-emptiness problem. We show that the complexity reduces to singly exponential under
the assumption of monotonic time. The proofs involve a novel model of one-dimensional integer branching
vector addition systems with states. As a result interesting on its own, we show that reachability sets of the
latter model are semilinear and computable in exponential time.

CCS Concepts: » Theory of computation — Timed and hybrid models; Formal languages and au-
tomata theory; Automata over infinite objects; Logic; Logic and verification; Grammars and context-free
languages;

Additional Key Words and Phrases: Timed automata, pushdown automata, timed-register pushdown automata,
branching vector addition systems

ACM Reference format:

Lorenzo Clemente, Stawomir Lasota, Ranko Lazi¢, and Filip Mazowiecki. 2018. Binary reachability of timed-
register pushdown automata, and branching vector addition systems. ACM Trans. Comput. Logic 1, 1, Article 1
(June 2018), 26 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

“Partially supported by Polish NCN grant 2016/21/B/ST6/01505.

TPartially supported by the European Research Council (ERC) project Lipa under the EU’s Horizon 2020 research and
innovation programme (grant agreement No. 683080).

*Partially supported by the Engineering and Physical Sciences Research Council grant EP/M011801/1, and by the Leverhulme
Trust Research Fellowship RF-2017-579.

$Partially supported by the Engineering and Physical Sciences Research Council grant EP/M011801/1 and the French
National Research Agency (ANR) project "Investments for the future" Programme IdEx Bordeaux (ANR-10-IDEX-03-02).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1529-3785/2018/6-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

66

1:2 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

1 INTRODUCTION

Background. Timed automata [4] are one of the most studied and used models of reactive timed
systems. Motivated by verification of programs with both procedural and timed features, several
extensions of timed automata by a pushdown stack have been proposed, including pushdown timed
automata (PDTA) [8], recursive timed automata (RTA) [5, 24], dense-timed pushdown automata
(dtPDA) [1], and timed-register pushdown automata (trPDA) [10].

While PDTA simply add an untimed stack to a timed automaton, dtPDA are allegedly more
powerful since they allow to store clocks on the stack evolving at the same rate as clocks in the
finite control. Surprisingly, Clemente and Lasota showed that, as a consequence of the interplay of
the stack discipline and the monotone elapsing of time, dtPDA are in fact not more expressive than
PDTA, and the two models are strictly subsumed by orbit-finite trPDA [10]. Moreover, subsumption
still holds if trPDA are restricted to timeless stack, and in this case there is nothing to pay in terms
of the complexity of non-emptiness, which is the central decision problem for model checking:
it is ExpTIME-complete for both PDTA, dtPDA, and orbit-finite trPDA with timeless stack; for
orbit-finite trPDA, the best known upper bound rises to NExpTIME (ibid.). The main question posed
in the latter work is whether the heavy restriction of orbit finiteness, which bounds the differences
between state and top-of-stack clocks, can be lifted while keeping non-emptiness decidable.

The proofs of the NExpTIME and ExPTIME upper bounds for orbit-finite and timeless-stack
trPDA (respectively) [10] involved translations to systems of equations in which variables range
over sets of integers, and available operations include addition, union, and intersection with the
singleton set {0}. Similar systems have been studied in a variety of contexts, and extensions quickly
lead to undecidability: e.g., already over the naturals, when arbitrary intersections are permitted,
decidability is lost since this model subsumes unary conjunctive grammars [17].

Contributions. Our headline result answers positively the question raised by Clemente and Lasota
[10]: we prove that non-emptiness remains decidable when the assumption of orbit-finiteness of
trPDA is dropped. The resulting class of automata strictly subsumes all pushdown extensions of
timed automata mentioned above (with the exception of RTA' [5, 6, 24]), and is the first one to
allow timed stacks without bounding the differences of state and top-of-stack clocks?. For example,
it is able to recognise the language of all timed palindromes over {a, b} containing the same number
of @’sand b’s.

The first half of the decidability proofis a multi-stage translation, in exponential time, from trPDA
to one-dimensional branching vector addition systems with states over the integers (Z-BVASS),
where the latter’s reachability sets encode the former’s reachability relations. Branching vector
addition systems with states have been studied extensively in recent years with motivations coming
from computational linguistics, linear logic, and verification of recursively parallel programs
amongst others; cf. Lazi¢ and Schmitz [19] and references therein. The one-dimensional variant we
work with allows negative counter values and encompasses two powerful features: subtraction and
testing memberships in given semi-linear sets.

The second half of the proof proceeds by transforming Z-BVASS to a normal form (this takes
pseudopolynomial time if constants are encoded in unary, and polynomial time in unary), and
then showing that, in exponential time, both their non-emptiness is decidable and their semi-linear
reachability sets are computable. Several combinatorial arguments are involved here, as well as a

1The model of RTA differs significantly from the other models since the stack contains clock values which are constant with
respect to the elapsing of time.

ZNote that Clemente and Lasota denoted by trPDA an undecidable class in which many stack symbols can be popped and
pushed in one step, like in prefix-rewriting. For simplicity, we use the same name for the new largest decidable subclass.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

118
119
120
121
122
123
124
125
126

128

136

140

145
146
147

Binary reachability of timed-register PDA, and branching VAS 1:3

reduction to the reachability problem for one-dimensional BVASS with unary-encoded constants,
which is PTIME-complete [16].

Combining the two results, we obtain not only that the non-emptiness problem for trPDA is
in 2-ExPTIME, but also that a quantifier-free DNF formula that captures the trPDA’s reachability
relation is computable in doubly-exponential time. We additionally establish that one exponential
can be saved just by assuming that transitions do not decrease the integer parts of timestamp
registers: non-emptiness for these monotonic trPDA is decidable in ExpTIME, and they suffice to
model monotonic time devices such as PDTA and dtPDA.

There is an interesting connection between some aspects of this work and the analysis of dtPDA
based on tree automata of [2]. It is shown there that runs of dtPDA can be represented as graphs of
bounded split-width, and one can construct a finite tree automaton recognizing precisely those
decompositions corresponding to timed runs of the dtPDA. Upon a closer inspection of our approach
for trPDA (cf. the reduction to Z-BVASS outlined below), it can be argued that we also perform a
reduction to a kind of tree automaton, albeit not a finite one, but one with an integer counter. This
extra counter is needed to keep track of possibly unbounded differences between register values
for matching push/pop pairs. The fact that a finite tree automaton suffices when analyzing dtPDA
follows from the previous semantic collapse result of dtPDA to the variant with timeless stack [10].
For the latter model, since the stack is timeless, there are no long push/pop timing dependencies
and a finite tree automaton suffices.

Full version. This article is a new and full version of the preliminary conference paper [12],
embodying a complete revision and a major extension. The main novelties in comparison with the
former work are:

(1) We show an effective logical characterisation of the binary reachability relations of trPDA,
instead of merely deciding non-emptiness.

(2) The central model of trPDA is more general in two ways: the logic of constraints is extended
by equality modulo predicates, and orbit finiteness (equivalently, bounded span) is assumed
only on states. Thus, input symbols, stack elements, and the transition relation are not
assumed to be orbit finite. It was previously unclear whether the orbit finite restriction on
stack elements could be dropped.

(3) The translation from trPDA to branching vector addition systems with states is entirely new
(which is necessary in order to tackle the more general model) and more direct, thanks to
establishing that the logic admits effective quantifier elimination.

(4) The integer one-dimensional branching vector addition systems with states are proved to
have semi-linear reachability sets computable in exponential time, instead of just deciding
non-emptiness in exponential time. This is a new result interesting on its own.

(5) We additionally show that for monotonic trPDA, we obtain better complexity bounds thanks
to a direct translation to context-free grammars, instead of the more powerful branching
vector additions systems.

Note that these results do not allow us to give a characterisation for the reachability relation of
timed automata (neither for the reachability set of clock valuations), since the known translations
from timed automata to orbit-finite timed-register automata preserve only non-emptiness, but not
the reachability relation itself (essentially, because the former model uses clocks while the latter
one uses registers). The problem of characterising the binary reachability relation in an expressive
class of timed automata with a timed stack strictly generalising PDTA and dtPDA has been recently
solved in [11].

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196

1:4 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

2 PRELIMINARIES

We denote by Q the set of rational, by Z the set of integer, and by N the set of natural numbers. For
amodulus m € N, let =, be the congruence modulo m in Z. For two subsets A, B of Q, we denote
by A+ Btheset{a+b|ac Ab < B},by —Athe set {—a | a € A}, and by A — B the set A + (—B);
for a constant A € Q, by A - A we denote {A - a | a € A}. Moreover, with A* we denote the infinite
union A* = (J,,50 A", where A’ = {0} and A"*! = A" + A; for simplicity, we write a* instead of {a}.

The span of a vector @ = (ay, . .., ax) € ZF is sPAN(@) := max{lai - aj | 1<i<k1<j< k};
intuitively, it measures the maximum gap between any two components. A subset A C ZF has
bounded span if the set {sPaN(d) | @ € A} is finite. For a set of vectors A C Z¥ and bound K € N, let
the restriction of A to vectors of span bounded by K be Agan<x = {d € A | span(ad) < K}.

Let X be a finite alphabet, and denote by X* the set of finite words over X. The Parikh image of a
word w € X* is the mapping 7, : N* which, for every letter a € 3, returns its number of occurrences
mw(a) in w; the Parikh image of a language L C X* extends naturally as #(L) = {r,, | w € L}. If
we fix a total ordering on the letters ¥ = {as, ..., aq}, Parikh images can equivalently be seen as
subsets of N

In complexity estimations, we define the magnitude of a constant k € Z as its absolute value |k|.

2.1 Hybrid linear sets

A hybrid linear set is a set of the form A + B*, where A C 74 is a finite set of bases and B € Z is
a finite set of periods. A linear set is a hybrid set of the form {a} + B, also written as a + B* for
simplicity. A semilinear set is a finite union of linear (equivalently, hybrid linear) sets. Whenever
we compute or construct a semilinear set, we mean that we build a representation with bases and
periods as above.

Let M € N be a bound. A subset of N¢ is a M-bounded hybrid linear set if it can be put in the form
A+ B* with A, B € {0, ..., M}; M-boundedness is defined in a similar way for linear and semilinear
sets. The following general property of hybrid linear sets in dimension one d = 1 justifies us to
assume that semilinear sets in dimension one are of the form S = L; U - -- U L,, with L; just an
arithmetic progression L; = a; + b}, with no increase in complexity.

LEMMA 2.1. Any M-bounded hybrid linear set S C N can be put in the form
FU(A+Db"), withF,AC {0,...,M+ M*} andb < M. (1)
Proor. We start by proving the lemma in the special case of linear sets of the form P*.

CramMm 1. A M-bounded linear set of the form P*, with P = {p1,...,pn} € {1,... M}, can be put
in the form F U (a + b*) with F C {0,...,M2},a <M?% and0 < b < M.

