
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Orbit-finite linear programming

ARKA GHOSH, PIOTR HOFMAN, and SŁAWOMIR LASOTA, University of Warsaw, Poland

An infinite set is orbit-finite if, up to permutations of atoms, it has only finitely many elements. We study a generalisation of linear
programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide
a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear
objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are
considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not.

CCS Concepts: • Theory of computation→ Integer programming; Linear programming.

Additional Key Words and Phrases: Orbit-finite linear programming, linear programming, integer linear programming, sets with
atoms, orbit-finite sets.

ACM Reference Format:
Arka Ghosh, Piotr Hofman, and Sławomir Lasota. 2023. Orbit-finite linear programming. In . ACM, New York, NY, USA, 39 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Applications of (integer) linear programming, and linear algebra in general, are ubiquitous in computer science (see
e.g. [13, 14, 31]), including recent and potential future applications to analysis of data-enriched models [9, 18–20].
Whenever finite (integer) linear programs arise in analysis of finite models of computation, orbit-finite (integer) linear
programs arise naturally in data-enriched versions of these models. For example, in decision problems for data Petri nets,
such as reachability [27] or continuous reachability [18]; or in process mining [34]. Similar approach seems applicable
also to structural properties or termination time of data Petri nets; and to learning of probabilistic automata with
registers.

This paper is a continuation of the study of orbit-finite systems of linear equations [16], i.e., systems which are
infinite but finite up to permutations. In this setting one fixes a countably infinite set A, whose elements are called
atoms (or data values) [5, 30], assuming that atoms can only be accessed in a very limited way, namely can only be
tested for equality. Starting from atoms one builds a hierarchy of sets which are orbit-finite: they are infinite, but finite
up to permutations of atoms. Along these lines, we study orbit-finite sets of linear inequalities, over an orbit-finite set
of unknowns.

The main result of [16] is a decision procedure to check if a given orbit-finite system of equations is solvable. This
result is general and applies to solvability over a wide range of commutative rings, in particular to real and integer
solvability. In this paper we do a next step and extend the setting from equations to inequalities. Our goal is algorithmic
solvability of orbit-finite systems of inequalities, but also optimisation of linear objective functions over solution sets
of such systems. We call this problem orbit-finite (integer) linear programming (depending on whether the considered
solutions are real or integer).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0003-3839-8459
HTTPS://ORCID.ORG/0000-0001-9866-3723
HTTPS://ORCID.ORG/0000-0001-8674-4470
https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Example 1. For illustration, consider the set A as unknowns, and the infinite system of constraints given by an
infinite matrix whose rows and columns are indexed by A:

0 1 1 · · ·

1 0 1 · · ·

1 1 0 · · ·

...
...
...
. . .

· x ≥

1
1
1
...

(1)

Alternatively, one can write the infinite set of non-strict inequalities over unknowns α ∈ A, indexed by atoms β ∈ A:∑
α ∈A\{β }

α ≥ 1 (β ∈ A). (2)

Any permutation π : A→ A induces a permutation of the inequalities by sending∑
α ∈A\{β }

α ≥ 1
π
7−→

∑
α ∈A\{π (β)}

α ≥ 1,

but the whole system (2) is invariant under permutations of atoms. Furthermore, up to permutations of atoms the
system consists of just one equation – it is one orbit; in the sequel we consider orbit-finite systems (finite unions of
orbits). Likewise, the matrix A × A → R in (1) consists, up to permutation of atoms, of just two entries. Indeed, its
domain A × A is a union of two orbits:

{
(α , β) �� α = β

}
and
{
(α , β) �� α , β

}
, and the matrix is constant inside each

orbit. It is therefore invariant under permutations of atoms.
The system (2) is solvable. For example, given n > 1 atoms S = {α1, . . . ,αn } ⊆ A, the vector xn : A→ R defined by:

xn (α) =
1

n − 1
if α ∈ S, xn (α) = 0 if α < S,

is a solution since the left-hand side of (2) sums up to 1 if β ∈ S , and to n
n−1 if β < S . ◁

Orbit-finite linear programming, i.e., optimisation of a linear objective function subject to an orbit-finite system
of inequality constraints, faces phenomena not present in the classical setting. For instance, as illustrated in the next
example, the objective function may not achieve its optimum over solutions of non-strict inequalities.

Example 2. Suppose that we aim at minimization, with respect to the constraints (2), of the value of the objective
function:

S (x) = 2 ·
∑
α ∈A

x(α). (3)

The function is invariant under permutations of atoms, and its value is always greater than 2. Indeed, for every solution
x : A→ R there is necessarily some β ∈ A such that x(β) > 0, and hence

S (x) > 2 ·
∑

α ∈A\{β }

x(α) ≥ 2. (4)

What is the minimal value of the objective function? For solutions xn defined in Example 1, the value S (xn) = 2n
n−1 may

be arbitrarily close to 2 but, according to (4), S never achieves 2. Surprisingly, this is in contrast with classical linear
programming where, whenever constraints are specified by non-strict inequalities and are solvable, a linear objective
function always achieves its minimum (or is unbounded from below). ◁

Inequalities and unknowns can be indexed by more than one atom, as illustrated in the next example.
2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Example 3. Let A(2) =
{
αβ ∈ A2 ��� a , β

}
be the set of pairs of distinct atoms. Consider a system whose inequalities

and unknowns are indexed by A ⊎ {∗} and A ⊎ A(2) , respectively. Intuitively, unknowns correspond to vertices α and
edges αβ of an infinite directed clique. Let the system contain an inequality∑

α ∈A

α ≥ 1 (5)

enforcing the sum of values assigned to all vertices to be at least 1, and the following inequalities∑
β ∈A\{α }

αβ − α −
∑

β ∈A\{α }

βα ≥ 0 (α ∈ A) (6)

enforcing, for each vertex α ∈ A, the sum of values assigned to all outgoing edges to be larger or equal to the sum of
values assigned to all incoming edges, plus the value assigned to the vertex α . In matrix form (0 entries of the matrix
are omitted):

A A(2)

A

{∗}

−1
−1

. . .

1 1 · · ·

�������������

�������������

A

· x ≥

0
...

0
1

(7)

where A is the oriented incidence matrix, namely for every distinct atoms α , β ∈ A,

A(α ,αβ) = 1 A(α , βα) = −1,

and all other entries of A are 0. As in previous examples, the system is invariant under permutations of atoms. Solutions
of the system correspond to directed graphs, whose vertices and edges are labeled in accordance with constraints (5)
and (6). We return to this system in Example 5 below, and in Sections 6 and 8. ◁

The systems appearing in the above examples are invariant under all permutations of atoms. As usual when working
in sets with atoms [5] (also known as nominal sets [30]), we allow systems which, for some finite subset S ⊆fin A (called
a support), are only invariant under permutations that fix S . In the standard terminology of orbit-finite sets [5], we
allow for finitely supported systems. Likewise, we allow for finitely supported objective functions, and seek for finitely
supported solutions. Equivalently, using terminology of sets with atoms, we allow for orbit-finite systems and objective
functions, and seek for orbit-finite solutions. Note that solutions appearing in Examples 1 and 2 are finitary, i.e. assign
non-zero to only finitely many unknowns, and are therefore finitely supported. Each finite system is finitely supported,
and thus orbit-finite linear programming is a generalisation of the classical one.

Contribution. As our main contribution, we provide decision procedures for orbit-finite linear programming, both for
the decision problem of solvability of systems of inequalities, and for the optimisation problem.

The core ingredient of our approach is to reduce solvability (resp. optimisation) of an orbit-finite system of inequalities
to the analogous question on a finite system which is polynomially parametrised, i.e., where coefficients are univariate
polynomials in an integer variable n. The parameter n corresponds, intuitively, to the number of atoms appearing in (a
support of) a solution. In this parametrised setting we ask for solvability for some n ∈ N, or for optimisation when
ranging over all n ∈ N. We can compute an answer by encoding the problem into first-order real arithmetic [2, 32],

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

which yields decidability. We provide also an efficient PTime algorithm for a relevant subclass of instances, resorting to
polynomially many calls of classical linear programming.

Example 4. For instance, the system (1) is transformed to the following two inequalities with one unknown x , which
are polynomially (actually, linearly) parametrised in a parameter n (the details are exposed in Example 44 in Section 7.3):

n − 1
n

· x ≥

n

n

(8)

The objective function S (3), on the other hand, is transformed to a non-parametrised linear map x 7→ 2 · x . For every
n > 1, the system (8) is solvable, the minimal solution is x = n

n−1 , and the minimum of the objective function is 2n
n−1 .

Ranging over all n ∈ N, the minimum can get arbitrarily close to 2, but never reaches 2. ◁

Our reduction to a polynomially-parametrised linear program involves a size blowup which is exponential in
atom dimension (i.e., the maximal number of atoms appearing in an index of inequality or unknown of a system) but
polynomial in the number of its orbits. In consequence, orbit-finite linear programming is solvable in ExpTime, and
in PTime when atom dimension is fixed. In the setting of orbit-finite sets this means that the problem is feasible [11].
Therefore, in the latter case the complexity is not worse than in case of classical linear programming.

One of cornerstones of the reduction is an observation that every system of inequalities that admits a finitary solution,
admits also a solution which is invariant under all permutations of its support, i.e., of atoms it uses.

Example 5. As an illustration, let’s prove that the system in Example 3 has no finitary solution. Indeed, if there
existed a finite labeled directed graph satisfying constraints (5) and (6), by the above observation there would also exist
a finite labeled directed clique, where labels of all vertices are pairwise equal, and labels of all edges are pairwise equal
as well. In particular each vertex would carry the same value, necessarily positive due to constraint (5), and all edges
incoming to a vertex would carry the same value as all outgoing edges. These requirements are clearly contradictory
with constraint (6). In conclusion, the system has no solutions. ◁

As our second main result we prove undecidability of orbit-finite integer linear programming, already for the decision
problem of solvability. While the classical linear programming and integer linear programming are on the opposite sides
of the feasibility border, in case of orbit-finite systems the two problems are on the opposite sides of the decidability
border. One of key reasons behind undecidability of integer linear programming is that it can express existence of a
finite path. Specifically, if integer solutions are sought, the system of inequalities of the form

0 ≤
∑

α ∈A\{β }

βα ≤ 1 (β ∈ A)

allow us to say that every node β has either no successors, or just one successor. This clearly fails if real solutions are
sought.

This article is an improved and extended version of the conference submission [17]. The major improvement is
lowering the complexity of orbit-finite linear programming from 2-ExpTime to ExpTime, and from ExpTime to PTime for
fixed atom dimension. This is achieved by identifying a suitable subclass of polynomially-parametrised linear programs
which we show to be solvable in PTime, and a reduction from orbit-finite linear programming to this subclass.

Related research. This paper belongs to a wider research program that aims at lifting different aspects of theory of
computation from finite to orbit-finite sets (essentially equivalent to first-order definable sets) [4, 6–8, 10–12, 22–25].

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Our findings generalise, or are closely related to, some earlier results on systems of linear equations. Systems studied
in [20] have row indexes of atom dimension 1. In a more general but still restricted case studied in [21], all row indexes
are assumed to have the same atom dimension. Furthermore, columns of a matrix are assumed to be finitary in [20, 21].
Both the papers investigate (nonnegative) integer solvability and are subsumed by [16] (in terms of decidability, but not
in terms of complexity), a starting point for our investigations. Orbit-finite systems of equations are a special case of
our present setting, as long as the solution domain is reals or integers. However, the setting of [16] is not restricted to
reals or integers, and allows for an arbitrary commutative ring as a solution domain (under some mild effectiveness
assumption). This larger generality makes the results of [16] and our results incomparable. Consequently, our methods
are different than those of [16].

The work [19] goes beyond [20] and investigates linear equations, in atom dimension 1, over ordered atoms.
Nonnegative integer solvability is decidable and equivalent to VAS reachability (and hence Ackermann-complete [15,
26, 28]).

Systems in another related work [23] are over a finite field, contain only finite equations, and are studied as a
special case of orbit-finite constraint satisfaction problems. Furthermore, solutions sought are not restricted to be
finitely-supported.

Orbit-finitely generated vector spaces were recently investigated in [9] and [16]. The former paper shows that
every chain of vector subspaces which are invariant under permutations of atoms eventually stabilises, and apply this
observation to prove decidability of zero-ness for orbit-finite weighted automata. The two papers jointly show that dual
of an orbit-finitely generated vector space has an orbit-finite base. In [35] the authors study cones in such spaces which
are invariant under permutations of atoms, and extend accordingly theorems of Carathéodory and Minkowski-Weyl.

Finally, our technique discussed in Example 5, and developed formally in Section 6, seems to be reminiscent of (but
independent from) the techniques in the recent work [1].

Outline. After preliminaries on orbit-finite sets in Section 2, in Section 3 we introduce the setting of orbit-finite linear
inequalities and in Section 4 we state our results. The rest of the paper is devoted to proofs. In Sections 6 and 5 we
develop tools that are later used in decision procedures for linear programming in Sections 7 and 8. Finally, Section 9
contains the proof of undecidability of integer linear programming. We conclude in Section 10. Some routine or lengthy
arguments are moved to Appendix.

2 PRELIMINARIES ON ORBIT-FINITE SETS

Our definitions rely on basic notions and results of the theory of sets with atoms [5], also known as nominal sets [7, 30].
We only work with equality atoms which have no additional structure except for equality.

Sets with atoms. We fix a countably infinite set A whose elements we call atoms. Greek letters α , β ,γ , . . . are reserved
to range over atoms. The universe of sets with atoms is defined formally by a suitably adapted cumulative hierarchy of
sets, by transfinite induction: the only set of rank 0 is the empty set; and for a cardinal i , a set of rank i may contain, as
elements, sets of rank smaller than i as well as atoms. In particular, nonempty subsets X ⊆ A have rank 1.

The group Aut of all permutations of A, called in this paper atom automorphisms, acts on sets with atoms by
consistently renaming all atoms in a given set. Formally, by another transfinite induction, for π ∈ Aut we define
π (X) = { π (x) | x ∈ X }. Via standard set-theoretic encodings of pairs or finite sequences we obtain, in particular, the
pointwise action on pairs π (xy) = π (x)π (y), and likewise on finite sequences. Relations and functions from X to Y are
considered as subsets of X × Y .

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

We restrict to sets with atoms X that only depend on finitely many atoms, in the following sense. For T ⊆ A,
let AutT =

{
π ∈ Aut �� π (α) = α for every α ∈ T

}
be the set of atom automorphisms that fix T 1; they are called

T -automorphisms. A finite set T ⊆fin A (we use the symbol ⊆fin for finite subsets) is a support of X if for all π ∈ AutT
it holds π (X) = X . We also say: T supports X , or X is T -supported. Thus a set is T -supported if and only if it is invariant
under all π ∈ AutT . As an important special case, a function f : X → Y , understood as its diagram

{
(x , f (x)) �� x ∈ X

}
,

is T -supported if f (π (x)) = π (f (x)) for every argument x and π ∈ AutT . In particular, whenever f is T -supported, its
domain X is necessarily T -supported too. A T -supported set is also T ′-supported, assuming T ⊆ T ′.

A set x is finitely supported if it has some finite support; in this case x always has the least (inclusion-wise) support,
denoted supp(x), called the support of x (cf. [5, Sect. 6]). Thus x isT -supported if and only if supp(x) ⊆ T . Sets supported
by ∅ (i.e., invariant under all atom automorphisms) we call equivariant.

Example 6. Given α , β ∈ A, the support of the set A \
{
α , β
}
is
{
α , β
}
. The set A2 and the projection function

π1 : A2 → A : (α , β) 7→ α are both equivariant; and the support of a tuple ⟨α1, . . . ,αn⟩ ∈ An , encoded as a set in a
standard way, is the set of atoms {α1, . . . ,αn } appearing in it. ◁

From now on, we shall only consider sets that are hereditarily finitely supported, i.e., ones that have a finite support,
whose every element has some finite support, and so on.

Orbit-finite sets. Let T ⊆fin A. Two atoms or sets x ,y are in the same T -orbit if π (x) = y for some π ∈ AutT . This
equivalence relation splits atoms and sets into equivalence classes, which we call T -orbits; ∅-orbits we call equivariant
orbits, or simply orbits. By the very definition, every T -orbitU is T -supported: supp(U) ⊆ T .2

T -supported sets are exactly unions of (necessarily disjoint) T -orbits. Finite unions of T -orbits, for any T ⊆fin A, are
called orbit-finite sets. Orbit-finiteness is stable under orbit-refinement: if T ⊆ T ′ ⊆fin A, a finite union of T -orbits is
also a finite union of T ′-orbits (but the number of orbits may increase, cf. [5, Theorem 3.16]).

Example 7. Examples of orbit-finite sets are:

• the set of atoms A (1 orbit);
• A \ {α } for some α ∈ A (1 {α }-orbit);
• pairs of atoms A2 (2 orbits: diagonal { αα | α ∈ A } and off-diagonal A(2) =

{
αβ ∈ A2 ��� α , β

}
);

• n-tuples of atoms An for n ∈ N; each orbitU ⊆ An contains all n-tuples of the same equality type, where by the
equality type of an n-tuple a1 . . . an ∈ An we mean the set

{
(i, j) ��� ai = aj

}
;

• non-repeating n-tuples of atoms A(n) =
{
α1 . . . αn ∈ An

��� αi , α j for i , j
}
(1 orbit);

• n-sets of atoms
(
A
n

)
= {X ⊆ A | |X | = n } (1 orbit).

All of them are equivariant, exceptA\{α }. On the other hand, the set Pfin (A) of all finite subsets of atoms is orbit-infinite
as cardinality is an invariant of each orbit. ◁

We now state few properties to be used in the sequel. For T ⊆fin A, each T -orbitU ⊆ A(n) is determined by fixing
pairwise distinct atoms from T on a subset I ⊆ {1, . . . ,n} of positions, while allowing arbitrary atoms from A \T on
remaining positions {1, . . . ,n} \ I :

1 AutT is often called the pointwise stabilizer of T .
2The inclusion may be strict, for singleton T -orbits O . For instance, the singleton {α } ⊆ A is a {α }-orbit, but also a

{
α, β
}
-orbit for β , α .

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Lemma 8. Let T ⊆
fin
A. T -orbitsU ⊆ A(n)

are exactly sets of the form

{
a ∈ A(n) ��� Πn, I (a) = u, Πn, {1, ...,n }\I (a) ∈ (A \T) (n−ℓ)

}
, (9)

where I ⊆ {1, . . . ,n}, |I | = ℓ, and u ∈ T (ℓ)
. The projection Πn, I : A(n) → A(ℓ)

is defined in the expected way.

Indeed, the set (9) is invariant under all T -automorphisms, and each two of its elements are related by some T -
automorphism. The orbit (9) is inT -supported bijection with (A \T) (n−ℓ) . This is a special case of a general property of
everyT -orbit, not necessarily included in A(n) . The following lemma is proved exactly as [5, Theorem 6.3] and provides
finite representations of T -orbits:

Lemma 9. Let T ⊆
fin
A. Every T -orbit admits a T -supported bijection to a set of the form (A \T) (n)/G , for some n ∈ N

and some subgroup G of Sn .

Recall that each orbitU ⊆ An contains all n-tuples of the same equality type. In particular, each orbit included in
A(n) × A(m) ⊆ An+m is induced by a partial injection ι from {1, . . . ,n} to {1, . . . ,m}:

Lemma 10. OrbitsU ⊆ A(n)×A(m)
are exactly sets of the form

{
(a,b) ∈ A(n) × A(m) ��� ∀i, j : a(i) = b (j) ⇐⇒ ι (i) = j

}
,

where ι is a partial injection from {1, . . . ,n} to {1, . . . ,m}.

Atom automorphisms preserve the size of the support: |supp(X) | = |supp(π (X)) | for every set X and π ∈ Aut. We
define atom dimension of an orbit as the size of the support of its elements. For instance, atom dimension of A(n) is n.

3 ORBIT-FINITE (INTEGER) LINEAR PROGRAMMING

We introduce now the setting of linear inequalities we work with, and formulate our main results. We are working in
vector spaces over the real3 field R, where vectors are indexed by a fixed orbit-finite set B, i.e., are functions v : B → R.
Observe that such a function v, understood as its diagram { (b, v(b)) | b ∈ B }, is orbit-finite exactly when it is finitely
supported (according to definitions in Section 2).

Definition 11. By a vector over B we mean any orbit-finite (i.e., finitely-supported) function v from B to R, written
v : B →fs R (vectors are written using boldface). Vectors with integer range, v : B →fs Z, we call integer vectors.

The set of all vectors over B we denote by Lin(B) = B →fs R. It is a vector space, with pointwise addition and scalar
multiplication: for v, v′ ∈ Lin(B), b ∈ B and q ∈ R, we have (v + v′) (b) = v(b) + v′(b) and (q · v) (b) = q · v(b). These
operation preserve the property of being finitely-supported, e.g., supp(v + v′) ⊆ supp(v) ∪ supp(v′). We define the
domain of a vector v ∈ Lin(B) as dom(v) = {b ∈ B | v(b) , 0 }. A vector v over B is finitary, written v : B →fin R, if
dom(v) is finite, i.e., v(b) = 0 for almost all b ∈ B.

Example 12. Let B = A(2) . Let α , β ∈ A be two fixed atoms. The function v : B → R defined, for χ ,γ ∈ A \
{
α , β
}
, by

v(α χ) = v(χα) = −1 v(αβ) = v(βα) = 3

v(β χ) = v(χβ) = −2 v(χγ) = 0

is an
{
α , β
}
-supported integer vector over B. It is not finitary, as dom(v) =

{
δσ ∈ A(2) ��� {δ ,σ } ∩

{
α , β
}
, ∅

}
is infinite.

Finitary
{
α , β
}
-supported vectors over B assign 0 to all elements of B except for αβ and βα . ◁

3 All the results of the paper still hold if reals R are replaced by rationals Q in all the subsequent definitions and results.

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

A finitary vector v with domain dom(v) =
{
b1, . . . ,bk

}
such that v(b1) = q1, . . . , v(bk) = qk , may be identified with

a formal linear combination of elements of B:

v = q1 · b1 + . . . + qk · bk . (10)

The subspace of Lin(B) consisting of all finitary vectors we denote by Fin-Lin(B) = B →fin R. For finite B of size
|B | = n, Lin(B) = Fin-Lin(B) is isomorphic to Rn .

For a subset X ⊆ B, we denote by 1X ∈ Lin(B) the characteristic function of X , i.e., the vector that maps each
element of X to 1 and all elements of B \ X to 0:

1X : b 7→

1 if b ∈ X

0 otherwise.

We write 1b instead of 1{b } , and 1 instead of 1B .

Lemma 13. Let T ⊆
fin
A and v ∈ Lin(B) such that supp(v) ⊆ T . Then

(i) v is constant, when restricted to every T -orbitU ⊆ B;

(ii) v is a linear combination of characteristic vectors 1U of T -orbitsU ⊆ B.

Proof. The first part follows immediately as T supports v. As required in the second part, we have:

v =
∑
U

v(bU) · 1U , (11)

whereU ranges over finitely many T -orbitsU ⊆ B, and bU ∈ U are arbitrarily chosen representatives of T -orbits. □

Notation 14. In the sequel, whenever we know that a vector v : B →fs R is constant over a T -orbitU ⊆ B, we may
write v̇(U) instead of v(b), where b ∈ U . In particular, when v is equivariant, we have the orbit-value vector

v̇ : orbits (B) → R,

where orbits (B) stands for the set of all equivariant orbitsU included in B.

We note that the inner product of vectors x, y ∈ Lin(B),

x · y =
∑
b ∈B

x(b) y(b),

is not always well-defined. We consider the right-hand side sum as well-defined when there are only finitely many
b ∈ B for which both x(b) and y(b) are non-zero (equivalently, the intersection dom(x) ∩ dom(y) is finite).4

Orbit-finite systems of linear inequalities. Fix an orbit-finite setC (it can be thought of as the set of unknowns). By
a linear inequality over C we mean a pair e = (a, t) where a : C →fs Z is an integer vector of left-hand side coefficients
and t ∈ Z is a right-hand side target value5. An R-solution (real solution) of e is any vector x : C →fs R such that the
inner product a · x is well-defined and

a · x ≥ t ;

4In particular, x · y is always well-defined when one of x, y is finitary.
5Rational coefficients and target are easily scaled up to integers.

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

x is an Z-solution (integer solution) if x : C →fs Z. We may also consider constrained solutions, e.g., finitary ones. A
linear equality a · x = t may be encoded by two opposite inequalities:

a · x ≥ t − a · x ≥ −t .

In this paper we investigate sets of inequalities indexed by an orbit-finite set. Formally, an orbit-finite system of
linear inequalities (over C) is the pair (A, t), where A : B ×C →fs Z is an integer matrix with row index B and column
index C , and t : B →fs Z is an integer target vector:

· · · c · · ·

...

b
...

...

· · · A(b, c) · · ·

...

...

t(b)
...

For b ∈ B we denote by A(b, _) ∈ Lin(C) the corresponding (row) vector. A solution of a system (A, t) is any vector
x ∈ Lin(C) which is a solution of all inequalities (A(b, _), t(b)), b ∈ B. Equivalently, x is a solution if A · x ≥ t, where ≥
is the pointwise order on vectors, and the (partial) operation of multiplication of a matrix A by a vector x is defined in
an expected way:

(A · x) (b) = A(b, _) · x

for every b ∈ B. The result A · x ∈ Lin(B) is well-defined if A(b, _) · x is well-defined for all b ∈ B.
By the following examples, restricting to equivariant, finitary or integer solutions only has impact on solvability:

Example 15. Let columns be indexed by C = A, and consider the system consisting of just one infinitary inequality
(1A, 1) (B is thus a singleton). Identifying column indexes α ∈ A with unknowns, the inequality may be written as:∑

α ∈A

α ≥ 1.