PROOF OF THE CLAIM. Let pyax = max(P), pe = gcd(P), and take base a = pZ,,, /pe, period b = pa,
and F = {k € P* | k < a}. We show that P* = F U (a + b*). Assume k € P*. If k < a, then k € F. If
k > a, then k — a > 0 is divisible by b, and thus k € (a + b*). For the other inclusion, consider the
set Q = 1/b - P. Since any number larger than max(Q)? = a/b is expressible as a linear combination
of numbers in Q ([3, 21]), a/b + 1* C Q¥, and thus a + b* C P*. O

Let S = Q + P* be an M-bounded hybrid linear set. By the claim above, P* = F U (a + b*), with
Fc{o,....M?},a<M? andb < M.Thus, S = F/U(A+b*) with F" = Q+F c {0,..., M+ M?}
A:Q+a§{O,...,M+M2},andbSM,asrequired. O

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Binary reachability of timed-register PDA, and branching VAS 1:5

2.2 Presburger arithmetic

Presburger arithmetic is the first-order theory of the structure (Z, +,0, 1, <, =,,)°. It is well-known
that Presburger arithmetic admits effective elimination of quantifiers [23]. There is a close connec-
tion between semilinear sets, Presburger arithmetic, and Parikh images of context-free languages.
Subsets of N¢ definable in Presburger arithmetic coincide with the semilinear sets [15], which in
turn coincide with the Parikh images of context-free languages [22]. By the following result, the
latter are representable succinctly by a formula of existential Presburger arithmetic.

LEmMA 2.2 (THEOREM 4 IN [26]). The Parikh image of the language of a context-free grammar is
described by an existential Presburger formula computable in linear time.

For a linear set of the form L = a + b* C Z, let its characteristic formula Y1 s.t. L = [yL]
be Y1 (x) = (x = a), and for a semilinear set of the form S = ., L; where L; = a; + b}, let

lﬁS = \/?:1 l//Li'

3 HYBRID LOGIC AND QUANTIFIER ELIMINATION

We view dense time as a sequence of timestamps in Q. It is technically convenient to reason
separately about the integral and fractional part of timestamps. The integral part of timestamps is
modelled by the quantitative discrete time structure® (Z, +1, <, =,,), where +1 denotes the unary
function that adds one to its argument, and =, is the family of modulo congruences’, where we
assume that the modulus m is encoded in binary. The total order between fractional values is
captured by the qualitative dense time structure (Q, <). Combining discrete and dense time yields
the following hybrid two-sorted structure (where < = <% v <)

H = (Z,+1,<% =,) v (Q, SQ) =(ZwQ,+1,< =,).

The domain of H is the disjoint union of Z and Q and its signature is the disjoint union of the
respective signatures. When no confusion arises, we write < instead of <*. We distinguish between
discrete variables x” interpreted in Z, and dense variables x< interpreted in Q. Discrete t* and dense
terms t9 are built according to the following rules:

2 = xZ | 2+ 1, Q= xQ,

A discrete atomic formula is either of the form 2 < 4 or t2 =, u” with t2, u” discrete terms, and
m € N. A dense atomic formula is of the form x¢ < y? with x<, y< two dense variables. As syntactic
sugar, we also allow T as an atomic formula which is always satisfied. A formula of hybrid logic of
dimension (k, ) is a first-order formula @(¥%, ¥2), with ¥ = (xiZ, e, x%) and X2 = (x?, e x;Q),
built from discrete and dense atomic formulas using variables %2, %2, Such a formula defines the
set [p] € ZF x Q! of its satisfying valuations, and two formulas are equivalent if they define
the same set. A subset of Z¥ x Q' is definable if it is defined by a formula of hybrid logic. The
satisfiability problem for a given formula ¢ amounts to decide whether [¢] # 0. We distinguish
discrete (resp. dense) formulas which use only discrete (resp. dense) variables. As syntactic sugar,
we allow integer constants in discrete formulas, which we assume to be encoded in binary. A
constraint is a quantifier-free formula.

3Sometimes Presburger arithmetic is defined as the first-order theory of the more restricted structure (N, +, 0, 1), but since
the predicates < and =,,, are first-order definable therein, the two logics are equi-expressive. Moreover, having =, in the
signature allows for quantifier elimination.

4For notational simplicity, we identify relational symbols such as “<” and their interpretation <C Z X Z

SWhile the signature is infinite, each formula uses at most finitely many symbols from the signature.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



246

248

286

290
291
292
293
294

1:6 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

3.1 Hybrid vs. quantitative dense time

Quantitative dense time is the structure (Q, +1<, <@). This structure is rich enough to model dense
time for timed automata [7] and timed pushdown automata [10]. We show that (Q, +12, <©)
interprets in H, which implies that the latter structure is at least as rich as the former, and in fact
richer thanks to the modulo predicates =,,. The domain of interpretation is the product Z x Q. A
rational number x € Q is interpreted as the pair (| x|, x — | x]) € Z X Q, where | x] is the integer
part of x. The binary predicate << and the unary function +1 are defined as follows:

(2.9) <% (2.q) = z< 2 V(=2 Aq<Tq), and (z.q)+1% = (z+1%,¢q).

3.2 Quantifier elimination

We say that a structure admits effective quantifier elimination if there is an algorithm that transforms
every formula into an equivalent quantifier-free formula. The following is the main result of this
section.

THEOREM 3.1. The structure H admits effective quantifier elimination.

This result is a very useful tool that shows that, complexity considerations aside, it suffices to
consider constraints instead of first-order logic formulas. Namely, this will be used in the definition
of Timed register pushdown automata in Section 4, which will simplify the constructions afterwards.

Theorem 3.1 is proved by showing that both its two component structures (Z, <, =,, +1) and
(Q, <) separately admit effective quantifier elimination (Lemmas 3.3 and 3.5 below). The following
observation concludes the proof.

LEMMA 3.2. If two structures A,B admit (effective) quantifier elimination, then the two-sorted
structure A W B also admits (effective) quantifier elimination.

PRrOOF. A formula ¢ of A W B can be written as ¢* A ¢®, where ¢* is a formula of A and ¢® of B.
Thus, Ix* - ¢ is equivalent to (3x* - p*) A ¢®. Since A admits quantifier elimination, there exists a
quantifier-free formula y/* equivalent to 3x* - ¢*, and thus ¢/ A ¢® is equivalent to ¢. O

3.2.1 Quantifier elimination for discrete time. A discrete time constraint is effectively equiv-
alent to a formula in disjunctive normal form (DNF), where atomic constraints are of the form
a < x? —y? < Borx? —y? =, k, witha € ZU {~co}, f € ZU {c0}. Whenever we have a formula
in DNF, we assume that its conjuncts are satisfiable. Consequently, a conjunctive discrete time
constraints can be written as

/\(in <xj—x < ﬁji AXj—=Xi Em kjh

ij
where we assume w.l.o.g. that all modular constraints =,,’s are over the same modulo m (one can
take as m the least common multiplier of all moduli). Let M € N be a bound. We say that a discrete
time formula is M-bounded if the magnitude of all finite constants thereof is at most M. There are
at most k% - (2(M + 1) + 1)% - M(M + 1) = O(k?M*) inequivalent M-bounded conjunctive constraints
of dimension k.

We show that quantitative discrete time admits effective quantifier elimination.

LEMMA 3.3. An M-bounded existential conjunctive formula of discrete time logic of dimension k
can be transformed in time O(3 M) into an equivalent 3* M-bounded constraint.

COROLLARY 3.4. The discrete time structure (Z, <, =, +1) admits effective quantifier elimination.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



295
296
297
298
299

329

339

341
342
343

Binary reachability of timed-register PDA, and branching VAS 1:7

Remark 1. Note that discrete time logic is a sublogic of Presburger arithmetic (Z,+,0,1, <, =),
which allows binary addition “+” (instead of just unary successor “+1”) and constants 0 and 1 (instead
of no constants). The lemma above does not follow from quantifier elimination of Presburger arithmetic,
since it proves the stronger fact that for every formula of discrete time logic there exists an equivalent
quantifier-free formula of discrete time logic itself.

Proor oF LEMMA 3.3. Let ¢ be a conjunctive formula of the form 3x - i/, where (here and below,
unless specified otherwise, indices i, j range over {1, ..., k})

Y = /\aini—xSﬂi/\x,-—xEmk,-.

1

By solving it w.r.t. variable x, ¢ can be written in the equivalent form

/\x,-—ﬁ,- Sx<xi—a ANXi—X=p k;.
i
Let A={i| a; > —co} and B = {i | f; < co}. There are three cases to consider. For the first case,
assume that B # (. If there exists a satisfying x, then there is one of the form x; — f; + § with
6 €{0,...,m— 1}, where j maximises the lower bound x; — f; (and thus f; < o), yielding the
following claim.

Claim. The following quantifier-free formula is equivalent to ¢:

aE \/ \//\xi—ﬁiij—ﬁj+5Sx,-—a,-/\xi—(xj—/)’j+5)5mki. (2)

5€{0,...,m—1} j€B i

PROOF OF THE CLAIM. For the inclusion [¢] C [¢], let (a1, .. .,a,) € [@]. There exist § and j as
per (2), and thus taking a := x; — f; + 0 yields (a, a1, ..., a,) € [¢]. For the other inclusion, let
(ai,...,an) € [¢]. There exists a € Zs.t. (a,ay,...,a,) € [{]. Let j be s.t. a; — f; is maximised
(hence j € B), and define § := a — (a; — ;) mod m. Clearly § > 0 since a satisfies all the lower
bounds a > a; — f;. Since a satisfies all the upper bounds a < a; — a; and a; — f; + 6 < a, upper
bounds are also satisfied. Finally, since a; — a =, k; and a =,,, a; — f; + 6, the modular constraints
a; — (aj — Bj + 8) =m k; are also satisfied. Thus, we have (a1, .. .,a,) € [¢], as required. ]

The constraint in (2) can be rewritten into the equivalent 3M-bounded DNF constraint
V' VAR -6-Bi<xj-xi<p-0-ainxj-xi=m fj -5k, (3)
5€{0,...,m—1} jeB i

which concludes the first case.