The inequality has an integer (finitary) solution, i.e., x = 1α for any α ∈ A, but no equivariant one. Indeed, equivariant
vectors x : A→fs R are necessarily constant ones x = r · 1A (cf. Lemma 13), and then the inner product

1A · x =
∑
α ∈A

x(α) =
∑
α ∈A

r

is well-defined only if r = 0, i.e. x(α) = 0 for all α ∈ A. ◁

Example 16. Let columns be indexed by C = A(2) and rows by B =
(
A
2
)
. Consider the system containing, for every{

α , β
}
∈ B, the inequality (1α β + 1βα , 1). Using the formal-sum notation as in (10) it may be written as (αβ + βα , 1) or,

identifying column indexes αβ ∈ C with unknowns, as:

αβ + βα ≥ 1 (α , β ∈ A,α , β).

All the equations are thus finitary, and the target is t = 1B . The constant vector x = 1
2 : αβ 7→ 1

2 is a solution, even if
we extend the system with symmetric inequalities

αβ + βα ≤ 1 (α , β ∈ A,α , β).

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

The extended system has no finitary solution. It has no integer solution either. Indeed, since we restrict to finitely
supported solutions only, any such solution x necessarily satisfies, for every distinct atoms α , β ∈ A \ supp(x), the
equality x(αβ) = x(βα), which is incompatible with x(αβ) + x(βα) = 1. ◁

4 RESULTS

Solvability problems. We investigate decision problems of solvability of orbit-finite systems of inequalities over the
ring of reals or integers. Consequently, we use F to stand either for R or Z. We identify a couple of variants. In the first
one we ask about existence of a finitely-supported solution:

Ineq-Solv(F):
Input: An orbit-finite system of linear inequalities.

Question: Does it have an F-solution?

We recall that solutions are finitely-supported (equivalently, orbit-finite), by definition. A closely related variant is
solvability of equalities, under the restriction to nonnegative solutions only:

Nonneg-Eq-Solv(F):
Input: An orbit-finite system of linear equations.

Question: Does it have a nonnegative F-solution?

Furthermore, both the problems have "finitary" versions, where one seeks for finitary solutions only, denoted as
Fin-Ineq-Solv(F) and Fin-Nonneg-Eq-Solv(F), respectively.

Three out of the four problems are inter-reducible, and hence equi-decidable, both for F = R and F = Z:

Theorem 17. Let F ∈ {R,Z}. The problems Ineq-Solv(F), Fin-Ineq-Solv(F) and Nonneg-Eq-Solv(F) are inter-
reducible. All reductions are in PTime, except the one from Ineq-Solv(F) to Fin-Ineq-Solv(F) which is in ExpTime, but in

PTime for fixed atom dimension.

(The proof is in Section A.1.) The three problems listed in Theorem 17 deserve a shared name orbit-finite linear
programming (in case of F = R) and orbit-finite integer linear programming (in case of F = Z). Figure 1 shows the
reductions of Theorem 17 using dashed arrows.

As our two main results we prove that the linear programming is decidable, while the integer one is not. Furthermore,
the complexity of the decision procedure is exponential in atom dimension of the input system, but polynomial in the
number of orbits. This yields ExpTime complexity in general, and PTime complexity for any fixed atom dimension of
input.

Theorem 18. Fin-Ineq-Solv(R) is decidable in ExpTime. For fixed atom dimension, it is decidable in PTime.

Theorem 19. Fin-Ineq-Solv(Z) is undecidable.

(The proofs occupy Sections 7 and 9, respectively.) Additionally, we settle the status of the last variant, Fin-Nonneg-
Eq-Solv(F). The problem is decidable for F = R, as it reduces to both Fin-Ineq-Solv(F) and Nonneg-Eq-Solv(F) via
reductions analogous to those of Theorem 17. We derive decidability also in case F = Z:

Theorem 20. Fin-Nonneg-Eq-Solv(F) is decidable, for F ∈ {R,Z}.

(The proof is in Section A.2.) In consequence of Theorems 19 and 20, in case F = Z the two arrows outgoing from
Fin-Nonneg-Eq-Solv(Z) in Figure 1 can not be completed by the reverse arrows.

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Fin-Ineq-Solv(F) Thm 17
--
Ineq-Solv(F)nn

��
Fin-Nonneg-Eq-Solv(F) //

OO

Nonneg-Eq-Solv(F)

Thm 17

CC

Fin-Eq-Solv(F)
--

OO

Eq-Solv(F)[16]mm

OO

Fig. 1. Diagram of reductions between solvability problems.

Linear equations vs inequalities. Solvability of orbit-finite systems of equations (Eq-Solv(F)) easily reduces to
Ineq-Solv(F), by replacing each equation with two opposite inequalities, but also to Nonneg-Eq-Solv(F), by replacing
each unknown with a difference of two unknowns. Likewise does the variant Fin-Eq-Solv(F), where one only seeks
for finitary solutions.

Theorem 21 ([16] Thms 4.4 and 6.1). Eq-Solv(F) and Fin-Eq-Solv(F) are inter-reducible and decidable6.

In summary, for each choice of F one may distinguish three different decision problems: solving of systems of linear
equations (two bottom nodes in Figure 1), solving of system of linear inequalities (three upper nodes in Figure 1), and
the intermediate problem Fin-Nonneg-Eq-Solv(F).

Optimisation problems. We consider F = R, due to the undecidability of Theorem 19. All variants of linear program-
ming mentioned above have corresponding maximisation problems. In each variant the input contains, except for a
system (A, t), an integer vector s : C →fs Z that represents a (partial) linear objective function S : Lin(C) →fs R, defined
by

S (x) = s · x.

The maximisation problem asks to compute the supremum of the objective function over all (finitary, nonnegative)
solutions of (A, t). A symmetrical minimisation problem is easily transformed to a maximisation one by replacing s
with −s. This yields three optimisation problems Ineq-Max(R), Fin-Ineq-Max(R) and Nonneg-Eq-Max(R) which are,
as before, inter-reducible:

Theorem 22. The problems Ineq-Max(R), Fin-Ineq-Max(R) and Nonneg-Eq-Max(R) are inter-reducible, with the

same complexity as in Theorem 17.

(The proof is in Section A.1.) As our last main result we strengthen Theorem 18 to the optimisation setting:

Theorem 23. Fin-Ineq-Max(R) is computable in ExpTime. For fixed atom dimension, it is computable in PTime.

(The proof is in Section 8.) Hence, for every fixed atom dimension, orbit-finite linear programming is not more costly
than the classical finite linear programming.

6The results of [16] apply to systems of equations where coefficients and solutions are from any fixed commutative and effective ring F. This includes
integers Z or rationals Q (and hence applies also to real solutions).

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Representation of input. There are several possible ways of representing input (A, t, s) to our algorithms. One
possibility is to rely on the equivalence between (hereditary) orbit-finite sets and definable sets [5, Sect. 4]. We choose
another standard possibility, as specified in items (1)–(3) below. First, the representation includes:

(1) a common support T ⊆fin A of A, t and s.

Second, knowing that B andC are disjoint unions ofT -orbits, and relying on Lemma 9, the representation includes also:

(2) a list of all T -orbits included in B and C , each one represented by some tuple a ∈ A(n) and G ≤ Sn ; and a list of
T -orbits included in B ×C , each one represented by some its element.

Finally, relying on Lemma 13, we assume that the representation includes also:

(3) a list of integer values ṫ(U), ṡ(U), and Ȧ(U), respectively, for allT -orbitsU included in B,C , and B×C , respectively
(we apply Notation 14). Integers are represented in binary.

Strict inequalities. In this paper we consider system of non-strict inequalities, for the sake of presentation. The decision
procedures of Theorems 18 and 23, work equally well if both non-strict and strict inequalities are allowed. Reductions
between Fin-Ineq-Solv(F) and Ineq-Solv(F) work as well, but not the reductions from (Fin-)Nonneg-Eq-Solv(F) to
(Fin-)Ineq-Solv(F) as we can not simulate equalities with strict inequalities.

Proviso. When investigating different systems of inequalities in the following sections, we implicitly consider their
real solutions, unless specified otherwise.

5 POLYNOMIALLY-PARAMETRISED INEQUALITIES

We now introduce a core problem that will serve as a target of reductions in the proofs of Theorems 18 and 23 in
Sections 7 and 8. Consider a finite inequality E of the form:

p1 (n) · x1 + . . . + pk (n) · xk ≥ q(n), (12)

where p1, . . . ,pn and q are univariate polynomials with integer coefficients, and x1, . . . ,xn are unknowns. The special
unknown n plays a role of a nonnegative integer parameter, and that is why we call such an inequality polynomially-

parametrised. For every fixed value n ∈ N, by evaluating all polynomials in n we get an ordinary inequality E (n) with
integer coefficients. Also, if n does not appear in E, i.e., all polynomials are constants, E is an ordinary inequality.

In the sequel we study solvability of a finite system P of such inequalities (12) with the same unknowns x1, . . . ,xk .
Again, by evaluating all polynomials in n we get an ordinary system P (n). We use the matrix form P (n) = (A(n), t(n))
when convenient. A fundamental problem is to check if for some value n ∈ N, the system P (n) has a real solution:

Poly-Ineq-Solv:
Input: A finite system of polynomially-parametrised inequalities P .

Question: Does P (n) have a real solution for some n ∈ N?

Theorem 24. Poly-Ineq-Solv is decidable.

(The proof is in Section A.3.) In the sequel we will not use the decision procedure of Theorem 24, but rather the algorithm
of Theorem 25 stated below, since our later applications only use monotonic instances of Poly-Ineq-Solv.

12

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

5.1 Monotonic polynomially-parametrised inequalities

A system P ismonotonic if there is some n0 ∈ N such that every solution of P (n), for an integer n ≥ n0, is also a solution
of P (n + 1). Note that monotonicity vacuously holds (with any value of n0) if n does not appear in P , i.e., when P is an
ordinary (non-parametrised) system. When P is monotonic, a solution of P (n) for n ≥ n0 is also a solution of P (n′) for
all integers n′ ≥ n. Therefore, instead of Poly-Ineq-Solv we prefer to use in the sequel the following core problem,
where we do not assume monotonicity but seek for a solution of P (n) for almost all (all sufficiently large) values of the
parameter n ∈ N:

Almost-all-Poly-Ineq-Solv:
Input: A finite system of polynomially-parametrised inequalities P .

Question: Is there n0 ∈ N and a vector (x1, . . . ,xk) which is a solution of P (n) for every integer n ≥ n0?

From now on, a vector (x1, . . . ,xk) which is a solution of an inequality E (n) (resp. a system P (n)) for almost all
n ∈ N we call almost-all-solution of E (resp. P). The rest of this section is devoted to designing a PTime algorithm for
Almost-all-Poly-Ineq-Solv:

Theorem 25. Almost-all-Poly-Ineq-Solv is in PTime.

Proof. Consider a polynomially-parametrised inequality E of the form:

p1 (n) · x1 + . . . + pk (n) · xk ≥ q(n). (13)

Let d be the maximal degree of polynomials p1, . . . ,pk ,q appearing in E. We call d the degree of E, and denote it also as
deg E. Let a1, . . . ,ak ,b be (integer) coefficients of the monomial nd in p1, . . . ,pk ,q, respectively. Therefore

p1 (n) = a1 · n
d + p′1 (n) . . . pk (n) = ak · n

d + p′k (n) q(n) = b · nd + q′(n) (14)

for some polynomials p′1, . . . ,p
′
k ,q of degree strictly smaller than d . The ordinary inequality with integer coefficients

a1 · x1 + . . . + ak · xk ≥ b, (15)

we call the head inequality of E, and denote by hd (E). Furthermore, the polynomially-parametrised inequality

p′1 (n) · x1 + . . . + p
′
k (n) · xk ≥ q′(n), (16)

obtained by removing all appearances of the monomial nd , we call the tail of E, and denote it by tl(E). We also consider
below the strict strengthening of the head inequality (15), denoted as hd> (E), and the equality, denoted as hd= (E):

a1 · x1 + . . . + ak · xk > b, a1 · x1 + . . . + ak · xk = b . (17)

As E is equal to the sum of its head hd (E) multiplied by nd , and its tail tl(E), we immediately deduce:

Claim 26. For every n ∈ N, every solution of hd= (E) is either a solution of both E (n) and tl(E) (n), or of none of them.

We now provide under- and over-approximations of the solution set of E (in Claims 28 and 27).

Claim 27. Every almost-all-solution of E is also a solution of hd (E).

Proof. Consider an inequality E (13) and its almost-all-solution x = (x1, . . . ,xk). Let d = deg E. We thus have

p1 (n)

nd
· x1 + . . . +

pk (n)

nd
· xk ≥

q(n)

nd
13

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

for all sufficiently large n ∈ N. Using the decomposition (14), we rewrite the above inequality to(
a1 +

p′1 (n)

nd

)
· x1 + . . . +

(
ak +

p′k (n)

nd

)
· xk ≥ b +

q′(n)

nd
.

As the degrees of all polynomials p′1, . . . ,p
′
k ,q
′ are smaller than d , all the fractions tend to 0 when n tends to∞, and we

may deduce
a1 · x1 + . . . + ak · xk ≥ b,

i.e., x is a solution of hd (E), as required. □

Claim 28. Every solution of hd> (E) is also an almost-all-solution of E.

Proof. Let d = deg E. Consider any vector x = (x1, . . . ,xk) satisfying the strict inequality hd> (E) (in (17) on the
left). Therefore for any polynomials p′1, . . . ,p

′
k ,q
′ of degree strictly smaller than d , the inequality(

a1 +
p′1 (n)

nd

)
· x1 + . . . +

(
ak +

p′k (n)

nd

)
· xk > b +

q′(n)

nd

is satisfied for all sufficiently large n ∈ N. Applying the above inequality to polynomials appearing in (14), we obtain:

p1 (n)

nd
· x1 + . . . +

pk (n)

nd
· xk >

q(n)

nd

for all sufficiently large n ∈ N. We multiply both sides by nd in order to derive that x is a solution of E (n) for all
sufficiently large n ∈ N, as required. □

Consider an instance P of Poly-Ineq-Solv, i.e., a finite system of polynomially-parametrised inequalities of the form
(13). Let hd (P) := { hd (E) | E ∈ P } be the system of head inequalities (note that degrees of different inequalities in P

may differ), and let hd> (P) := { hd> (E) | E ∈ P }. Using Claims 28 and 27 we derive:

Claim 29. Every almost-all-solution of P is also a solution of hd (P).

Claim 30. Every solution of hd> (P) is also an almost-all-solution of P .

For time estimation, as the size measure |E | of an inequality E we take the total number of monomials appearing in
E. In particular, |E | > |tl(E) |. The size of a system P is the sum of sizes of all its inequalities. For two systems P ′, P ′′

of inequalities, we denote their union by P ′ ∪ P ′′ (clearly, union of systems corresponds to conjunction of constraints).
We write P ∪ E instead of P ∪ {E}. By P \ E we denote the system obtained from P by removing an inequality E.

The algorithm. A decision procedure for Almost-all-Poly-Ineq-Solv iteratively transforms an instance of the form
P ∪ Γ, where P is a system of polynomially-parametrised inequalities, and Γ is a system of ordinary (non-parametrised)
equalities over the same unknowns. Initially, Γ is empty. We define a transformation step that given such an instance
P ∪ Γ, either confirms its solvability (existence of an almost-all-solution), or confirms its non-solvability (non-existence
of an almost-all-solution), or outputs an instance P ′ ∪ Γ′ which has the same almost-all-solutions as P ∪ Γ, and such
that |P ′ | < |P |. Almost-all-Poly-Ineq-Solv is solved by iterating the transformation step until it confirms either
solvability or non-solvability. Termination after a polynomial number of iterations is guaranteed, as |P |, while being
nonnegative, strictly decreases in each iteration. The transformation step invokes a PTime procedure for ordinary linear
programming (as detailed in (18) and (19) below). Here is a pseudo-code of the algorithm:

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Algorithm 1 (Almost-all-Poly-Ineq-Solv)
1: Input: A polynomially-parametrised system P .

2: Γ ← ∅

3: repeat

4: if hd (P) ∪ Γ (18) is non-solvable then ▷ see Claim 29
5: report non-solvability of P
6: else
7: if hd> (E) ∪ hd (P \ E) ∪ Γ (19) is solvable for all E ∈ P then ▷ see Claims 30, 31
8: report solvability of P
9: else
10: choose any E ∈ P such that hd> (E) ∪ hd (P \ E) ∪ Γ (19) is non-solvable ▷ see Claim 32

11: P ← (P \ E) ∪ tl(E)
12: Γ ← Γ ∪ hd= (E)

13: until solvability or non-solvability of P is reported

Transformation step. The step, defined by the body of the repeat loop, proceeds as follows. If the ordinary system

hd (P) ∪ Γ (18)

is non-solvable, non-solvability of P ∪ Γ is reported. This is correct due to Claim 29. Otherwise, knowing that (18) is
solvable, the algorithm checks, for every E ∈ P , whether the strengthened system

hd> (E) ∪ hd (P \ E) ∪ Γ, (19)

obtained from (18) by replacing the inequality hd (E) with hd> (E), is also solvable. If this is the case, solvability of
P ∪ Γ is reported. This is correct due to Claim 30 combined with the following one:

Claim 31. Solvability of (19) for every inequality E in P , implies solvability of

hd> (P) ∪ Γ. (20)

Proof. Letm be the number of inequalities in P , and suppose that for every inequality E in P , the system (19) has
a solution, xE . All xE are thus solutions of (18), and since the solution set of (18) is convex, the average of all these
solutions 1

m ·
∑
E∈P xE is then a solution of hd> (P) ∪ Γ. □

Otherwise, we know that some inequality E in P is degenerate, namely (19) is non-solvable. In other words, the
equality hd= (E) is implied by (18). The algorithm chooses a degenerate inequality E ∈ P and creates a new instance
P ′ ∪ Γ′, where

P ′ = (P \ E) ∪ tl(E) Γ′ = Γ ∪ hd= (E).

In words, P ′ is obtained from P by replacing E with tl(E), and Γ′ is obtained from Γ by adding hd= (E). As |tl(E) | < |E |,
we have |P ′ | < |P |, as required. This completes description of the transformation step.

Correctness. By Claim 26 we derive:

Claim 32. Systems P ∪ Γ and P ′ ∪ Γ′ have the same almost-all-solutions.

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Proof. In one direction, consider an almost-all-solution x of P ′∪ Γ′. It is trivially a solution of Γ. Furthermore, being
a solution of hd= (E) and of tl(E) (n) for almost all n ∈ N, by Claim 26 it is a solution of E (n) for almost all n, and
hence an almost-all-solution of P .

Conversely, consider an almost-all-solution x of P ∪ Γ. By Claim 29, it is a solution of hd (P) ∪ Γ and hence, as E is
degenerate, also a solution of hd= (E). Therefore x is a solution of Γ′. Furthermore, being a solution of hd= (E) and of
E (n) for all sufficiently large n ∈ N, by Claim 26 it is also a solution of tl(E) (n) for all sufficiently large n ∈ N, and
hence an almost-all-solution of P ′. □

Complexity. We note that the main loop of the algorithm always terminates, at latest when P = ∅, as in this case
the system (19) is vacuously solvable for all E ∈ P . Solvability of (18) in line 4 is checked by one solvability test of an
ordinary system of inequalities. Solvability of (19) in line 7 is also checkable in polynomial time due to the following
claim applied to Q = hd (P) ∪ Γ:

Claim 33. Given an ordinary system Q of linear inequalities and E ∈ Q , one can check, in PTime, solvability of

E> ∪ (Q \ E), where E> is the strict strengthening of E.

Proof. We invoke ordinary linear programming twice (in PTime, see e.g. [29, Section 8.7]). Let E be of the form
a1 · x1 + . . . + ak · xk ≥ b. If Q is non-solvable, the algorithm reports non-solvability of E> ∪ (Q \ E). Otherwise, the
algorithm computes the supremumM ∈ Q ∪ {∞} of the objective function

S (x1, . . . ,xk) = a1 · x1 + . . . + ak · xk ,

constraint by Q \ E, by invoking ordinary linear programming. By solvability of Q we know thatM ≥ b. IfM > b, the
algorithm reports solvability, otherwise it reports non-solvability. □

Number of iterations of transformation step is polynomial (as |P | decreases in each iteration) and hence so is the
number of inequalities in Γ. In consequence, the number of invocations of ordinary linear programming is polynomial
in each transformation step, and hence polynomial in total, and each its instance of ordinary linear programming is
also polynomial. Summing up, our decision procedure for Almost-all-Poly-Ineq-Solv works in PTime.

The proof of Theorem 25 is thus completed. □

Remark 34. We do not need any explicit bound on the threshold value of n0 guaranteeing that every almost-all-
solution of P is a solution of P (n) for every integer n ≥ n0. On the other hand, an exponential bound is derivable from
our algorithm. Assuming P has an almost-all-solution, P has also an almost-all-solution xwhich is at most exponentially
large, e.g., a solution of an ordinary system (20). Substituting x into P (n) yields a system of univariate polynomial
inequalities, and one can take as threshold n0 any integer larger than all nonnegative roots of all polynomials appearing
in the system. As roots of univariate polynomials are polynomially bounded, we deduce the bound for n0. ◁

Example 35. Recall two polynomially-parametrised inequalities (8) in Example 4 in Section 1. They have the same
head inequality x ≥ 1, which is trivially solvable, and hence the algorithm reports solvability after the first iteration.
Both the tail inequalities, −x ≥ 1 and 0 ≥ 1, are ordinary (non-parametrised).

The following instance P0 admits three iterations of the main loop of the algorithm:

n2 · x − n2 · y + n · z ≥ 0

−n · x + (n + 3) · y ≥ 0

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

The head inequalities of these two inequalities are x −y ≥ 0 and −x +y ≥ 0, respectively. Therefore the system hd (P0)
is equivalent to x = y and hence solvable, while hd> (P0) is not, and both inequalities in P0 are degenerate. Supposing
the first one is chosen by the algorithm, after the first iteration we get the following systems P1 (left) and Γ1 (right):

n · z ≥ 0

−n · x + (n + 3) · y ≥ 0

x − y = 0

In the second iteration, the system hd (P1) ∪ Γ1 (left) is solvable but the system hd> (P1) ∪ Γ1 (right) is not:

z ≥ 0

−x + y ≥ 0

x − y = 0

z > 0

−x + y > 0

x − y = 0

The algorithm picks up the second inequality in P1, the only degenerate one, and sets P2 (left) and Γ2 (right):

n · z ≥ 0

3 · y ≥ 0

x − y = 0

−x + y = 0

In the last third iteration, the system hd> (P2) ∪ Γ2 (obtained by replacing the inequality n · z ≥ 0 by z > 0) is solvable,
and hence solvability of P0 is reported. ◁

6 FINITELY SETWISE-SUPPORTED SETS

In this section we introduce the novel concept of setwise-support, playing a central role in the proofs of Theorems 18
and 23. In short, we replace pointwise stabilisers by setwise ones.

For any T ⊆fin A consider the set of all atom automorphisms that preserve T as a set only (called setwise-T -

automorphisms):
Aut{T } = { π ∈ Aut | π (T) = T } .7

Accordingly, we define setwise-T -orbits as equivalence classes with respect to the action of Aut{T } : two sets (elements)
x ,y are in the same setwise-T -orbit if π (x) = y for some π ∈ Aut{T } . We have

AutT ⊆ Aut{T } ⊆ Aut,

and hence every equivariant orbit splits into finitely many setwise-T -orbits, each of which splits in turn into finitely
many T -orbits. A set X is setwise-T -supported if π (X) = X for all π ∈ Aut{T } . Equivalently, X is a union of setwise-
T -orbits. Note that each setwise-T -supported set is T -supported, but the opposite implication is not true. When T is
irrelevant, we speak of finitely setwise-supported sets. Finally notice that a setwise-T -supported set is not necessarily
setwise-T ′-supported for T ⊆ T ′, which distinguishes setwise-support from standard support.

Example 36. Let T =
{
α , β
}
⊆ A. The vector v, defined in Example 12 in Section 3, is not setwise-T -supported.

Indeed,
π (v) (α , χ) = v(β , χ) , v(α , χ)

7 Aut{T } is often called the setwise stabilizer of T .

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

for any χ < T and π ∈ Aut{T } that swaps α and β but preserves all other atoms. The averaged vector v′ defined by

v′(α χ) = v′(χα) = −1.5 v′(αβ) = v′(βα) = 3

v′(β χ) = v′(χβ) = −1.5 v′(χγ) = 0,

for χ ,γ ∈ A \
{
α , β
}
, is setwise-T -supported. Notice that v′, is not setwise-(T ∪

{
γ
}
)-supported, for γ < T . ◁

Clearly, with the size of T increasing towards infinity, the number of T -orbits included in one equivariant orbit may
increase towards infinity as well. The crucial property of setwise-T -supported sets is that they do not suffer from this
unbounded growth: the number of setwise-T -orbits included in a fixed equivariant orbit is bounded, no matter how
large T is. We will need this property for setwise-T -orbitsU ⊆ A(n) , n ∈ N, and it follows immediately by Lemma 37.
Intuitively speaking, each such setwise-T -orbit is determined by a subset I ⊆ {1, . . . ,n} of positions which is filled by
arbitrary pairwise different atoms fromT , the remaining positions {1, . . . ,n} \ I are filled by arbitrary atoms from A \T
(cf. Lemma 8 in Section 2).

Lemma 37. Let T ⊆
fin
A of size |T | ≥ n. Each setwise-T -orbitU ⊆ A(n)

is of the form

U =
{
a ∈ A(n) ���� Πn, I (a) ∈ T

(ℓ) , Πn, {1, ...,n }\I (a) ∈
(
A \T

) (n−ℓ) }
, (21)

for some I ⊆ {1, . . . ,n} of size ℓ.