For the second case, assume that B = 0 but A # 0. If there exists a satisfying x, then there is one
of the form x; — a; — § for some 6 € {0,...,m — 1}, where j minimizes the upper bound x; — ¢;
(and thus a; > —c0). This yields the following quantifier-free formula equivalent to ¢:

\//\xj—aj—5Sxi—ai/\x,-—(xj—aj—é)zmk,-. (4)

5€{0,...,m—1} j€EA i
% Since lower bound constraints are trivial, in general there exists an arguably simpler witness for x of the form § for some
8 € {0, ..., m—1}. This would yield a quantifier-free formula of the form

S<xi—-aiANxi—08=m ki,
Se{0,...,m—-1} i

which however would not be a formula of discrete time logic (which can speak only about differences x; — x;).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



345
346
347
348
349
350

359

360

391
392

1:8 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

The formula above is shown to be equivalent to ¢ with an argument analogous as in the previous
case. The constraint in (4) can be rewritten into the equivalent 3M-bounded DNF constraint

\//\xj—x,-Saj+5—a,—/\xi—xi5maj+5—k,-. (5)
5e{0,....m-1} jA i

Finally, for the last case, assume that A = B = (), and thus both upper and lower bound constraints
are trivial. In this degenerate case, it suffices to find x s.t. A\; x; — x =, k; is satisfied. By resolving
the first such constraint, we obtain x =, x; — k;. By replacing x with x; — k; in all the other
constraints, we obtain the following quantifier-free formula equivalent to ¢.

xi = (x1 — k1) = ki (6)

>»

i=2

The constraint above can be rewritten into the equivalent M-bounded DNF constraint

k
/\xl_xi =p k- ki (7)
i=2

In each case we obtain an equivalent 3M-bounded DNF constraint. By repeating this argument, if
k variables are eliminated, we obtain an equivalent 3* M-bounded DNF constraint, as required. O

3.2.2  Quantifier elimination for dense time. The orbit of a vector d = (a; ... a;) € Q! is the set
of those vectors b = (by...b) € Q' s.t., for every 1 <i <j <l a; <a;iff b; < b;. Intuitively, an
orbit is uniquely defined by fixing a total preorder < on the set of coordinates {1,...,1} s.t. i 3 jiff
a; < aj. For example, for [ = 4 the two vectors (0, 2.1,2.1,1) and (7.3, 8, 8,7.4) are in the same orbit
as witnessed by the total preorder 1 < 4 < 2 = 3, but (0, 2.1, 2.1, 2.1) is in another orbit since it
corresponds to the different total preorder 1 < 2 ~ 3 ~ 4. We write orbits(Q’) C 29" for the set of
orbits of Q!, which is finite and of size exponential in I. Two distinct orbits are disjoint and Q' is
partitioned into finitely many orbits. For an orbit o € orbits(Q!), let its characteristic formula ¢, be
defined as

(po(xl’--~’xk)5 /\ X ij',

a;<aj

where (ay, . .., aj) is any representative in o (by the definition of orbit, ¢, does not depend on the
choice of representative). Clearly, [¢,] = o, and the denotation [¢] € Q' of every formula of dense
time ¢ is a (necessarily finite) union of orbits [20].

LEmMMA 3.5. For every formula of dense time logic ¢ of dimension [ one can find in time exponential
in | an equivalent constraint in DNF.

ProoF. A constraint ¢ of dimension [ can be transformed in DNF by enumerating all orbits
o € orbits(Q!) and checking whether o |= ¥, which can be done in time exponential in . An
existential formula of dimension [ of the form ¢ = 3x - ¢, where ¥ = \/; ¢; is a constraint in DNF
of dimension [ + 1, is equivalent to the constraint in DNF ¢ obtained from i by replacing all atomic
formulas containing an occurrence of x with the constant T. O

COROLLARY 3.6 ([20]). The dense time structure (Q, <) admits effective quantifier elimination.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

418
419
420
421
422
423
424
425
426

428
429
430
431
432
433
434
435
436
437
438
439
440
441

Binary reachability of timed-register PDA, and branching VAS 1:9

4 TIMED REGISTER PUSHDOWN AUTOMATA

We are interested in an extension of pushdown automata where control states and stack symbols are
equipped with tuples of values from the hybrid time domain H = (Z, +1, <, =,,) W (Q, <) introduced
in Sec. 3. Variables over H are also called registers in this context. We allow registers in the finite
control (control registers), in the stack symbols (stack registers), and in the input symbols (input
registers). Upon performing a transition, current and next control registers, as well as registers
of the topomost stack symbol and input registers, are constrained with hybrid logic constraints.
Thanks to the elimination of quantifiers result of Theorem 3.1, constraints are equi-expressive
with first-order logic formulas and thus, complexity considerations aside, this is no restriction.
Integer registers in the finite control are restricted to have bounded span (otherwise the model
has undecidable nonemptiness). All other registers are not restricted to have bounded span. In
particular, we allow possibly unbounded span between current and next control registers, registers
on top of the stack, and in the input.
A timed register pushdown automaton (trPDA) of dimension (k,l) € N X N is a tuple

P =(AT,Q,IFK,(pushg, pops)sen)

where A is a finite input alphabet, T' is a finite stack alphabet, Q is a finite set of control states, of
which states in I, F C Q are initial and final, respectively, K € N is a universal bound on the span of
integer control registers (encoded in binary), and A = QX AXQXT is the set of transitions. For every
transition § = (p,a,q,y) € A, push and pop,,,, are constraints of dimension (4k, 41). A push

paqy
constraint pushpaqy(fép, Xa,Xq, Xy ) has 4(k +1) free variables X, X4, X4, X, (each of size k +1), where
> 7 VA Q Q . . .
Xp = (xp’l, s Xy e Xp s X 1) represents integer and dense registers in the current control

state p, X, represents the timestamps associated with the input symbol a, X, represents the registers
in the next control state ¢, and X, represents the registers associated with the stack symbol y
(which in this case is pushed on the stack); similarly for pop,,,,, . Since by Theorem 3.1 hybrid time
domain admits effective quantifier elimination, considering arbitrary first-order formulas instead
of constraints would not change the expressive power of the model. For complexity considerations,
we assume that constraints are presented in DNF, that all modulo constraints x — y =, k use the
same modulus m, and that all integer constants are encoded in binary.
The semantics of a trPDA % is given by the infinite-state pushdown automaton

P’ = (A, T",Q",I'F', Apush Dpop ) » Where

o A’ = AxZF x Q! is the infinite input alphabet,

o [' = AXxZFx Ql is the infinite stack alphabet,

o Q' = O X (ZF)span<i % Q' is the infinite set of configurations, where the integer component
has span bounded by K,

o I’ = I X (ZM)span<i X Q' € Q" and F’ = F X (Z)gpan<i X Q' C Q’ are the subsets of initial
and final states, respectively, and

® Apush € Q' X A’ x Q" X T” is defined as the union, over all (p, a, g, y) € A, of relations of the

form {((p, t),(a,u),(q,v),(y,w)) | (t,u,v,w) € [[pushpaqy]]} ; similarly for Ayop.

All classical notions for pushdown automata apply to #’, and in particular the notion of run. For
control states p,q € Q and vectors i, 3 € ZF x Q!, we write i ~>pq U if there exists a run from
configuration (p, i) € Q' to configuration (g, 7) € Q’ starting and ending with empty stack. Thus,
~pq is a subset of (Z* x QY x (Z* x @), and we call the family of such relations {"’)Pq}p,qu
the reachability relation of . The following is the most fundamental algorithmic problem in the
analysis of infinite-state systems, such as trPDA.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



442
443
444

446

487

489
490

1:10 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

NON-EMPTINESS PROBLEM FOR TRPDA.
Input: A trPDA P.
Output: Do there exist an initial (p, i) € I’ and a final configuration (g, 9) € F’ s.t. il ~>q 0?

In this paper we solve a more general problem than non-emptiness: Instead of checking algorith-
mically whether % ~»,4 ¥ holds for some initial and final configurations, we effectively characterise
as a constraint in hybrid logic all pairs of vectors (i, ) s.t. #i ~»,4 0 holds. The following is our
first major result.

THEOREM 4.1. For any trPDA P and control states p, q thereof, one can compute in 2-ExPTIME a
hybrid logic constraint i,q in DNF s.t. [{pq] = ~pq-

Since the reachability relation is characterised in a decidable logic, the non-emptiness problem
reduces to satisfiability and we obtain the following corollary, which is one of the main results of
the original communication [12].

CoOROLLARY 4.2. The non-emptiness problem for trPDA is decidable in 2-ExPTIME.

Proor. Let P be a trPDA and let {gbpq}p’q 0 be a family of satisfiable constraints characterising
the reachability relation of #. Then # is non-empty if, and only if, \V ,¢1 ger Ypq is satisfiable.
The latter condition is checked in linear time by direct inspection, since the ,,’s are in DNF and
contain only satisfiable conjuncts. O

The proof of Theorem 4.1 will be given in Section 6. It consists in reducing the computation of
the trPDA reachability relation to the reachability set of a suitably constructed integer branching
vector addition system, which we introduce in the next section.

5 INTEGER BRANCHING VECTOR ADDITION SYSTEMS

An integer branching vector addition system (Z-BVASS) is a tuple 8 = (Var,T), where Var =
{Xi,..., Xy} is a set of nonterminal symbols, and T is a finite set of transitions of the form X; « t,
where ¢ is an expression built according to the following abstract syntax:

tu=S|X;|tUt|tnNS|t+t|t—t] -t

with S a semilinear subset of Z. We say that M is the moduli bound of 8 if it is the smallest number
such that all semilinear sets used in 8 are M-bounded. A valuation y : (2%)V2" is a mapping that
assings to every nonterminal X a set of integers u(X), which extends by structural induction to
terms t. A solution is a valuation y s.t. for every transition X <« t we have p(X) 2 p(t). Since
transitions are monotone w.r.t. set inclusion, the least solution p* exists. Let the reachability set of
nonterminal X be its value in the least solution [X] = p*(X).

Example 5.1. Semilinear sets encoded in binary can be expressed as reachability sets of Z-BVASS
of polynomial size using only the constant 1. An integer k € Z encoded in binary can be expressed as
the reachability set [Xy] = {k} of a nonterminal X} in the following Z-BVASS with log k transitions

Xop  — X +Xi
Xok+1 — Xop + X4 fork >0
X «—Xo— Xk

X; {1}
Xo «Xi—-X;

We can encode a linear set of the form L = b+p* as [X; ] = L with a transition X; « X; U(Xp +X)).
Finally, a semilinear set S = Ly U --- U Ly is encoded as Xg «+ X, U---UX,.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



514

Binary reachability of timed-register PDA, and branching VAS 1:11

The following are the fundamental decision problems for Z-BVASS.

REACHABILITY PROBLEM FOR Z-BVASS.
Input: A Z-BVASS, a number n encoded in binary, and a nonterminal X thereof.
Output: Does n € [X] hold?

ZERO REACHABILITY PROBLEM FOR Z-BVASS.
Input: A Z-BVASS and a nonterminal X thereof.
Output: Does 0 € [X] hold?

NON-EMPTINESS PROBLEM FOR Z-BVASS.
Input: A Z-BVASS and a nonterminal X thereof.
Output: Is [X] non-empty?

The three problems above are all PTIME equivalent for Z-BVASS. Reachability of n € [X] reduces
to zero reachability 0 € [X”] for a new nonterminal X’ and transition X’ « X—Z,,. Zero reachability
0 € [X] reduces to non-emptiness of [X’] for a new nonterminal X’ and an additional transition
X’ « X N {0}. Finally, non-emptiness of [X] reduces to zero reachability 0 € [X’] for a new
nonterminal X’ and transitions X’ « X, X’ « X’ + {1}, and X’ « X’ — {1}.