Proof. Consider any tuple t = (α1, . . . ,αn) ∈ A(n) . Let I = { i ∈ {1, . . . ,n} | αi ∈ T } denote the positions in t filled
by atoms from T . By applying all setwise-T -automorphisms to t , we obtain all tuples, where positions from I are
arbitrarily filled by elements of T , and positions outside of I are arbitrarily filled by elements of A \T . □

Notation 38. Given a finitary vector x : C →fin R and an equivariant orbitU ⊆ C , we write

xΣ (U) =
∑
c ∈U

x(c)

to denote for the sum of x(c) ranging over all c ∈ U . This yields the finite orbit-sum vector

xΣ : orbits (C) → R

mapping the equivariant orbits included in C to R.

A key observation is that a solvable equivariant system necessarily has a finitely setwise-supported solution:

Lemma 39. If an equivariant system of inequalities (A, t) has a finitaryT -supported solution x then it also has a finitary

setwise-T -supported one y such that xΣ = yΣ.

Proof. Let x : C →fs R be a solution of the system, namely A · x ≥ t. Let T = supp(x) and n = |T |. As (A, t)
is equivariant, atom automorphisms preserve being a solution, namely for every ρ ∈ Aut, the vector ρ (x) is also a
solution: A · ρ (x) ≥ t. Consider AutA\T , the subgroup of atom automorphisms that only permute T and preserve all
other atoms. Knowing that the size of AutA\T is n!, we have

A ·
(∑
ρ ∈AutA\T

ρ (x)
)
≥ n! · t,

18

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

and hence the vector y defined by averaging (cf. Example 36)

y =
1
n!
·
∑

ρ ∈AutA\T

ρ (x) (22)

is also a solution of the system, namely A · y ≥ t. We notice that for finitary x, the vector y is finitary as well. By
the very definition, the averaging (22) preserves the orbit-sum: xΣ = yΣ. Furthermore, we claim that the vector y is
setwise-T -supported. To prove this, we fix an arbitrary π ∈ Aut{T } , aiming at showing that π (y) = y. It factors through
π = σ ◦ ρ for some ρ ∈ AutA\T and σ ∈ AutT . Indeed, ρ acts as π on T but is identity elsewhere, while σ acts as π
outside of T but is identity on T . A crucial but simple observation is that, by the very construction of y, we have

ρ (y) = y. (23)

Indeed, as y is defined by averaging over all ρ ′ ∈ AutA\T ,

ρ
(∑
ρ′∈AutA\T

ρ ′(x)
)
=

∑
ρ′∈AutA\T

ρ ◦ ρ ′(x) =
∑

ρ′∈AutA\T

ρ ′(x)

which implies ρ (y) = y. Moreover, as action of atom automorphisms commutes with support, we have

supp(ρ ′(x)) = ρ ′(supp(x))

for every ρ ′ ∈ Aut, and therefore
supp(ρ ′(x)) = supp(x)

for every ρ ′ ∈ AutA\T . Therefore T supports the right-hand side of (22), which means that supp(y) ⊆ T and implies

σ (y) = y. (24)

By (23) and (24) we obtain π (y) = y, as required.
Finally, the equality xΣ = yΣ follows directly by (22). □

Example 40. Recall the system of inequalities from Examples 3 and 5. Its finitary solutions correspond to finite
directed graphs, whose vertices and edges are labeled by real numbers satisfying constraints (5) and (6). According to
Lemma 39, if such a directed graph existed, there would also exist a directed clique, where labels of all vertices are
pairwise equal, and labels of all edges are pairwise equal as well, which satisfying constraints (5) and (6). In particular, all
edges incoming to a vertex would carry the same value as all outgoing edges. This requirement is clearly contradictory
with constraints (5) and (6), and hence the system has no finitary solutions. ◁

In the next section we rely on the fact that existence of a setwise-S-supported solution implies existence of such a
solution for any support larger than S . The fact follows immediately from Lemma 39, since every setwise-S-supported
vector is trivially T -supported, for every superset T of S :

Corollary 41. If an equivariant system of inequalities (A, t) has a finitary setwise-S-supported solution x, then for

every supersetT of S of size |T | = |S | + 1, the system (A, t) has a finitary setwise-T -supported solution y such that xΣ = yΣ.

7 DECIDABILITY OF REAL SOLVABILITY

In this section we prove Theorem 18 by a reduction of Fin-Ineq-Solv(R) to Poly-Ineq-Solv (cf. Example 4 in Section 1).
19

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

7.1 Preliminaries

Consider an orbit-finite system of inequalities given by a matrix A : B ×C →fs Z and a target vector t : B →fs Z.

Lemma 42. W.l.o.g. we can assume that B and C are disjoint unions of equivariant orbits A(k)
, k ∈ N:

B = A(n1) ⊎ . . . ⊎ A(ns) C = A(m1) ⊎ . . . ⊎ A(mr) (25)

(see the figure below), and that A and t are equivariant. The size blow-up is exponential in atom dimension, but polynomial

when atom dimension is fixed.

A(m1) A(m2) · · · A(mr)

A =

A(n1)

A(n2)

· · ·

A(ns)

������������

������������

������������

������������

������������

������������

t =

(The proof is in Section A.4.) Note that this includes the case of finite systems, namely n1 = . . . = ns = m1 = . . . =

mr = 0.

7.2 Idea of the reduction

Suppose only finitary T -supported solutions are sought, for a fixed T ⊆fin A. Fin-Ineq-Solv(R) reduces then to a finite
system of inequalities (A′, t′) obtained from (A, t) as follows:

(1) Keep only columns indexed by T -tuples (= elements of finite T -orbits) c ∈ C , discarding all other columns.
(2) Pick arbitrary representatives of all T -orbits included in B, and keep only rows of A and entries of t indexed by

the representatives, discarding all others.

The system (A′, t′) is solvable if and only if the original one (A, t) has a finitaryT -supported solution. Indeed, discarding
unknowns as in (1) is justified as a finitary T -supported solution of (A, t) assigns 0 to each non-T -tuple. Discarding
inequalities as in (2) is also justified. Indeed, each inequality in the original system is obtained by applying some atom
T -automorphism to an inequality in (A′, t′), while atom T -automorphisms preserve T -supported solutions of (A′, t′),
which implies that every T -supported solutions of (A′, t′) is also a solution of all inequalities in the original system.

The above reduction yields no algorithm yet, as we do not know a priori any bound on size of T , and the size of
(A′, t′) depends on the number of T -orbits and hence grows unboundedly when T grows. We overcome this difficulty
by using setwise-T -orbits instead of T -orbits, and relying on Lemmas 39 and 37. The latter one guarantees that the
number of setwise-T -orbits is constant - independent of T . Once we additionally merge (sum up) all columns indexed
by elements of the same setwise-T -orbit, we get A′ of size independent of T .

This still does not yield an algorithm, as entries of A′ change when T grows. We however crucially discover that the
growth of the entries of A′ is polynomial in n = |T |, for sufficiently large n. Therefore, A′ is a matrix of polynomials
in one unknown n, and solvability of (A, t) is equivalent to solvability of (A′, t′) for some value n ∈ N. As argued in
Section 5, the latter solvability is decidable.

20

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

7.3 Reduction of Fin-Ineq-Solv(R) to Almost-all-Poly-Ineq-Solv

Let us fix an equivariant system (A, t). We construct a finite system P2 of polynomially-parametrised inequalities such
that (A, t) has a finitary solution if and only if P2 (n) has a solution for almost all n ∈ N.

Let us denote by d = max {n1, . . . ,ns ,m1, . . . ,mr } the maximal atom dimension of orbits included in B and C .
Let T ⊆fin A be an arbitrary finite subset of atoms. Both B and C split into setwise-T -orbits, refining (25):

B = B1 ⊎ . . . ⊎ BN C = C1 ⊎ . . . ⊎CM ′ . (26)

Let C1, . . . ,CM be the finite setwise-T -orbits among C1, . . . ,CM ′ (clearly,M and N may depend on T). Importantly, by
Lemma 37, N and M do not depend on T as long as |T | ≥ d . In fact M = r , the number of orbits included in C , as by
Lemma 37 we deduce:

Lemma 43. Assuming |T | ≥ ℓ, the equivariant orbit A(ℓ)
includes exactly one finite setwise-T -orbit, namely T (ℓ)

.

Our reduction proceeds in two steps: first, we derive a finite polynomially-parametrised system P1, and then we
transform it further to a monotonic system P2. Monotonicity of P2 guarantees correctness of reduction.

Step 1 (finite polynomially-parametrised system). Our construction is parametric inT . Letb1, . . . ,bN be arbitrarily
chosen representatives of setwise-T -orbits included in B. Given A and t, we define an N×M matrix A1 (T) and a vector
t1 (T) ∈ ZN as follows:

(1) Pick columns of A(T) indexed by elements of all finite setwise-T -orbits included inC , and discard other columns;
this yields a matrix A′(T) with finitely many columns (number thereof depending on T).

(2) Merge (sum up) columns of A′(T) indexed by elements of the same setwise-T -orbit; this yields a matrix A′′(T)
withM columns (M independent of T).

(3) Pick N rows of A′′, indexed by b1, . . . ,bN , and discard other rows; this yields an N ×M matrix A1 (T).
(4) Likewise pick the corresponding entries of t and discard others, thus yielding a finite vector t1 (T) ∈ ZN .

For b ∈ B and Cj ⊆ C , j ∈ {1, . . . ,M }, we write AΣ (b,Cj) for the finite sum ranging over elements of Cj :

AΣ (b,Cj) =
∑
c ∈Cj

A(b, c),

which allows us to formally define the B×M matrix A′′(T), the N×M matrix A1 (T) and the vector t1 (T) ∈ ZN :

A′′(T) (b, j) = AΣ (b,Cj) A1 (T) (i, j) = A′′(T) (bi , j) = AΣ (bi ,Cj) t1 (T) (i) = t(bi). (27)

Example 44. We explain how the system (8) in Example 4 in Section 1 is obtained from the system (1) in Example 1.
Fix a non-empty T ⊆fin A. The set A includes just one finite setwise-T -orbit, namely T . Therefore the matrix A′(T) has
|T | columns, A′′(T) has just one column, and the system (A1 (T), t1 (T)) has just one unknown. Furthermore, the set A
includes two setwise-T -orbits, the finite one T plus the infinite one A \T , and therefore the system (A1 (T), t1 (T)) has
two inequalities. Pick arbitrary representatives of the setwise-T -orbits, b1 ∈ T and b2 ∈ (A \T). We have

A1 (T) (1, 1) =
∑
c ∈T

A(b1, c) = |T | − 1 A1 (T) (2, 1) =
∑
c ∈T

A(b2, c) = |T |.

Replacing |T | with n yields the system (A1 (T), t1 (T)):

n − 1
n

· x ≥

1
1

(28)

21

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

which happens to be monotonic. In general, the system obtained so far needs not be monotonic, but we will ensure
monotonicity in the subsequent step. ◁

The choice of representatives bi is irrelevant, and hence A1 (T) and t1 (T) are well defined, since rows of A′′ indexed
by any two elements of B belonging the same setwise-T -orbit are equal, and likewise the corresponding entries of t:

Lemma 45. If b,b ′ ∈ B are in the same setwise-T -orbit, then t(b) = t(b ′) and AΣ (b,Cj) = AΣ (b ′,Cj) for every

j ∈ {1, . . . ,M }.

Proof. Let π ∈ Aut(T) be such that π (b) = b ′. As t is equivariant, it is necessarily constant on the whole equivariant
orbit to which b and b ′ belong (cf. Lemma 13), and hence t(b ′) = t(b).

For the second point fix j ∈ {1, . . . ,M }. As A is equivariant, it is constant over the orbit included in B ×C to which
(b, c) belongs, for every c ∈ C , and hence A(b, c) = A(π (b),π (c)). This implies∑

c ∈Cj

A(b, c) =
∑
c ∈Cj

A(π (b),π (c)) =
∑
c ∈Cj

A(b ′,π (c)).

Since π is a setwise-T -automorphism, when restricted to the setwise-T -orbit Cj it is a bijection Cj → Cj , and hence the
two sums below differ only by the order of summation and are thus equal:∑

c ∈Cj

A(b ′,π (c)) =
∑
c ∈Cj

A(b ′, c).

The two above equalities imply the claim, namely
∑
c ∈Cj A(b, c) =

∑
c ∈Cj A(b

′, c). □

Notation 46. LetT ⊆fin A. Due to Lemma 43, the set of finite setwise-T -orbits {C1, . . . ,CM } included inC is in bijection
with the set orbits (C) = {U1, . . . ,UM } of equivariant orbits included in C . W.l.o.g. assume Cj ⊆ Uj for j = 1 . . .M .
Take any finitary setwise-T -supported vector x : C →fin R. It is non-zero only inside finite setwise-T -orbits Cj , which
implies

xΣ (Cj) = xΣ (Uj)

for j = 1 . . .M (cf. Notation 38). Furthermore, x is constant inside each Cj , which allows us to write ẋ(Cj) (cf. Notation
14). For notational convenience we slightly relax Notations 14 and 38 from now on, and treat the orbit-value and
orbit-sum vectors as M-tuples, ẋ, xΣ ∈ RM , with obvious meaning ẋ(j) = ẋ(Cj) and xΣ (j) = xΣ (Cj). We note the
(obvious) relation between ẋ and xΣ:

xΣ (j) = |Cj | · ẋ(j). (29)

The following lemma, being a cornerstone of correctness of the whole reduction, is now not difficult to prove:

Lemma 47. Let |T | ≥ d and x : C →
fin
R a finitary setwise-T -supported vector. The following conditions are equivalent:

• x is solution of (A, t);
• ẋ is a solution of P1 (T) = (A1 (T), t1 (T)).