The use of intersection in Z-BVASS is limited to the form X; N S where S is a semilinear set.
Unrestricted intersection of the form X; N X leads to undecidability of the non-emptiness problem. In
fact, already over N unrestricted intersection enables the simulation of unary conjunctive grammars,
which have an undecidable non-emptiness problem [17]: Given a unary conjunctive G grammar,
one can build a Z-BVASS 8 with unrestricted intersection by replacing every terminal in the
grammar with the constant {1}, and concatenation “-” with addition “+” . Then, 8 is non-empty iff
G is non-empty.

The following is the second main result of this paper. The proof is postponed to Section 7.

THEOREM 5.2. Let B be a Z-BVASS. Reachability sets of B are semilinear. They are computable in
time exponential in the number of nonterminals and the moduli bound of 8.

COROLLARY 5.3. The non-emptiness, reachability, and zero-reachability problems for Z-BVASS are
PSpace-hard and in 2-ExPTIME for moduli bound in binary and ExpTIME for moduli bound in unary.

5.1 Intersection-free and singleton-intersection Z-BVASS

A Z-BVASS is intersection-free if no intersection is allowed, not even of the restricted form X; N S:
tu=S| X[ tUt|t+t|t—t] -t

THEOREM 5.4 ([10]). The non-emptiness problem for intersection-free Z-BVASS is in PTIME, and
reachability sets thereof are semilinear and computable in EXpTIME.

ProoF. Let B be a Z-BVASS. The idea is to construct a context-free grammar G by replacing
addition “+” with concatenation “-”. First, we do some preprocessing on 8. Since there is no
intersection in B, we replace all semilinear constants S with a corresponding nonterminal Xg,
adding new transitions according to the construction of Example 5.1; in this way, the only constant
used in B is {1}. For every nonterminal X, we add a new nonterminal X (with the convention that

X = X) s.t. for every rule X « t we have a new rule X « —t; in this way, [X] = —[X]. We remove
binary subtraction “—” with the equivalence t, — t; = t, + (—t;1), and we push unary negation “—
inside, in order to appear only in front of constants and nonterminals, using the equivalences
—(to U 1) = (=to) U (=t1) and —(to + t1) = (=) + (—11).

»

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



548
549
550

585
586
587
588

1:12 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

We are now ready to construct the grammar G. The set of nonterminals is the same. There are
two terminal symbols “+1” and “~1” A transition X « t of B generates a production X « F(t) of
G, where the translation function F is defined by structural induction as

F({1}) = +1 F(X) =X F(to U t) = F(ty) U F(t;)
F(-{1}) = -1 F(-X)=X F(to + t) = F(to) - F(ty).

Non-emptiness of X in the Z-BVASS is the same as non-emptiness of X in the grammar, and
the latter problem can be solved in PTIME. By Parikh’s theorem [22], the Parikh image of the
nonterminal X is a semilinear set S(X) C Z? constructible in ExpTImE, with the first component
corresponding to terminal “+1” and the second to “—1”. Since [X] = {a - b | (a,b) € S(X)} C Z,
[X] is semilinear and its presentation can be obtained from a presentation of S in linear time. Thus,
the reachability set [X] is a semilinear subset of Z constructible in ExpTIME, as required. O

For intersection-free Z-BVASS, while reachability and zero-reachability are still PTIME equivalent
problems, this is no longer the case for non-emptiness. In fact, zero-reachability is NP-hard already
for intersection-free Z-BVASS, and allowing intersection with the singleton constants {k} (which
for k = 0 is akin to a zero test in the jargon of counter machines) makes all three problems above
NP-complete. A Z-BVASS is singleton-intersection if intersections are allowed only of the form
t N {k} with k € Z a constant encoded in binary:

tu=S|Xj|tut|en{k} |t+t]|t—t]| —t.

THEOREM 5.5 ([10]). Reachability and zero-rechability are NP-hard for intersection-free Z-BVASS.
Non-emptiness, reachabiltiy, and zero-rechability are NP-complete for singleton-intersection Z-BVASS.

5.2 Z-BVASS v.s. N-BVASS in dimension one

« 5

If we remove binary subtraction “—” and restrict our attention to non-negative solutions, then we
obtain an equivalent presentation for branching vector addition systems (N-BVASS) in dimension
one [25], which can be defined according to the following abstract syntax (where k € Z):

tu=X; | tUt|(t+{kHDNN| £+t

While decidability of the reachability problem for N-BVASS in higher dimension is a long-standing
open problem, in dimension one decidability is easily established. Its its exact complexity has
recently been settled.

THEOREM 5.6. The reachability problem for N-BVASS in dimension one is PTIME-complete if con-
stants are presented in unary [16], and PSPACE-complete if in binary [14].

Consequently, all decision problems for general Z-BVASS are PSpAce-hard.

6 FROM TRPDA TO Z-BVASS

In this section we transform trPDA into a Z-BVASS in such a way that the reachability relation of
the former can be reconstructed from the reachability set of the latter. In the rest of this section, fix
atrPDA P = (A, T,Q, I F,K, (pushg, pops)scoxaxoxr) of dimension (k, I). First, we solve the case
with discrete dimension k = 1, and in Sec. 6.2 we address the general case k > 1 by a reduction to
the former.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



Binary reachability of timed-register PDA, and branching VAS 1:13

6.1 Discrete dimension one

We prove Theorem 4.1 in the special case where configurations are of the form Q x Z x Q. For
every pair p, q of control states of the trPDA P, and for each of the exponentially many (in [) orbits
o € orbits (QZI), there is a nonterminal X4, in the Z-BVASS 8. Intuitively, values reachable in X4,
represent the difference between the integer register of the ending control state g and that of the
starting control state p along some run starting and ending with empty stack, when the rational
values at p and q are related as specified by the orbit o.

LEMMA 6.1. For every trPDA P of dimension (1,1) we can construct a Z-BVASS B s.t. for control
states p, q of P, orbito € orbits(sz), integers a, b € Z, and rational vectors a, b € Ql s.t.(a,b) €o,

(@,@) ~pg (b,0)  iff (b= a) € [Xpgo-

The number of nonterminals of B is exponential in | and quadratic in |Q|, and the largest magnitude
of integer constants in B is linear in that of P.

The construction of 8 is based on the following characterisation of the reachability relation of P.

LEMMA 6.2. Letp, q be control states of the trPDA P. The relation ~» 4 is the least relation satisfying
the following three rules, for every d, E, c, deZx Ql:

(base) > S

ad~opp d
‘_i'\’)pr_> 8’\’>rql_;
(transitivity)
d~opg b

¢ rs J -5 77

(push-pop) € = if(d.c,d,b) € [push-pop,,, [, where
dr~opg b

push-popprsq(xp,x,,xs,xq) = \/ Ixq, Xp, Xy - pushpary(xp,xa,xr,xy)/\popsbqy(xs,xb,xq,xy).
a,beA,yell

The rules of the Z-BVASS 8 are obtained following the characterisation of ~» of the lemma
above. For every control state p and for every orbit o € orbits(Q%) s.t. o C {(l_;, l_;) ‘ be Ql}, the
Z-BVASS 8 contains the transition

(base) Xppo < {0}.

For every control states p,r, q and for every orbit o € orbits(Q”), the Z-BVASS B contains the
transition (where o;; € orbits(Q?) is the projection to components i,j € {1,2,3} of the orbit o,
defined as o;; = {(Eii, d;) ’ (dy,dy, d3) € o, with @y, dy, d3 € Ql}):

(transitivity) Xpgors < Xprow + Xrqos-

Transitions simulating push-pop are more involved and are defined by a sequence of steps. In the
sequel, fix arbitrary control states p,r,s,q € Q.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

670

672
673
674
675

679
680
681
682
683
684
685
686

1:14 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

Step 0: Transformation in DNF. We wish to transform push-pop prsq it a constraint in DNF. By
assumption, push ... = V; (pl.Z A (pi2 and pop;,., =V g&}z A lﬁ]Q are constraints in DNF, where
o7, %Z are constraints of discrete time and <p(iQ, Iﬁ;Q of dense time. By distributing the connectives
and by separating the discrete from the dense part, push-pop,), , is a disjunction of conjunctive
constraints of the form 3x,, ¥, X, - ¢~ A (p(iQ A 1//}Z A tﬁ]Q By separating the integer and rational sort,
the latter formula can be rewritten equivalently as ¢ A ¢, where

0° = Ixx or AY) and g% = IRLELE el Ay

By performing quantifier elimination as per Lemma 3.3, ¢” is equivalent to a constraint p” in DNF
constructible in exponential time (and thus of exponential size); similarly, thanks to Lemma 3.5 we
obtain in exponential time a constraint ¢< in DNF equivalent to ¢©. Combining these constraints
together, we have decomposed push-pop,),.;, as an equivalent constraint in DNF constructible in
exponential time. Let ¢ be a conjunct of this DNF. It has the form

O(%p, Xp, X5, Xq) = (pz(xf, x?,x;z,xg) A ¢Q(J?Q,f9,f9,f9).
Let 0 € Q* be one of the finitely many orbits in orbits([¢<]). The following discrete time formula
(z,2") characterises [{/] = [Xyso,] X [Xpgoy,] (from now on we concentrate on discrete time logic
dropping the superscripts Z in variables for simplicity):

U(z,2') = Ixp, Xgs Xy X5+ 2= Xg — Xp A z = Xg = Xp A (pz(xp,xr,xs,xq). (8)
The formula i above is an existential Presburger arithmetic formula and does not allow us to

immediately derive a set of Z-BVASS rules X,,40,, < (- -+ Xps0, - - -). Quantifier elimination for

Presburger arithmetic yields an equivalent quantifier free formula {[ with atomic formulas of the
form az + bz’ < c and az + bz’ =, ¢, with a,b,c € Z, which are too general to be encoded as
Z-BVASS rules. In the following, eliminate the quantifiers “manually”, and observe that the resulting
{[ has a special structure that we can exploit to derive the Z-BVASS transitions. This is achieved in

a number of steps.

Step 1: Expansion. The subformula ¢ is a conjunction of atomic discrete time logic constraints
of the forms x4 — x, € [@tpq, Ppql With apq, Bpg € Z U {—00, 00}, and x4 — xp = Ypq With ypq € Z;
similarly for the other indices. Thus, (8) expands to

¢(z’ Z/) = Exp’ Xq>XrsXs * ‘ﬁl, )
where ' =z=x,-x, N2/ =x4—xp A

’ [
Opqg <2 < Ppg NZ = Ypg A

arSSZSﬁrs NZ=gYrs A

Gpr < X = Xp < fpr A e = Xp Zm Ypr A
QAsqg < Xq — Xs Sﬁsq N Xqg—=Xs Em Ysqg N
Aps st_xp Sﬁps A Xs = Xp =m YPSA
Urq < Xqg = Xr < Prg N Xq = Xr =m Yrq-

Step 2: Eliminate x; and x4. By using z = x; — x, and z’ = x4 — x,, we can immediately eliminate
xs and x4, respectively. Let /[xs = z + x,, x4 = 2z’ + x; ] be obtained from ¥ by replacing x; with
z + x,, and x4 by z’ + x;,, and let ¢/; be obtained from the former formula by eliminating the first
two conjuncts z = x; — x, Az’ = x4 — x;,. Clearly 1 is logically equivalent to i/. By performing the

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



Binary reachability of timed-register PDA, and branching VAS 1:15

substitution explicitly, we obtain

Yi(z,2") = Ixp, %0 - A (10)
pr <X = Xp < Ppr A Xp —Xp S Ypr A
Usg <2 +xp = (24 %) < Psg N2 +xp = (2+ %) =pn Ysq A
Ops S 2+ X —Xp < Pps N Z+ X —Xp ZEn Yps N
trg <2 +xp —xr < Prg A2 +Xp = Xp = Yrg, With
(z,2) = Upg 2 S Ppg N2 ZmVpg A Qs S 2 E Prs A ZEm Vi,

where we have singled out 4 since it does not contain either x,’s or x,’s.

Step 3: Eliminate x, and x,. We observe that in ¢, the two variables x, and x, always appear
together as a difference x, — x,, and thus we can eliminate the two existential quantifications jointly.
We first rearrange the inequalities in y; to highlight x, — x,:

Yi(z,2") = Ixp, %0 - Yo A

Qpr < Xr — Xp N Xr = Xp Z=m Ypr N

A
N
S

Z =z = Poqg < xr— X,

IA
N
|
N
|
K
14
<

ANz —z—= (% —Xp) = Ysq A

Ops —Z X Xr — Xp NZ+Xr=Xp=m Yps N\

A
N
1z
|
N

’
2= Prg <X —xp

IA
N
|
|
K
<

Az = (X = Xp) = Vrg-

Following the quantifier elimination procedure used in the proof of Lemma 3.3, let T be the set of
lower bound terms, i.e., terms appearing on the left of inequalities in i/; as written above:

T := {apr, 2 —z2— P, Aps —2, 2 — ﬁ,q} .

By guessing the largest lower bound t € T, we write the following quantifier free formula i,
equivalent to ¥

hz2) = YA\ \/ Ve with (11)
5€{0,...,m—1} teT
Vs.1(z,2") = pr St +5 < By At+38 =m YprA
2 —z—Pfoqg<t+5<72 —z-ay N2 —z—t—=0 =, YsqA
Ops —2<t+30 < fps—z ANZ+t+8 =p YpsA
2= PrgSt+8<7 —ay N2 —t=8=p ¥Yrq.

Step 4: Simplify .. We simplify the formula \/,cr 5., and thus ¢,, depending on the four
possible values for ¢.

e Case 1: t = apy. By replacing ¢ for its definition in /s ;, we obtain

Apr < 0pr + 0 < Byr A Opr + 6 = Ypr A
2 —z2-Pqg<ap+0 <2 —z—ay ANz —z—ap =8 =m Ysqg A
ps—z2< apr +0 < Pps—z N Z+Qpr+ 0 =m Yps A
2= Prg<ap+6 <2 —apg ANz —ap =8 =p Yrq

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



1:16 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

We now highlight z, z’ and obtain

(z,2') = Apr + 8 < fpr A Qpr + 0 =m Ypr A (12)
Usqg + 0pr +0 <2/ =2 < Pog +0pr = 5 Nz —2Zm Ysq+ Wpr +6A
Ops —0pr =0 <2< Pps —0pr =6 NZ=pYps—0pr—ONA
Upr + 0+ arqg <2/ < 0pr + 5+ Prg AN Z ZpmYrq+ apr — 6.

o Case 2:t = z' — z — fsq. We proceed similarly as in the previous case, and obtain

‘;2(2,2,)5apr+ﬂsq‘5$2'—2$ﬁpr+ﬁsq_5 N2 =z2Zm Ypr+ Psg =N (13)
Olsq+5ﬁﬂsq /\ﬂsq—(SEmqu/\
0{Ps+ﬁsq_5SZ'SﬁPs+ﬁsq_5 /\Z/EmYP3+ﬁsq_5/\

Urq = Psqg+0 <2< Prg—Poqg+9 N ZZmYrg+Psq +0.

e Case 3:t = aps — z. We proceed similarly as in the previous case, and obtain

t%(z,z’) = ps +0— Ppr 2L aps + 8 —apy ANZ=m Qps+ 0 —Ypr A
Ups + 0+ ttsg < 2/ < aps + 5+ fogq Az Sp Ysq + dps + O A
Ops + 6 < Pps A Qps + 8 =m Yps A
Ups + 0+ g <2+ 2 < aps + 0+ Prg NZ +2Zm Yrg+ aps + 6. (14)

o Case 4:t = z' — f,4. We proceed similarly as in the previous case, and obtain

Ya(2,2)) = Gpr + Prg =8 <2/ < Ppr+ frg =9 N2 Zm Ypr + Brg =S A
ﬁrq_é_ﬁsqusﬁrq_é_asq /\szﬁrq_a_}/sq/\
Ups + Prg =0 <2 +2 < Pps+ frg =9 Nz+2Z ZpmYps+Prg =N (15)
trg +6 < fryg A Brg =90 =m Vrg»

Step 5: Putting the formula in DNF. Altogether, the original formula ¥ is equivalent to the
constraint

Vo= o A \/ VR VATV (16)

sef{o,...,m—1}

If  is M-bounded, then the constraints 1%, e, (ﬁ; (of constant size) are 3M-bounded. Due to the
disjunction over exponentially many moduli §’s, the size of 1; is larger than the size of { by a
multiplicative exponential factor. By direct inspection, l; can be written in DNF where atomic
propositions are of the form z € I, 2z’ € I,z + z € I, 2’ — z € I where I is either an interval
I € Z U {oo0, -0} or a arithmetic progression of the form I = a + m* with a € Z. Each conjunct
contains either tests of the form z’ +z € I or 2’ —z € I, but not both. This is crucial in order to obtain
Z-BVASS transitions. We combine conjunctions of constraints of the same kind, i.e,z € IAz € Jis
the same as z € (I N J). Therefore, the DNF representation of J can be put in the form l;+ \Y% l;_,
where

{/7+ = \/zEI;:/\z'E],f/\(z'+z)€1(';lr and l/j_ = \/zel}:/\z'ej}:/\(z'—z)EK;l.
h h

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



808

824

Binary reachability of timed-register PDA, and branching VAS 1:17

Step 6: Writing the Z-BVASS transitions. For every conjunctz € I, Az’ € ], A (2 —2) € K} of

{ﬁz we have a transition
(push-pop)~ Xpgois & Krsops NI, +K) N T,

and for every conjunct z € I Az" € J; A (2" +2) € K} of * we have a transition
(push-pop)”  Xpqoi  (—(Xrsop, N 1) + K;) N

To complete the definition of the Z-BVASS transitions, we show how to succinctly encode
semilinear constants I, , ..., K. Arithmetic progressions I = a + m" are already in the required
form. A right-open interval I = [@, o) with a € Z is encoded by the linear set I = « + 1%, a left-open
interval I = (—oo, f] with f € Zby I = f + (—1)*, and a finite non-empty interval I = [«, ], with
a,feZanda < B,byI=[a,00)N(-00,f] =(a+1)N (L + (-1)).

This completes the construction of the Z-BVASS B and the proof of Lemma 6.1. The Z-BVASS B
has a number of nonterminals exponential in [ and constants of magnitude bounded by 3M, where
M is the bound for the magnitude of constants of #, and thus linearly bounded, as required.

PROOF OF THEOREM 4.1 FOR INTEGER DIMENSION k = 1. By Theorem 5.2, the Z-BVASS reacha-
bility sets [X,q0] are semilinear and computable in ExpTIME in the number of nonterminals and
modulus m. Since 8 has exponentially many nonterminals and the modulus m is the same as in P, the
[Xpqol’s are computable in 2-ExpTIME complexity. Let Y[x,,, be the characteristic DNF quantifier-
free formula of [Xp4o], which is a formula of Presburger arithmetic. Let Y/p40(x, y) = ¥[x,,,,1 (Y = *)
be the constraint in discrete time logic s.t. [{/pq0] = {(@,b) € ZXZ | b - a € [Xpq0] }. We recon-
struct the reachability relation of # as the following constraint:

Upap ¥ xn %) =\ Vpgo(X5) A polE 5. (17)

o€orbits(Q2!)

The constraint above is computable in 2-ExPTIME and can be turned in DNF by distributivity within
the same complexity. By the correctness of the construction of the Z-BVASS B stated in Lemma 6.1,

[Vpql = ~pq- as required. O

6.2 Discrete dimension greater than one

We now treat the general case of Theorem 4.1 where configurations are in Q X ZEPAN kX Q! with
integer dimension k > 1. We construct a new trPDA Q of integer dimension k = 1 by encoding
all integer control registers except the first one into the control state. This is possible due to the
fact that ZSP AN<K has bounded span, and thus once the value of any register is fixed, there are

only finitely many possibilities for the other registers. Let A = {0} X {-K,...,0,... ,K}{z’“"k}
For every control state p in  and displacement £ € A, we have a state (p, £) in Q, which is initial,
resp. final, depending on whether p is initial, resp. final, in P. For every p,q € Q,a € A,y € I', and
displacements £, € A we have the following push constraint in Q

push XEED) K (x5, 39),%y) = pushy,o (5 +E %)), %0 (55 + 8,59). %),

(p.Dalg. &)y ( paqy

where push is the corresponding push constraint of P, )?% abbreviates (xZ, R xf), and similarly

paqy
-7 . . . P
for X Pop constraints POP(,, 2)a(q,5)y 2T definite similarly.

PROOF OF THEOREM 4.1 FOR INTEGER DIMENSION k > 1. Let Q be the trPDA as constructed above.
Since in Q the discrete part is one dimensional, by the previous section we can build a constraint

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



834
835
836
837
838
839
840
841

869

871

1:18 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

expressing its reachability relation ~ ] Notice that Q has exponen-

Vip.7).(0.5) ro1@5) = Vo6
tially many control states than #, due to the fact the bound on the span K is encoded in binary, and

thus it may seem that it takes triply exponential time to build l//(p’ .(q.3) However, by Lemma 6.1,
the size of the Z-BVASS that leads to the construction of lﬁ(p’ (a8) is quadratic w.r.t. the number
of control states of @, and thus of combined singly exponential size. Consequently, xp(p’g)’ @5
is still constructible in doubly exponential time. The following constraint i, characterises the
reachability relation ~»,q = [(/pq] of P:

Z 3Q Z .3
Ypq(Xp, Xq) = \/ lﬁ(p (0 5)( pl, Xg1sX )/\x p1+s/\x Xg1 + 6,
f,&EA
where %, :(;}’%,;}’g),f (pl,...,xik), (pl,... pl) and similarly for X, éz, g . O

6.3 Reachability in monotonic trPDA

A trPDA is monotonic if, whenever (1%, i) ~pq (9%, 79) with 4%, % € ZF and 42, 72 € Q!, then
% < %, for every pair of control states p, q. In other words, integer registers are non-decreasing
when going from one state to another. This is a significant restriction on the model which captures
the idea of monotonic time (of integer timestamps). Additionally, it allows for substantial technical
simplifications in the analysis and improved complexity bounds.