Proof. Take any setwise-T -supported vector x : C →fin R, and let x′ be the restriction of x to C ′ = C1 ⊎ . . . ⊎CM .
We argue that the following four conditions are equivalent, which implies the claim:

(1) x is solution of (A, t);
(2) x′ is solution of (A′(T), t);
(3) ẋ is solution of (A′′(T), t);

22

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

(4) ẋ is a solution of (A1 (T), t1 (T)).

First, as x is finitary, we have x(c) = 0 for all c < C ′, and hence A′(T) · x′ = A · x. This implies equivalence of (1)
and (2). Second, as A′′ is obtained from A′ by summing columns over a setwise-T -orbit where the vector x, being
setwise-T -supported, is constant, we have A′′(T) · ẋ = A′(T) · x′. This implies equivalence of (2) and (3). Finally, (3)
implies (4) as (A1 (T), t1 (T) is obtained from (A′′(T), t) by removing inequalities. For the reverse implication, we recall
that Lemma 45 shows that A′′(b, j) = A′′(bi , j) and t(b) = t(bi) for every i ∈ {1, . . . ,N } and b ∈ Bi , and therefore
A′′(T) contains the same inequalities as A1 (T). In consequence, (4) implies (3). □

The function T 7→ P1 (T) is equivariant, i.e., invariant under action of atom automorphisms. In consequence, the
entries of A1 (T) and t1 (T) do not depend on the setT itself, but only on its size |T |. Indeed, if |T | = |T ′ | then π (T) = T ′

for some atom automorphism π , and hence π (P1 (T)) = P1 (T ′). Since the system P1 (T) is atom-less we have also
π (P1 (T)) = P1 (T), which implies P1 (T) = P1 (T ′). We may thus meaningfully write P1 (|T |) = (A(|T |), t(|T |)), i.e.,
P1 (n) = (A1 (n), t1 (n)) for n ∈ N (cf. Example 44).

We argue that the dependence on |T | is polynomial, as long as |T | ≥ 2d :

Lemma 48. There are univariate polynomials pi j (n) ∈ Z[n] such that A1 (n) (i, j) = pi j (n) for n ≥ 2d .

Proof. Let n = |T |. Fix a setwise-T -orbits Bi ⊆ B and a finite setwise-T -orbit Cj ⊆ C . Each of them is included in a
unique equivariant orbit, say:

Bi ⊆ B′ = A(p) Cj ⊆ C ′ = A(ℓ)

(cf. the partitions (25)). Recall Lemma 37: Bi is determined by the subset I ⊆
{
1, . . . ,p

}
of positions where atoms of T

appear in tuples belonging to Bi . Letm = |I |. On the other handCj = T
(ℓ) (cf. Lemma 43). Note thatm = |T ∩ supp(bi) |.

We are going to demonstrate that the value AΣ (bi ,Cj) is polynomially depending on n = |T |. We will use the
polynomials n(w) of degreew , forw ≤ d , defined by

n(w) = n · (n − 1) · . . . · (n −w + 1). (30)

In the special case ofw = 0, we put n(w) = 1. The value n(w) can be interpreted as follows:

Claim 49. For n ≥ w , n(w)
is equal to the number of arrangements ofw items chosen from n objects into a sequence.

Denote by D the set of equivariant orbitsU ⊆ B′ ×C ′. ForU ∈ D, we putU (bi ,Cj) :=
{
c ∈ Cj

��� (bi , c) ∈ U
}
. As A

is equivariant, the value A(bi , c) depends only on the orbit to which (bi , c) belongs. We write A(U), forU ∈ D, and get:

Claim 50. AΣ (bi ,Cj) =
∑
U ∈D A(U) · |U (bi ,Cj) |.

By Lemma 10 in Section 2, orbitsU ⊆ B′×C ′ are in one-to-one correspondence with partial injections ι :
{
1, . . . ,p

}
→

{1, . . . , ℓ}. We writeUι for the orbit corresponding to ι. Let dom(ι) = { x | ι (x) is defined } denote the domain of ι.

Claim 51. Uι (bi ,Cj) , ∅ if and only if dom(ι) ⊆ I .

Indeed, recall again Lemma 10 which yieldsUι (bi ,Cj) =
{
c ∈ Cj

��� ∀x ,y : bi (x) = c (y) ⇐⇒ ι (x) = y
}
. If dom(ι) ⊆ I ,

the setUι (bi ,Cj) contains tuples c ∈ Cj with fixed values on positions J = { ι (x) | x ∈ dom(ι) }, namely

bi (x) = c (ι (x)), (31)

and arbitrary other atoms from T elsewhere, and therefore is nonempty. If there is x ∈ dom(ι) \ I then bi (x) < T and
therefore no c ∈ Cj satisfies (31). Claim 51 is thus proved.

23

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Claim 52. Let k = |dom(ι) | be the number of pairs related by ι. IfUι (bi ,Cj) , ∅ then |Uι (bi ,Cj) | = (n −m) (ℓ−k) .

According to (31), tuples c ∈ Uι (bi) have fixed values on k positions in J . The remaining ℓ − k positions in tuples
c ∈ Uι (bi ,Cj) are filled arbitrarily using n −m atoms from T \ supp(bi). Due to the assumption that n ≥ 2d , we have
n −m ≥ d ≥ ℓ − k , and therefore using Claim 49 (forw = ℓ − k) we deduce |Uι (bi ,Cj) | = (n −m) (ℓ−k) , thus proving
Claim 52.

Once bi ∈ Bi and U ∈ D are fixed, the values k, ℓ andm are fixed too, and the formula of Claim 52 is an univariate
polynomial of degree ℓ − k . The formula of Claim 50 yields the required polynomial8 A(n) (i, j) = pi j (n) and hence the
proof of Lemma 48 is completed. □

Relying on Lemma 48 we get a polynomially-parametrised system P1 (n) = (A1 (n), t1 (n)).

Step 2 (monotonicity). The system P1 constructed so far, does not have to be monotonic in general. As an immediate
corollary of Lemma 47 and Corollary 41, we only know that If P1 (n) has a solution for n ≥ d , then P1 (n + 1) has a
(potentially different) solution. We slightly modify the system P1 in order to achieve monotonicity.

Before defining formally the new system P2 (n) = (A2 (n), t2 (n)), we point to our objective: we aim at replacing the
orbit-value vector ẋ in Lemma 47 by the orbit-sum vector xΣ, as in Lemma 55 below. In other terms, we want the
solutions y1 and y2 of P1 (n) and P2 (n), respectively, differ on position j by the multiplicative factor of |Cj |, namely

y2 (j) = |Cj | · y1 (j) (32)

for j = 1, . . . ,M (cf. (29)). The size |Cj | of the setwise-T -orbit Cj , where |T | = n, is equal to

|Cj | = n(ej) , (33)

where Cj ⊆ A
(ej) , i.e., ej is the atom dimension of the equivariant orbit including Cj , assuming |T | ≥ ej . These

considerations lead to the following formal definition of P2:

A2 (n) (i, j) = A1 (n) (i, j) ·
n(d)

n(ej)
t2 (i) = t1 (i) · n(d) (34)

where A1 (n) (i, j) = pi j (n). We rely on the following fact:

Claim 53. n(w) · (n −w) (u) = n(w+u) .

By the claim, all coefficients in (34) are polynomials, namely: A2 (n) (i, j) = pi j (n) · (n − ej)
(d−ej) , since ej ≤ d . It

remains to conclude that the systems P1 (n) and P2 (n) have the same solutions modulo (32):

Lemma 54. Let n ≥ d and let y1, y2 ∈ RM satisfy y2 (j) = n(ej) · y1 (j) for j = 1, . . . ,M . Then y1 is a solution of P1 (n)

if and only if y2 is a solution of P2 (n).

Combination of (29), (33), and Lemmas 47 and 54 yields:

Lemma 55. Let |T | = n ≥ d and x : C →
fin
R a finitary setwise-T -supported vector. The following conditions are

equivalent:

• x is solution of (A, t);
• xΣ is a solution of P2 (n).

8 This confirms, in particular, that A(T) (i, j) is independent from the actual set T , and only depend on its size n = |T |.

24

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Example 56. The system (8) in Example 4 is obtained from (28) in Example 44 by applying the definition (34). Indeed,
M = d = e1 = 1 and hence A stays unchanged, while the right-hand side vector t gets multiplied by n(1) = n. ◁

Lemma 57 (Monotonicity). Let n ≥ d . Every solution of P2 (n) is also a solution of P2 (n + 1).

Proof. Suppose y is a solution of P2 (n), for n ≥ d . Let T ⊆fin A be any subset of atoms of size |T | = n. Let x be the
finitary setwise-T -supported vector uniquely determined by

xΣ = y. (35)

By Lemma 55, x is a solution of (A, t). We apply Corollary 41 to obtain another finitary solution x′ of (A, t), setwise-T ′-
supported by some T ′ of size |T |′ = n + 1, and having the same orbit-summation mapping:

xΣ = (x′)Σ . (36)

Equalities (35) and (36) imply (x′)Σ = y. By Lemma 55 again, (x′)Σ = y is a solution of P2 (n + 1), as required. □

Combining Lemmas 39, 48, 55 and 57 we derive correctness of reduction (the constraint n ≥ 2d is inherited from the
assumption in Lemma 48):

Corollary 58. The following conditions are equivalent:

• (A, t) has a finitary solution,

• P2 (n) has a solution for some integer n ≥ 2d ,
• P2 (n) has a solution for almost all n ∈ N.

Reduction of Fin-Ineq-Solv(R) to Almost-all-Poly-Ineq-Solv is thus completed.

Complexity. It remains to argue that P2 is computable from (A, t), and estimate the computational complexity.
Computability of P2 follows immediately from computability of P1, which we focus now on:

Lemma 59. The system P1 is computable from (A, t).

Proof. Indeed, it is enough to range over representations of setwise-T -orbits Bi and Cj of B and C , respectively
(such representations are given by Lemma 37), and for each pair of such orbits proceed with computations outlined in
the proof of Lemma 48, applied to an arbitrarily chosen representative bi ∈ Bi . □

By Corollary 58 and Lemma 59, Fin-Ineq-Solv(R) reduces to Almost-all-Poly-Ineq-Solv.

Concerning computational complexity, the number of setwise-T -orbits included in an equivariant orbit A(ℓ) is
exponential in ℓ (cf. Lemma 37). That is why the size of P2 may be exponential in atom dimension d of (A, t). On the
other hand, the size of P2 is only polynomial (actually, linear) in the number of orbits included in B ×C . In consequence,
for fixed atom dimension we get a polynomial-time reduction and hence, relying on Theorem 25, the decision procedure
for Fin-Ineq-Solv(R) in PTime. Without fixing atom dimension, we get an exponential-time reduction and hence the
decision procedure is in ExpTime.

The same complexity bounds apply to the algorithm for the optimisation problem presented in Section 8.

8 OPTIMISATION PROBLEMS

In this section we prove Theorem 23: we introduce a maximisation variant of Poly-Ineq-Solv and routinely adapt the
decision procedure of Section 5, as well as the reduction of Section 7.3, to the maximisation setting.

25

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

8.1 Polynomially-parametrised maximisation problem

We consider a maximisation problem, whose instance (P , S) consists of a finite system of polynomially-parametrised
inequalities P as in (12), and an ordinary (non-parametrised) objective function S given by a linear map

S (x1, . . . ,xk) = a1 · x1 + . . . + ak · xk .

As in Section 5.1, by an almost-all-solution of a system P we mean in this section a solution of P (n) for almost all n ∈ N.
We define the supremum of a monotonic instance (P , S) as

sup(P , S) := sup { S (x) | x is an almost-all-solution of P } ,

under a proviso that sup(P , S) = −∞ if P has no almost-all-solutions. Referring to the standard terminology, we can say
that the system is infeasible if sup (P , S) = −∞, and it is unbounded if sup(P , S) = ∞. Interestingly, the supremum can
not be irrational (see Corollary 63 below).

In this section we study the problem of computing the supremum of monotonic instances:

Almost-all-Poly-Ineq-Max:
Input: An instance (P , S).

Output: The supremum of (P , S).

The problem generalises ordinary (non-parametrised) linear programming, and can be solved similarly to Almost-all-
Poly-Ineq-Solv (of which it is a strengthening):

Theorem 60. Almost-all-Poly-Ineq-Max is in PTime.

Proof. Let (P0, S) be an instance. The algorithm is essentially the same as Algorithm 1 for Almost-all-Poly-Ineq-
Solv in the proof of Theorem 25, and proceeds by iterating the transformation step until either unsolvability or
solvability is reported. Recall that solution set is preserved by the transformation step (Claim 32). If unsolvability is
reported, the algorithm returns −∞. If solvability is reported — let P ∪ Γ be the system examined in the last iteration —
the decision procedure computes and returns sup(hd (P) ∪ Γ, S), the supremum of S constrained by the ordinary system
of inequalities hd (P) ∪ Γ, by invoking any PTime procedure for ordinary linear programming.

Correctness follows by the two claims formulated below. First, since solution set is preserved by the transformation
step, we have:

Claim 61. sup(P0, S) = sup(P ∪ Γ, S).

Second, the supremum does not change if the polynomially-parametrised constraints P are replaced by the overapproxi-
mation hd (P):

Claim 62. sup(P ∪ Γ, S) = sup(hd (P) ∪ Γ, S).

For the claim it is enough to prove the inequality sup(hd> (P) ∪ Γ, S) ≥ sup(hd (P) ∪ Γ, S) as, according to Claims 29
and 30, we have sup(hd> (P) ∪ Γ, S) ≤ sup(P ∪ Γ, S) ≤ sup(hd (P) ∪ Γ, S). Take any solution y of hd (P) ∪ Γ, and any
solution x of hd> (P) ∪ Γ (we rely here on solvability of the latter system). For every k ∈ N, the vector xk =

x+ky
k+1 is a

solution of hd> (P) ∪ Γ, and S (xk) tends to S (y) when k tends to∞. Hence sup(hd> (P) ∪ Γ, S) ≥ sup(hd (P) ∪ Γ, S), as
required. □

26

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

By Claims 61 and 62 in the proof of Theorem 60, the supremum of a monotonic instance, if not −∞ nor∞, is equal
to the supremum of an ordinary linear program and hence is rational:

Corollary 63. The supremum of a monotonic instance (P , S) belongs to Q ∪ {−∞,+∞}.

Remark 64. As illustrated in Example 4 in Section 1, the objective function S may not achieve its supremum over
the almost-all-solutions of P . Once the supremum s ∈ Q is computed, one can easily check if S achieves its supremum,
by adding to the system an equation S (x1, . . . ,xk) = s and checking if the system is still solvable. ◁

8.2 Reduction of Fin-Ineq-Max(R) to Almost-all-Poly-Ineq-Max

We only sketch the reduction as it amounts to a slight adaptation of the reduction of Section 7.3. The input of Fin-Ineq-
Max(R) consists of a system (A, t) and an integer vector s : C →fs Z representing the objective function

S (x) = s · x,

and we ask for the supremum of values S (x), for x ranging over finitary solutions of (A, t). This value we denote as
sup(A, t, s). In addition to Lemma 42 we show (the proof is in Section A.4):

Lemma 65. W.l.o.g. we may assume that s is equivariant.

We proceed by adapting the reduction of Section 7.3: given an instance (A, t, s) of Fin-Ineq-Max(R) we compute
a monotonic instance (P2, S ′) of Poly-Ineq-Max, where the finite system P2 (n) = (A2 (n), t2 (n)) of polynomially-
parametrised inequalities is exactly as in Section 7.3, and the objective function is

S ′(x1, . . . ,xk) = a1 · x1 + . . . + aM · xM , (37)

where aj = ṡ(Cj) for j = 1 . . .M (recall Notations 14 and 46). More concisely, the vector a = a1 . . . aM is defined as
a = ṡ. We apply Lemmas 39 and 55 to obtain:

Lemma 66. sup(A, t, s) = sup(P2, S ′).

Proof. Let x : C →fin R. By equivariance of S and the definition of S ′ we have the equality S (x) = S ′(xΣ), that is,
the value of the objective function S (x) depends only on the orbit-sum vector xΣ : orbits (C) → R. As Lemmas 39 and
55 preserve orbit-sum, we deduce that for every T ⊆fin A of size |T | = n ≥ 2d , the values of S on finitary T -supported
solutions of (A, t) are the same as the values of S ′ on solutions of P2 (n). By Lemma 57, the solutions of P2 (n) for some
n ≥ 2d are exactly the same as the almost-all-solutions of P2. In consequence, the two suprema are equal. □

Example 67. To illustrate the reduction, consider the modification of the system in Example 3:∑
α ∈A

α ≥ 1
∑
β ∈A

αβ − α − 2 ·
∑
β ∈A

βα ≥ 0 (α ∈ A). (38)

It enforces, for each vertex α ∈ A, the sum of values assigned to all outgoing edges to be larger than double the
sum of values assigned to all ingoing edges, plus the value assigned to the vertex α . The indexing sets B = A ∪ {∗}
and C = A ∪ A(2) and the shape of the matrix (7) are the same. We identify the singletons {∗} = A(0) . We consider
maximisation of triple the sum of values assigned to edges: S (x) = s ·x, where s = 3 ·1A(2) , or S (x) = 3 ·

∑
α β ∈A(2) x(αβ).

According to Lemma 43, the set C includes exactly 2 finite setwise-T -orbits, namely T ⊆ A and T (2) ⊆ A(2) , and
therefore the system computed by the reduction has 2 unknowns, x1 and x2. By Lemma 37, for any nonempty T ⊆fin A,

27

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

the set B includes 3 setwise-T -orbits, namely T , A \T and {∗}, and therefore the system P1 computed in the first step
has 3 inequalities:

−x1 − (n − 1) · x2 ≥ 0 (T)

0 ≥ 0 (A \T)

n · x1 ≥ 1 ({∗})

(39)

For instance, the coefficient −(n − 1) in the first inequality arises as:

A(Uout) · |Uout (α ,T
(2)) | + A(Uin) · |Uin (α ,T

(2)) | = 1 · (n − 1) − 2 · (n − 1) = −(n − 1)

(cf. Claim 50), for some arbitrary α ∈ T and the following two orbits included in A × A(2) :

Uout =
{
(α ,αβ) ��β , α

}
, Uin =

{
(α , βα) ��β , α

}
.

Likewise, the coefficient n in the last inequality arises as A(U) · |O (∗,T) | = 1 ·n = n, for the orbitU = {∗}×A. According
to (34), the system P2 is obtained from (39) by multiplying all occurrences of x1 by (n − 1) (1) = n − 1, and by multiplying
all right-hand sides by n(2) = n(n − 1) (the trivial second inequality is omitted):

−(n − 1) · x1 − (n − 1) · x2 ≥ 0

n(n − 1) · x1 ≥ n(n − 1)
(40)

Finally, the objective function produced by the reduction, as in (37), is S ′(x1,x2) = s(A(2)) · x2 = 3 · x2. It achieves −3
as its supremum, as the system (40) is equivalent to the ordinary system (its head):

x1 ≥ 1 x2 ≤ −x1.

For every n ≥ 2, the optimal solution x1 = 1, x2 = −1 corresponds, via the constructions of Section 7.3, to a clique of n
vertices where each vertex is assigned 1

n , and each edge is assigned − 1
n (n−1) . ◁

9 UNDECIDABILITY OF INTEGER SOLVABILITY

We prove Theorem 19 by showing undecidability of Fin-Ineq-Solv(Z). We proceed by reduction from the reachability
problem of counter machines.

We conveniently define a d-counter machine as a finite set of instructions I , where each instruction is a function

i : {1 . . .d } → Z ∪ {zero}

that specifies, for each counter k ∈ {1, . . . ,d }, either the additive update of k (if i (k) ∈ Z) or the zero-test of k (if
i (k) = zero). Configurations of M are nonnegative vectors c ∈ Nd , and each instruction induces steps between
configurations: c

i
−→ c ′ if c ′(k) = c (k) + i (k) whenever i (k) ∈ N, and c ′(k) = c (k) = 0 whenever i (k) = zero. A run of

M is defined as a finite sequence of steps

c0
i1
−→ c1

i2
−→ . . .

in
−→ cn . (41)

The reachability problem asks, given a machineM and two its configurations, a source c0 and a target cf , ifM admits a
run from c0 to cf . The problem is undecidable, as counter machines can easily simulate classical Minsky machines.9

9A d -counter machine resembles a vector addition system with zero tests. A Minsky machine with n states and k counters can be simulated by an
(n + k)-counter machine, by encoding control states into additional counters.

28

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

For k ∈ {1, . . . ,d } we denote by zero(k) = { i ∈ I | i (k) = zero } the set of instructions that zero-test counter k , and
upd(k) = { i ∈ I | i (k) ∈ Z } the set of instructions that update counter k .

Given a d-counter machineM and two configurations c0, cf , we construct an orbit-finite system of inequalities S =
(A, t) such thatM admits a run from c0 to cf if and only if S has a finitary nonnegative integer solution. (Nonegativeness
is enforced by adding inequalities x ≥ 0 for all unknowns x .) We describe construction of S gradually, on the way giving
intuitive explanations and sketching the proof of the if direction.

The system S has unknowns eα β indexed by pairs of distinct atoms αβ ∈ A(2) , and contains the following inequalities:

eα β ≤ 1 (αβ ∈ A(2)). (42)

Therefore, in every solution the unknowns eα β define a directed graph G, where atoms are vertices, eα β = 1 encodes
an edge from α to β and eα β = 0 encodes a non-edge. In case of a finitary solution, the graph G is finite (when atoms
with no adjacent edges are dropped). Let us fix two distinct atoms ι, ζ ∈ A. The system S contains the following further
equations and inequalities: ∑

β,α

eβα =
∑
β,α

eα β ≤ 1 (α ∈ A \
{
ι, ζ
}
) (43)

enforcing that in-degree of every vertex, except for ι and ζ , is the same as its out-degree, and equal 0 or 1, and also∑
β,ι

eβι = 0
∑
β,ι

eιβ = 1
∑
β,ζ

eβζ = 1
∑
β,ζ

eζ β = 0 (44)

enforcing that in-degree of ι and out-degree of ζ are 0, while out-degree of ι and in-degree of ζ are 1. Thus atoms split
into three categories: inner nodes (with in- and out-degree equal 1), end nodes (ι and ζ) and non-nodes (with in- and
out-degree equal 0). Therefore, the graph G defined by a finitary solution consists of a directed path from ι to ζ plus a
number of vertex disjoint directed cycles. The path will be used below to encode a run of M : each edge, intuitively
speaking, will be assigned a configuration ofM , while each inner node will be assigned an instruction ofM .

The system S has also unknowns tiα indexed by instructions i ∈ I ofM and atoms α ∈ A, and the following equations:∑
i ∈I

tiα =
∑
β,α

eα β (α ∈ A \
{
ι, ζ
}
). (45)

Therefore in every finitary solution, for each inner node α of the above-defined graphG , there is exactly one instruction
i ∈ I such that tiα equals 1 (intuitively, this instruction i is assigned to node α), and tiα equals 0 for all other instructions.
(This applies to all inner nodes of G, both those on the path as well as those on cycles.) For non-nodes α , all tiα are
necessarily equal 0. Note that the values of unknowns ti ι and tiζ are unrestricted, as they are irrelevant.

Finally, the system S contains unknowns cα βγk indexed by αβγ ∈ A(3) and k ∈ {1, . . . ,d }. The following inequalities:

cα βγk ≤ eα β (αβγ ∈ A(3) ,k ∈ {1 . . .d }) (46)

enforce that, whatever atom γ is, the value of unknown cα βγk may be 0 or 1 when αβ is an edge (i.e., when eα β = 1), but
cα βγk is forcedly 0 when αβ is a non-edge (i.e., when eα β = 0). The underlying intuition is that for each k ∈ {1, . . . ,d },
we represent the kth coordinate of the configuration assigned to the edge αβ by the (necessarily finite) sum∑

γ <{α,β }

cα βγk . (47)

29

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

(In particular, configurations assigned to non-edges are necessarily zero on all coordinates.) In agreement with this
intuition, we add to S the requirement that the configuration assigned to the edge outgoing from ι is the source c0, and
the configuration assigned to the edge incoming to ζ is the target cf :∑

β,γ,ι

cιβγk = c0 (k)
∑

β,γ,ζ

cβζ γk = cf (k) (k ∈ {1, . . . ,d }).

Furthermore, in order to enforce correctness of encoding of a run ofM , we add to S equations that relate, intuitively
speaking, two consecutive configurations. Recall that, due to (43)–(44) and (46), for every α ∈ A \

{
ι, ζ
}
, unknowns

cβαγk may be positive for at most one β ∈ A; likewise unknowns cα βγk . We add to S the following equations:∑
β,γ,α

cβαγk +
∑

i ∈upd(k)
i (k) · tiα =

∑
β,γ,α

cα βγk (α ∈ A \
{
ι, ζ
}
,k ∈ {1 . . .d }). (48)

These equalities say that for every inner node or non-node α (i.e., every atom except for the end nodes ι and ζ), on
every coordinate k , the configuration incoming to α differs from the configuration outgoing from α exactly by the sum∑

i ∈upd(k)
i (k) · tiα

ranging over those instructions i of M that update counter k . Remembering that for each α there is at most one
instruction i satisfying tiα , 0, we get that the configurations differ on coordinate k by exactly i (k) (if i updates counter
k) or the configuration are equal on coordinate k (if i zero-tests counter k , or there is no instruction i such that tiα , 0).