THEOREM 6.3. For a monotonic trPDA and control states p, q thereof, one can compute in exponential
time an existential formula of hybrid logic Y,q(Xp, Xq) s.t. [¥pqll = ~pq-

As a corollary of the construction in the proof of the theorem above, we obtain the following
improved upper-bound for the non-emptiness problem under the monotonicity assumption.

COROLLARY 6.4. The non-emptiness problem of monotonic trPDA is decidable in EXPTIME.

In order to prove Theorem 6.3, we adapt the construction for the case of integer dimension k = 1
of Sec. 6.1 to monotone trPDA; the general case k > 1 is handled as in Sec. 6.2, and thus we omit it.
Instead of constructing a Z-BVASS, we construct a context-free grammar (CFG) G over a singleton
alphabet ¥ = {'} containing a single symbol v' denoting the integral amount of time elapsed. The
grammar G has exponentially many non-terminal symbols of the form X,q,. By [Xpq0] € N we
denote the number of v’s (length) of those words accepted by X,,4,.

LEMMA 6.5. For every monotonic trPDA P we can construct a CFG G with an exponential blow-up
in the number of control states s.t. for control states p, q of P, orbit o in QZI, integers a,b € Z and
rationals @, b € Q' s.t. (@,b) € o,

(a,@) ~>pg (b,b) iff b—a>0A(b—-a)e [Xpqol-

Since non-emptiness of a context-free grammar can be decided in PTIME, Lemma 6.5 immediately
implies Corollary 6.4, and, together with Lemma 2.2, it implies Theorem 6.3. In the following we
construct the grammar G. The rules for the base case and the transitive case are the same as in
Sec. 6, with some cosmetic changes to adapt them to CFG:

(base) Xppo — €.
(transitivity) Xpgos < Xproy, * Xrqon
For the push-pop transitions, we follow step-by-step the transformation of Sec. 6.
Step 0: Transformation in DNF. By monotonicity, Eq. (8) is replaced by

Y(z,2) = Axp <xp S X SXg) - 2=Xs =X, N2 =Xxg—xp A goz(xp,x,,xs,xq). (18)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



883

886

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

924
925
926
927
928
929
930
931

Binary reachability of timed-register PDA, and branching VAS 1:19

Step 1: Expansion. Thanks to the monotonicity condition on variables x, < x, < x5 < xg, ¢” is
now a conjunction of atomic statements either of the form x4 — x, € [@pq, Bpql With apq < Bpg.
Or Xg — Xp =m Ypq> Where now all constants ayq, ¥pq € N and f,; € N U {co} are nonnegative;
similarly for the other combinations of indices p, r, s, q. Thus, (9) is replaced by

Y(z,2') = 3xp < xp < x5 <xq) - V. (19)

Step 2: Eliminate x; and x4. The formula 1/, (z, z’) from (10) is unchanged except that the prefix
of quantifiers is I(x, < x,).

Step 3: Eliminate x, and x,. The formula »(z, z) from (11) and the definition of ¥s,; therein are
unchanged.

Step 4: Simplify ,. Cases 1 and 2 are unchanged, and thus g;l is the same as from (12) and 1,;2
from (13). For i3, /4 we perform the following modifications.

o Case 3:1 = aps—z.Since now z,z’ > 0, formula V3 is modified by expanding the last constraint
(14) on z + 2’ as a finite disjunction on constraints on z and z’ separately, using the fact that
a <z+z' < fholdsif, and onlyif, \Vo<pco h < zAa—h <z’ and Vocppz <hAZ < f-h
For the modulo constraint, we have z + 2z’ =, y iff \/o<perm 2 =m h A 2" =, y — h (which
holds without any assumption on z, z’). By instantiating & = a,s + 8 + arg, f = Yrqg + tps + 6,
and y = y,q + aps + §, we obtain

Y3(2,2") = dps + 8 = Ppr <2< Aps + 6 — apy N Z=pm Qps+ 06— Ypr A
Ups + 0+ g <2/ < tps + 0 + Pog A2 =g Ysq+ Qps + O A
tps + 3 < Pos N Ops + 08 =m Yps A
h<z' A aps+8+arq—h<zA
0<h<aps+é+a,q
’
Z<h ANzSaps+8+Prg—hA
0<h<aps+S+Pfrq
\/ 2 =Emh A 2=y Yrg+ aps +6—h.
0<h<m

o Case 4:1 = z’ — 4. Similarly as in the previous case, we expand (15) as

Ua(2,2') = apr + Prg— &

IA

2 < Ppr+Prg=8 N2 = ypr +Prg— O A

Prg—0—Psqg <2< Prg—0—tt5q N 2=p frg—0—Ysq A
h<z' AN oaps+prg—0-—h<zA
0<h<aps+Prq—95
2 <h ANz<Pps+Prg—6-hA

0<h<Bps+frq—6

\/ Z=mh N z2=mYps+Prg—0—hA

0<h<m

rg+6 < Brg AN Brg—0=m ¥rq-

Step 5: Putting the formula in DNF. We obtain a formula 1; in DNF as in (16), with the further
restriction that now, thanks to the simplified form of /3, /4 above, we only have atomic constraints
of theformz € I,z" € I, or 2’ — z € I with I C N either an interval or an arithmetic progression.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

953

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

980

1:20 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

Under the assumption of monotonic time, constraints of the form z’ + z € I do not appear anymore.
Consequently, we obtain the following DNF representation for i
I}V(z,z') = \/ zelo,NZ € J,AN(Z' —z) €K},
h
If ¢ is M-bounded, then ¢ is 3M-bounded.

Step 6: Writing the grammar productions. The form above yields productions
(PUSh'POP) qu014 — ((Xr5023 N E) : ﬁh) N .7]1

where I, = {/" \ ne Ih}, Tn = {/" | ne ]h}, and K, = {/" | ne Kh}. The intersections with
the regular languages above can be eliminated by constructing a finite automaton A of size O(M)
(singly exponential since constants are encoded in binary) that counts the number of v"’s up to
threshold 3M and keeps track of its value modulo m < M.

7 SEMILINEARITY OF Z-BVASS REACHABILITY SETS

In this section we prove Theorem 5.2. To this end, we introduce a convenient normal form, show how
to transform a Z-BVASS to one in normal form (Sec. 7.1), and compute reachability sets for Z-BVASS
in normal form (Sec. 7.2). A Z-BVASS is in normal form if variables Var = {X;} U Var, U Var_ are
partitioned into a singleton containing a distinguished unit variable {X;}, addition variables Var.,
and subtraction variables Var_; terms are of the following three kinds

o= {1} | (X+Y)NN]| (X -Y)NN;

there is precisely one transition X; < {1} with the unit variable X; on the Lh.s., for every addition
X « (Y+2Z)NN, X € Var,, and for every subtraction X « (Y — Z) NN, X € Var_. Note that
reachability sets of Z-BVASS in normal form contain only nonnegative integers [X] C N.

7.1 From Z-BVASS to Z-BVASS in normal form

LEMMA 7.1. For every Z-BVASS B, we can construct a Z-BVASS in normal form, containing two
variables X*, X~ for every variable X in B, s.t. [X] = [XT] U (=[X"]). The construction takes time
polynomial in the number of nonterminals and exponential in the binary encoding of constants of B.

From the lemma above, if px is a constraint encoding the reachability set [px] = [X], then gx(x)
can be taken to be ¢px(x) = @px+(x) V px-(—x).

Proor. The construction consists of five steps.

Step 1: Short terms. By introducing new variables and transitions as necessary, we can readily
assume that transitions are of the form X « t, where ¢ is constructed according to the following
grammar (with S is a semilinear set):

t:=S|(X+Y)NS|(X-Y)NS.

Step 2: Linear constants. Transitions X < S for a semilinear constant S can be replaced with
X « Xs + Xy, where the new nonterminals X; s.t. [Xs] = S and X, with [X,] = {0}, and their
associated transitions are built according to Example 5.1 (with a polynomial increase of the number
of nonterminals and transitions). Consequently, the only transitions of the form X « S are now
X « {1}. For a semilinear set S = L; U - - - U L,,, where the L;’s are linear, we replace a transition
X « (Y+Z)NS with transitions X « (Y+Z)NLq,...,X « (Y£Z)NL,. This yields the fragment
(where L is a linear set)

te={1} |(X+Y)NL|(X-Y)NL.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Binary reachability of timed-register PDA, and branching VAS 1:21

Step 3: Intersection with +N. Thanks to Lemma 2.1, linear constants L can be assumed to be of
the simple form of arithmetic progressions L = b + p*. Since (X + Y) N (b + p*) is the same as
(X +Y-0b)Np*) + b, we can assume transitions are already in the form

te={1} |(X+Y)np* | X =-Y)np".

If p = 0, then (X+Y)Np* is the same as (X +Y)N{0}, which can be expressed as (Xo—((X+Y)NN))NN;
similarly for (X — Y) N p*. Otherwise, assume that all periods are > 0, and let p*® be their least
common multiplier. For each variable X, we introduce new variables, Xy, ..., Xp*1 s.t. [X:] =
{ne[X]|n=p i}, and thus [X] = Uozi<pe [Xi]. For every transition X « (Y + Z) N p*, and
remainders i,j,k € {0,1,...,p* — 1} s.t. j £ k =+ i and j + k is divisible by p, there is a transition
(where sign(p) = % is the sign of p # 0)

X; — (Y; + Zy) nsign(p) - N.

Summarising, by introducing exponentially many nonterminals X;’s (in the binary encoding of
periods p’s), we obtain transitions of the form

ta= {1} | (X +Y)N (&N | (X = Y) N (£N).

Step 4: Intersection with N. For each variable X we introduce two non-negative variables, X* and
X, which keep track of the positive and negative part of X, respectively, i.e., [X*] = [X] "N and
[X~] = [-X] N N. A transition X « (Y + Z) N N generates transitions

Xt~ (Y'+2ZHNN X" (Y"-Z)NN X' — (Z*-Y)NN,
and similarly a transition X « (Y + Z) N (-N) generates transitions
X Y +Z)NN X (Y -ZHNN X «(Z -Y")HnN.
The case X « (Y — Z) N (xN) is analogous. We thus obtain only intersection with N:
te={1} | X+Y)NN|(X-Y)NnN.

Step 5: Normal form. We replace every variable X with an addition X, € Var, and a subtraction
X_ € Var_ copy thereof. There is a distinguished unit variable X; with transition X; < {1}, and
an additional subtraction variable X, € Var_ with transition X, < (X; — X;) N N. Every other
unit transition X « {1} with X # X, is replaced by X, « (X + X;) N N. An addition transition
X « (Y + Z)nNis replaced by X, « (Yy + Z,) NN and a subtraction X « (Y — Z) NN by
X_ « (Y, — Z;) N N. The values of subtraction variables can be transfered to addition ones with
extra transitions X, « (X_ + Xp) NN, O

7.2 Semilinearity of reachability sets of Z-BVASS in normal form

Fix a Z-BVASS 8 in normal form with |Var| = K variables. Let Var be the set of variables. Thanks
to the normal form, there is a unique variable X; with transition X; « {1} of the first kind, and all
other variables are partitioned into addition variables X with transitions of the form X « Y + Z
and subtraction variables X with transitions of the form X « Y — Z; for ease of notation, we do
not write the intersection with N, with the understanding that the value of a variable never gets
negative. A configuration is a pair (X, n) where X is a variable and n € N. A run is a finite, rooted,
binary, ordered tree labelled with configurations s.t.:
o Every internal node u : (X, n) has a left child u; : (Xj, n;) and a right child u, : (X;,n,). If X
is an addition variable, then there exists a rule X <« X; + X, and n = n; + n,. Otherwise, X is
a subtraction variable and there exists a rule X <« X; — X, and n = n; — n, > 0. In the latter
case, u; is called the minuend and u, the subtrahend node.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

1078

1:22 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

X,m+k value
+

+
v \ leaf nOde
! |
(a) A context s is arun with (b) Increment s + k of con- (c) Dolinas on one of the branches.

a hole. text s.

Fig. 1. Contexts and dolinas.

e Every leaf is labeled by (X1, 1).

A (X, m)-run is a run whose root is labelled with (X, m); sometimes we also speak of X-run, or
m-run. The reachability set [X] thus equals the set of values m s.t. there exists a (X, m)-run. A run
is M-bounded, for a bound M € N, if all labels thereof are of the form (X, m) with m < M.

A branch of a run is a path starting at the root and ending in a leaf. A positive branch is one that
always turns left on subtraction nodes (i.e., it goes to the minuend subtree); a node is positive if
it belongs to a positive branch. The support of a run is the set of variables V' C Var that appear
among positive nodes therein. Let [X]y be the subset of the reachability set consisting of those
values m which can be reached by some (X, m)-run with support V; clearly, [X]y € [X] for every
set of variables V, and [X] = Uy cvar [X]v-

A (X, m)-context with hole (Y, n) is a (X, m)-run except that there exists precisely one positive
leaf node, called hole, labelled with (Y, n) instead of (X7, 1); all other rules regarding internal nodes
apply; c.f. Fig. 1(a). For s a (X, m)-context with hole (Y,n), and k € Z, we denote by s + k the
(X, m + k)-context with hole (Y, n + k) obtained from s by increasing by k the value of the hole and
all its ancestors, assuming that this operation is defined; c.f. Fig. 1(b). A (X, m)-context s with hole
(Y, n) is compatible witha (Z,k)-runt if Y = Z and s” = s + (k — n) is defined; when this holds, their
composition st is the (X, m + (k — n))-run obtained by replacing the hole in s” with t. Composition
for contexts is defined analogously.

For a tree ¢ and a node u thereof, let ¢, denote the subtree of t rooted at u. If ¢ is a (X, m)-run and
v : (Y, n) is a positive node thereof, then t[v — O] is the (X, m)-context with hole (Y, n) obtained
by replacing t,, with a hole labelled by (Y, n). For a run (or context) t and a run s, together with
a positive node v thereof, we denote by s[v — t] := s[v > O]t the run (or context) obtained by
replacing s, by t. A dolina is a positive node u (in a run or in a context) whose value is strictly
smaller than the value of any ancestor; c.f. Fig. 1(c). If a hole of a context s is a dolina of value m,
then s — m is defined. A (Y, n)-context with hole (Z, 0) is pumpable if Z = Y and o = 0; cf. Fig. 2(a).
When s is a pumpable context, let s be the context consisting of just a (Y, 0)-hole, and let sk = gsk-1
for every k > 1; then, s* is a pumpable (Y, k - n)-context; cf. Fig. 2(b).

The dolina complexity of a run is the maximum number of dolinas on the same branch. The
following lemma shows that reachability sets are bounded semilinear; however, no method is
provided yet as to compute a representation thereof.

LEmMaA 7.2. (1) Every run of value > 2K* has dolina complexity > K.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



Binary reachability of timed-register PDA, and branching VAS 1:23

1079

Y, k-n
1080
1081
1082 S
1083 Y,n Y, (k—1)-n
1084
1085
k1
1086
1087 ¥.0 Y.0
1088 (a) A pumpable (Y, n)-context s. (b) Pumpable (Y, k - n)-context sk.
1089
1090 Fig. 2. Pumpable contexts.
1091
1092
2
1093 (2) Every run t of dolina complexity > K* contains two 2X" -bounded dolinasu : Y,v : Y on the
1094 same branch s.t. t,, t,, have the same support.

1095 (3) The reachability set [X]v is a 2K _bounded hybrid linear set of the form A + B*.

1096

1097 Proor. (1) Construct a positive branch 7 = v; - - - vy of values ny, ..., ng starting from the
1008 root, which on addition nodes chooses the child of larger value. If v; is an addition node, a
1099 child v;,; is selected s.t. n;j4; > %ni. Consider now the subsequence of 7 consisting of all
1100 dolinas vy, - - - v;,, (with iy = 1) of values n;, > --- > n;, . Since a dolina v;; is necessarily a
1101 child of an addition node Vij—1, My 2 %nij_l. Since there is no other dolina between Vi, and
1102 i;, Ni-1 = ny, . and thus ny; > %nl-j_l. Since the first dolina has value n;, > 2K2, there are at
1103 least K* dolinas on 7.

1104 (2) Assume that t has dolina complexity > K?2. There exists a sequence v; - - - vy, of m > K?
1105 dolinas on the same positive branch. Since the last dolina v, has value < 1, the last K 2 dolinas
1106 have values < 2K°. Since t,, is a subtree of t,,, ,, the sequence of dolinas induces a decreasing
1107 chain of supports, and thus there are at most K different supports. Finally, each dolina is
1108 labelled by a nonterminal Y, of which there are at most K. By the pigeonhole principle, there

are two 2K°-bounded dolinas v; : Y,v; : Y labelled by the same nonterminal Y, which are
roots of subtrees t,, resp., to;s with the same support.

(3) Let A be the set of those reachable a € [X]y witnessed by some (X, a)-run t, with support V
and K2-bounded dolina complexity. By the first point, a < 2Kz, and thus A is 2K”-bounded.
For a € [X]v \ A, t, necessarily has dolina complexity > K?, and thus by the previous
point contains two dolinas u : (Y, m),v : (Y,n) of small values m < n < 2K* on the same
branch s.t. the subtrees t,, t,, have the same support. Let b = m — n, and thus 0 < b < 2K°,
We decompose ¢ into a run t,_; and context t;. Let t, := t,[v — O] — n be the pumpable
b-context obtained from the subtree t, rooted at the first dolina u by making a hole at the
second dolina v, and let t,_, := t[u + t,] be the (a — b)-run obtained from the run t by
replacing the subtree t, rooted at first dolina u with the subtree t,, rooted at the second dolina
v. The support of #;, is included in V, and that of ¢,_;, is exactly V; thus (a — b) € [X]v. Let
B be the set of all 2X°-bounded periods b’s obtained in this way. By iterating the reasoning
above, every a € [X]y belongs to A + B*. On the other hand, if ¢ = a + kiby + - - - + kb,

1123
1124 with a € A and by,...,b, € B, then there exists an a-run ¢, of support V, and, for every
115 1 < i < n, pumpable (Y;, b;)-contexts t;, of supports included in V. Since t, has support V,
o6 for every variable Y; there exists a positive Y;-node u; in t,. We construct a c-run by inserting
1127

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

1174

1:24 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

sufficiently many copies of the tp,’s in suitable nodes of t,. Formally, for every 0 < i < n, we
construct a ¢;-run t; of support V, where ¢; = a + k1by + - - - + k;b;. Initially, £, is the a-run
tq of support V. Assume t;_; is a ¢;_;-run of support V. We define ¢; as t;_1[u; — tfi"]tui,
which is thus a ¢;-run of support V. Take ¢, as the sought c-run of support V. Consequently,
[X]v = A + B*, as required. o

The following lemma allows us to bound the value of every subtrahend. In the rest of this section,
we will use the following constant

L =25 42K,
LEMMA 7.3. Letn € [X]. There exists an (X, n)-run s.t. all subtrahends are L-bounded.

ProOF. Let t be an (X, n)-run with X a subtraction variable, whose minuend subtree has label
(X1, n;) and subtrahend subtree has label (X;, n,), and thus n = n;—n, > 0. Towards a contradiction,
assume that the size of ¢ (in terms of number of nodes) is minimal amogst all (X, n)-runs, and let
n, > L (and thus n; > L). Let V be the support of ¢, let V; C V be the support of its left subtree
t;, and similarly V, C V for the support of its right subtree ¢,. By the last point of Lemma 7.2,
[X:]v,» [X:]v, are both 2X°-bounded hybrid linear sets of the form, A; + Bj, resp., A, + B;. The left
value n; € [X;]v, is of the form n; = a; + kj1byy + - - - + kymbym with ay € Ay, byy, ..., by € By, and
ki1, s kim € N. Since n; > L and periods b;;’s are 2K2—bounded, there exists a period b;; € B;
s.t. its multiplicity k;; is > 2K* Similarly, n, = a, + ky1by1 + -+ + krmbrm € [X,]v, for a, € A,,
bri,...,brm € By,and kpq, - -+, krm € N, and there exists b,; € B, with k,; > 2K’ Since byi, by;j are
2K’ bounded, k;; > byj and k,; > by;. Take the smaller value nj = n; — b,jby; € [X;]y, obtained by
removing b,; copies of period by;, and similarly n]. = n, — b;;b,; € [X,]v, by removing b;; copies
of period b, ;. Clearly, n = n; — n;. Moreover, by applying the construction in the proof of the last
point of Lemma 7.2, the witnessing runs t/, t; for nj, resp., n; can be constructed to be subtrees of
ty, resp., t,. This yields a witness for (X, n) of smaller size, which is a contradiction. O

THEOREM 7.4. Reachability for Z-BVASS in normal form is decidable in EXPTIME.

Proor. We reduce to reachability for ordinary one-dimensional BVASS (i.e., without minus
operations) with constants encoded in unary, which is solvable in PTIME [16]. For Z-BVASS, it
suffices to decide whether 0 € [X]: In order to decide n € [X], we add a new nonterminal X with
rule X « X — Z,,, where Z,, is s.t. [Z,] = {n} and can be constructed according to the technique of
Example 5.1, and we ask the equivalent question 0 € [X].

Let [X] <L := [X] N {0,...,L} be the L-bounded reachability set for nonterminal X. We define
a sequence of L-bounded valuations y; : Var — 2{%-~L} (which is a finite object) inductively
as follows. Initially, pio(X) = 0 for every nonterminal X. Inductively, assume that y; is defined.
Construct the following BVASS B;. Every addition rule X « Y + Z in the original Z-BVASS
produces an identical rule in $B;. Every subtraction rule r of the form X « Y — Z in the original
Z-BVASS produces a rule r, of the form X « Y — z in B; for every z € p;(Z). Then, B; is of
exponential size, and p;41(X) is computed in exponential time as the set of those n € {0,...,L}
s.t. (X, n) is reachable in B; (which can be checked in exponential time).

Cramm 2. The sequence of approximants is non-decreasing and it converges at iteration L:
IJO g; lll g; cen g; llL = /1L+-1 = ..,
Clearly, p;(X) C [X] <L for every nonterminal X since at every iteration we underapproximate the

actual reachability set. By the next claim, the underapproximation is exact in the limit.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Binary reachability of timed-register PDA, and branching VAS 1:25

Cramm 3. [X]<r = U; pi(X).

Proor oF CLaIM 3. We show that every n € [X] <y is witnessed as n € p;(X) for some level i > 0.
Let ¢ be a (X, n)-run. By Lemma 7.3 we assume that, in every subtraction node, the subtrahend child
is L-bounded. Let the height of a node be the maximal number of subtraction nodes on any path
from that node (included) to a leaf. We show the following stronger claim by complete induction
on the height: For every (X, n)-run t of height i > 0, n € y;,1(X). Let t be a (X, n)-run of height i.
Let t’ be an arbitrary subtrahend (Y, m)-subrun of the first subtraction node encountered from the
root of t. Then, m < L and ¢’ has height j < i. By inductive assumption, m € p;41(Y), and hence
m € p;(Y). We build a (X, n)-run in B; by replacing the rule r of 8 used in the root of ¢’ by the rule
rm of B;. This shows n € p;11(X), as required. m]

Thanks to the two claims above, [X] <1 = pr(X), and the latter set can be computed in exponential
time. O

COROLLARY 7.5. Let V C Var be a support and X € V a nonterminal. Checking reachability in
[X]v is in ExPTIME.

From the last point of Lemma 7.2 and Lemma 2.1, we immediately derive the following more
restrictive form for reachability sets.

COROLLARY 7.6. Let V C Var be a support. The reachability set [X]v is an L-bounded semilinear
set of the form F U (A + b*), where F, A, {b} € {0,...,L}.

LEMMA 7.7. Let S be an L-bounded semilinear linear set of the form F U (A + b*), and let R be an
L-bounded linear set of the form ¢ + d*. Then,R C S iff {c,c+d,...,c+L-d} CS.

Proor. The “only if” direction is trivial. For the other direction, we will show a bound on the
minimal element of R \ S. For any natural number x if x + b ¢ (A + b*), then also x ¢ (A + b*). If
x+0b¢Sandx > L, then also x ¢ S. In particular, if ¢ + (k + b)d = (c+ kd) + bd ¢ Sand c + kd > L,
then also ¢ + kd ¢ S. Thus, the minimal ¢ + kd ¢ S strictly above L is at most ¢ + L - d. O

COROLLARY 7.8. The reachability set [X] is an L-bounded semilinear set constructible in ExPTIME.

Proor. Since [X] = Uy cvar[X]v. it suffices to construct L-bounded semilinear representations
for the [X]v’s. By Corollary 7.6, [X]y is an L-bounded semilinear set of the form F U (A + b*),
where F, A, {b} C {0, ...,L}. We enumerate all L-bounded linear sets of the form ¢ + d* (clearly
[X]v can be expressed as a union of such sets). By Lemma 7.7, we can check whether ¢ +d* C [X]v
by performing L reachability queries of the form ¢ + kd € [X]y with k € {0, ..., L}, each of which
can be done in ExpTIME by Corollary 7.5, and thus in ExpTIME overall. O

Theorem 5.2 follows by transforming the Z-BVASS into the normal form and from Corollary 7.8.

8 CONCLUSIONS

We have provided an effective characterisation of the trPDA reachability relation as a quantifier-free
formula over the hybrid time domain H = (Z ¥ Q, +1, <!, =,,) combining integer Z and fractional
Q values. From a technical point of view, what is only required from the fractional values is to
belong to a homogeneous structure, such as (Q, <) in our case. For example, we could consider
fractional values belonging to more exotic homogeneous dense time domains, such as cyclic order
atoms (Q,K) [11]7 or betweenness atoms (Q, B) [9]°. All the non-trivial technical work goes in

"The ternary cyclic order relation K € Q is defined as K(a, b,¢c) = a<b<cVb<c<aVc<a<bh.
8The ternary betweenness relation B C Q® is defined as B(a, b,c) = b<a<cVec<a<b.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki

handling the discrete integer domain (Z, +1, <, =,,), which is non-homogeneous, and thus requires
specialized techniques.

Several directions for future work can be identified. While we provide a 2-ExpTIME upper
bound for deciding the trPDA non-emptiness problem, the only known lower bound is ExpTIME,
which holds already for the less expressive orbit-finite and grammar classes (cf. [10]). Moreover,
in the special case of orbit-finite trPDA studied in [10], only a NExpTimE upper-bound is known.
Regarding Z-BVASS,we have provided an ExpTIME upper bound, while a PSpack lower bound can
be immediately inferred by simulating bounded one-counter automata [13]. Moreover, there is a
gap between our decidability result for Z-BVASS in dimension one, and the known undecidability
in dimension six [18].

REFERENCES

[1] P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In Proc. LICS’12, pages 35-44. IEEE, 2012.
[2] S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using tree automata. In Proc. CONCUR’16, pages
27:1-27:14, 2016.
[3] J. R. Alfonsin. The Diophantine Frobenius Problem. Oxford University Press, 2005.
[4] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183-235, 1994.
[5] M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed recursive state machines. In Proc. TIME’10, pages 61-68.
IEEE, sept. 2010.
[6] M. Benerecetti and A. Peron. Timed recursive state machines: Expressiveness and complexity. Theoretical Computer
Science, 625:85-124, 2016.
[7] M. Bojanczyk and S. Lasota. A machine-independent characterization of timed languages. In Proc. ICALP’12, volume
7392 of LNCS, pages 92-103. Springer, 2012.
[8] A.Bouajjani, R. Echahed, and R. Robbana. Verification of context-free timed systems using linear hybrid observers. In
Proc. CAV’94, volume 818 of LNCS, pages 118-131. Springer, 1994.
[9] L. Clemente and S. Lasota. Reachability analysis of first-order definable pushdown systems. In Proc. CSL’15, volume 41
of LIPIcs, pages 244-259. Dagstuhl, 2015.
[10] L. Clemente and S. Lasota. Timed pushdown automata revisited. In Proc. LICS’15, pages 738-749. IEEE, July 2015.
[11] L. Clemente and S. Lasota. Binary reachability of timed pushdown automata via quantifier elimination and cyclic
order atoms. In To appear in Proc. ICALP’18, 2018.
[12] L. Clemente, S. Lasota, R. Lazi¢, and F. Mazowiecki. Timed pushdown automata and branching vector addition systems.
In Proc. LICS’17, 2017.
[13] J. Fearnley and M. Jurdzinski. Reachability in two-clock timed automata is PSPACE-complete. Inf. Comput., 243:26-36,
2015.
[14] D. Figueira, R. Lazic, J. Leroux, F. Mazowiecki, and G. Sutre. Polynomial-space completeness of reachability for succinct
branching VASS in dimension one. In In Proc. of ICALP’17, 2017.
[15] S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and languages. Pacific . Math., 16(2):285-296, 1966.
[16] S. Géller, C. Haase, R. Lazi¢, and P. Totzke. A polynomial-time algorithm for reachability in branching VASS in
dimension one. In Proc. ICALP’16, volume 55 of LIPIcs. Dagstuhl, 2016.
[17] A.Jez and A. Okhotin. Conjunctive grammars over a unary alphabet: Undecidability and unbounded growth. Theory
Comput. Syst., 46(1):27-58, 2010.
[18] R. Lazi¢. The reachability problem for branching vector addition systems requires doubly-exponential space. Inf.
Process. Lett., 110(17):740-745, 2010.
[19] R.Lazi¢ and S. Schmitz. Non-elementary complexities for branching VASS, MELL, and extensions. In Proc. CSL-LICS’14.
ACM, 2014.
D. Macpherson. A survey of homogeneous structures. Discrete Mathematics, 311(15):1599-1634, 2011.
A. B. Matos. Periodic sets of integers. Theor. Comput. Sci., 127(2):287-312, 1994.
R.J. Parikh. On context-free languages. J. ACM, 13(4):570-581, Oct. 1966.
M. Presburger. Uber der vollstindigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen die addition
als einzige operation hervortritt. Comptes Rendus Premier Congrés des Mathématicienes des Pays Slaves, 395:92-101,
1930.
[24] A. Trivedi and D. Wojtczak. Recursive timed automata. In Proc. ATVA’10, volume 6252 of LNCS, pages 306—-324.
Springer, 2010.

[20
[21
[22

]
]
]
[23]

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



Binary reachability of timed-register PDA, and branching VAS 1:27

1275 [25] K. N. Verma and J. Goubault-Larrecq. Karp-Miller Trees for a Branching Extension of VASS. Discrete Mathematics and
1276 Theoretical Computer Science, 7:217-230, 2005.
1277 [26] K.N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses. In Proc. CADE’ 05, pages

337-352, 2005.
1278

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: June 2018.



	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hybrid linear sets
	2.2 Presburger arithmetic

	3 Hybrid logic and quantifier elimination
	3.1 Hybrid vs. quantitative dense time
	3.2 Quantifier elimination

	4 Timed register pushdown automata
	5 Integer branching vector addition systems
	5.1 Intersection-free and singleton-intersection Z-BVASS
	5.2 Z-BVASS v.s. N-BVASS in dimension one

	6 From trPDA to Z-BVASS
	6.1 Discrete dimension one
	6.2 Discrete dimension greater than one
	6.3 Reachability in monotonic trPDA

	7 Semilinearity of Z-BVASS reachability sets
	7.1 From Z-BVASS to Z-BVASS in normal form
	7.2 Semilinearity of reachability sets of Z-BVASS in normal form

	8 Conclusions
	References