In order to deal with zero tests, we add to S not just the inequalities (46), but the following strengthening thereof:

cα βγk +
∑

i ∈zero(k)
tiα ≤ eα β (αβγ ∈ A(3) ,k ∈ {1 . . .d }). (49)

In consequence, for every edge αβ , if the instruction i assigned to α updates counter k , (49) does not restrict further the
kth coordinate of the configuration assigned to αβ . But if the instruction i assigned to α zero-tests counter k , the sum∑

i ∈zero(k)
tiα

equals 1 and therefore the kth coordinate of the configuration assigned to αβ , encoded by (47), is necessarily 0 (the
same applies also to the configuration incoming to α , due to inequalities (48) below). The above considerations apply
to all edges of G, both those on the path as well as those on cycles. As a further consequence, for a non-edge αβ , the
configuration assigned at αβ , encoded by (47), is necessarily the zero configuration.

The construction of S is thus completed, and it remains to argue towards its correctness:

Lemma 68. M admits a run from c0 to cf if and only if S has a finitary nonnegative integer solution.

Proof. For the ‘if’ direction, given a finitary nonnegative integer solution of S , we consider the graphG determined
by values of unknowns eα β , as discussed in the course of construction, consisting of inner nodes and two end nodes, and
having the form of a finite directed path plus (possibly) a number of directed cycles. By the construction of S , each edge
ofG has assigned a configuration ofM , and each inner node has assigned an instruction ofM , so that the configuration
on the edge outgoing from an inner node is exactly the result of executing its instruction on the configuration assigned
to the incoming edge. (As above, this applies to all inner nodes and edges of G, both those on the path as well as those
on cycles.) Ignoring the cycles ofG , we conclude that the sequence of configurations and instructions along the path of
G is a run ofM from c0 to cf .

30

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

For the ‘only if’ direction, given a run of M from c0 to cn as in (41), one constructs a solution of S in the form of
a sole path involving end nodes α0 = ι,αn+1 = ζ , n inner nodes α1, . . . ,αn , and n + 1 edges α jα j+1. Thus unknowns
eα j ,α j+1 are equal 1. The values of unknowns tiα j are determined by instructions i j used in the run, and the values of
the unknowns cα jα j+1γk , for sufficiently many fresh atoms γ , are determined by configurations c j . All other unknowns
are equal 0. □

Remark 69. The proof does not adapt to Fin-Nonneg-Eq-Solv(Z). Indeed, the standard way of transforming
inequalities into equations involves adding an infinite set of additional unknowns, that might be all non-zero. ◁

10 CONCLUSIONS

As two main contributions, we show two contrasting results: decidability of orbit-finite linear programming, and
undecidability of orbit-finite integer linear programming. For decidability, we invent a novel concept of setwise-T -orbit,
and provide a reduction to a finite but polynomially-parametrised linear programming. In addition to the decidability
of the latter problem, we show that it can be solved in ExpTime, and even in PTime for every fixed atom dimension. We
thus match, in case of fixed atom dimension, the complexity of classical linear programming.

We consider non-strict inequalities for presentation only, and our decision procedures may be straightforwardly
adapted to to mixed systems of strict and non-strict inequalities.

We leave a number of intriguing open questions, all of them except the last one referring to linear programming:

Question 1. In this paper we only consider finitely supported solutions. We do not know the decidability status
of linear programming when this restriction is dropped (like in [23]). It is decidable for finitary inequalities, where
existence of a solution implies existence of an equivariant one [33].

Question 2. We exclusively consider equality atoms, and extension to richer structures seems highly non-trivial. In the
important case of ordered atoms, we are currently only able to prove decidability of Eq-Solv(F), for any commutative
ring F.

Question 3. It is very natural to ask if the classical duality of linear programs extends to the orbit-finite setting.
According to our initial observations this is indeed the case, under the restriction that either (v) vertical vectors of
a matrix and the target vector are finitary, or (h) horizontal vectors of a matrix and objective function are finitary.
Whenever the primary program satisfies one of the conditions (v), (h), the dual one satisfies the other one.

Question 4. Solution sets of orbit-finite systems are not always finitely generated. Therefore an interesting question
arises if one can compute a representation of solution sets that would enable testing for equality or inclusion of such
sets? For instance, the solution set of the system of inequalities

∑
α ∈A\{β } α ≥ β (β ∈ A), in matrix form

−1 1 1 · · ·

1 −1 1 · · ·

1 1 −1 · · ·

...
...

...
. . .

· x ≥

0
0
0
...

is not equal to the cone generated by (=non-negative linear combinations of) an orbit-finite set.

Question 5. We would be happy to know if our general ExpTime upper complexity bound is tight.
31

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Question 6. Concerning integer linear programming, an intriguing research task is to identify the decidability
borderline. For instance, we suspect decidability in case when all inequalities are finitary. The reduction proving
undecidability produces a system of atom dimension 3, and it is unclear if the dimension can be lowered to 2. In case of
atom dimension 1 we suspect decidability (along the lines of [20]).

ACKNOWLEDGMENTS

We are grateful to Mikołaj Bojańczyk, Lorenzo Clemente, Damian Niwiński and Asia Fijalkow for fruitful discussions.
We acknowledge partial support of NCN Opus grant 2019/35/B/ST6/02322 (Arka Ghosh and Sławomir Lasota), of

NCN Preludium grant 2022/45/N/ST6/03242 (Arka Ghosh), and of ERC Starting grant INFSYS, agreement no. 950398
(Piotr Hofman and Sławomir Lasota).

REFERENCES
[1] Albert Atserias, Anuj Dawar, and Joanna Ochremiak. 2021. On the Power of Symmetric Linear Programs. J. ACM 68, 4 (2021), 26:1–26:35.
[2] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. 2006. Algorithms in Real Algebraic Geometry. Springer-Verlag.
[3] Michael Ben-Or, Dexter Kozen, and John H. Reif. 1986. The Complexity of Elementary Algebra and Geometry. J. Comput. Syst. Sci. 32, 2 (1986),

251–264.
[4] Mikołaj Bojańczyk. 2011. Data Monoids. In Proc. STACS 2011 (LIPIcs, Vol. 9). 105–116.
[5] Mikołaj Bojańczyk. 2019. Slightly Infinite Sets. (2019). https://www.mimuw.edu.pl/~bojan/paper/atom-book
[6] Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. 2011. Automata with Group Actions. In Proc. LICS 2011. 355–364.
[7] Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. 2014. Automata theory in nominal sets. Log. Methods Comput. Sci. 10, 3 (2014).
[8] Mikołaj Bojańczyk, Bartek Klin, Sławomir Lasota, and Szymon Toruńczyk. 2013. Turing Machines with Atoms. In Proc. LICS’13. 183–192.
[9] Mikołaj Bojańczyk, Bartek Klin, and Joshua Moerman. 2021. Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata. In Proc. LICS.

IEEE, 1–13.
[10] Mikołaj Bojańczyk and Szymon Toruńczyk. 2012. Imperative Programming in Sets with Atoms. In Proc. FSTTCS 2012, Vol. 18. 4–15.
[11] Mikolaj Bojanczyk and Szymon Torunczyk. 2018. On computability and tractability for infinite sets. In Proc. LICS 2018, Anuj Dawar and Erich

Grädel (Eds.). ACM, 145–154.
[12] Lorenzo Clemente and Slawomir Lasota. 2015. Reachability Analysis of First-order Definable Pushdown Systems. In Proc. CSL 2015 (LIPIcs, Vol. 41),

Stephan Kreutzer (Ed.). 244–259.
[13] Thomas Colcombet. 2015. Unambiguity in Automata Theory. In Proc. DCFS 2015 (LNCS, Vol. 9118). Springer, 3–18.
[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd Edition. MIT Press.
[15] Wojciech Czerwiński and Łukasz Orlikowski. 2022. Reachability in Vector Addition Systems is Ackermann-complete. In Proc. FOCS 2021. IEEE,

1229–1240.
[16] Arka Ghosh, Piotr Hofman, and Slawomir Lasota. 2022. Solvability of orbit-finite systems of linear equations. In Proc. LICS’22. ACM, 11:1–11:13.
[17] Arka Ghosh, Piotr Hofman, and Slawomir Lasota. 2023. Orbit-finite linear programming. In LICS. 1–14.
[18] Utkarsh Gupta, Preey Shah, S. Akshay, and Piotr Hofman. 2019. Continuous Reachability for Unordered Data Petri Nets is in PTime. In Proc. FOSSACS

2019 (Lecture Notes in Computer Science, Vol. 11425), Mikolaj Bojanczyk and Alex Simpson (Eds.). Springer, 260–276.
[19] Piotr Hofman and Slawomir Lasota. 2018. Linear Equations with Ordered Data. In Proc. CONCUR 2018. 24:1–24:17.
[20] Piotr Hofman, Jérôme Leroux, and Patrick Totzke. 2017. Linear combinations of unordered data vectors. In Proc. LICS 2017. 1–11.
[21] Piotr Hofman and Jakub Różycki. 2022. Linear equations for unordered data vectors in [D]k → Zd . Logical Methods in Computer Science Volume

18, Issue 4 (2022).
[22] Khadijeh Keshvardoost, Bartek Klin, Slawomir Lasota, Joanna Ochremiak, and Szymon Torunczyk. 2019. Definable isomorphism problem. Log.

Methods Comput. Sci. 15, 4 (2019).
[23] Bartek Klin, Eryk Kopczyński, Joanna Ochremiak, and Szymon Toruńczyk. 2015. Locally Finite Constraint Satisfaction Problems. In Proc. LICS 2015.

475–486.
[24] Bartek Klin, Slawomir Lasota, Joanna Ochremiak, and Szymon Torunczyk. 2014. Turing machines with atoms, constraint satisfaction problems, and

descriptive complexity. In Proc. CSL-LICS 2014, Thomas A. Henzinger and Dale Miller (Eds.). ACM, 58:1–58:10.
[25] Bartek Klin, Slawomir Lasota, Joanna Ochremiak, and Szymon Torunczyk. 2016. Homomorphism Problems for First-Order Definable Structures. In

Proc. FSTTCS 2016 (LIPIcs, Vol. 65), Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen (Eds.). 14:1–14:15.
[26] Sławomir Lasota. 2022. Improved Ackermannian lower bound for the Petri nets reachability problem. In Proc. STACS 2022 (LIPIcs, Vol. 219). 46:1–46:15.
[27] Ranko Lazic, Thomas Christopher Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell. 2008. Nets with Tokens which Carry Data. Fundam.

Inform. 88, 3 (2008), 251–274.

32

https://www.mimuw.edu.pl/~bojan/paper/atom-book

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

[28] Jérôme Leroux. 2022. The Reachability Problem for Petri Nets is Not Primitive Recursive. In Proc. FOCS 2021. IEEE, 1241–1252.
[29] Christos H. Papadimitriou and Kenneth Steiglitz. 1982. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall.
[30] A. M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science, Vol. 57. Cambridge

University Press.
[31] Manuel Silva Suárez, Enrique Teruel, and José Manuel Colom. 1996. Linear Algebraic and Linear Programming Techniques for the Analysis of Place

or Transition Net Systems. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets. 309–373.
[32] Alfred Tarski. 1948. A Decision Method for Elementary Algebra and Geometry. University of California Press.
[33] Szymon Toruńczyk. 2023. Solvability of orbit-finite systems of finite inequalities. (2023). Personal communication.
[34] Jan Martijn E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and Alexander Serebrenik. 2008. Process Discovery Using Integer

Linear Programming. In Proc. Petri Nets 2008 (Lecture Notes in Computer Science, Vol. 5062), Kees M. van Hee and Rüdiger Valk (Eds.). Springer,
368–387.

[35] Dinh Van Le and Tim Römer. 2021. Theorems of Carathéodory, Minkowski-Weyl, and Gordan up to symmetry.

A MISSING PROOFS

We start by introducing notation useful in proving Theorems 17 and 22. For subsets P ⊆ Lin(B) and F ⊆ R, we define
Fin-SpanF (P) ⊆ Lin(B) as the set of all linear F-combinations of vectors from P :

Fin-SpanF (P) =
{
q1 · p1 + . . . + qk · pk �� k ≥ 0, q1, . . . ,qk ∈ F, p1, . . . , pk ∈ P

}
.

Recall that given a matrixA ∈ Lin(B×C) with rows B and columnsC , we can define a partial operation of multiplication
of A by a vector v ∈ Lin(C) in an expected way:

(A · v) (b) = A(b, _) · v

for every b ∈ B. The result A · v ∈ Lin(B) is well-defined if A(b, _) · v is well-defined for all b ∈ B. For c ∈ C we denote
by A(_, c) ∈ Lin(B) the corresponding (column) vector. The multiplication A · v can be also seen as an orbit-finite linear
combination of column vectors A(_, c), for c ∈ C , with coefficients given by v. This allows us to define the span of A
seen as a C-indexed orbit-finite set of vectors A(_, c) ∈ Lin(B):

SpanF (A) :=
{
A · v �� v : C →fs F, A · v well-def.

}
.

Therefore, a system of inequalities (A, t) has a solution if SpanF (A) contains some vector u ≥ t. When v is finitary,
well-definedness is vacuous, and we may define:

Fin-SpanF (A) := {A · v | v : C →fin F } = Fin-SpanF (P)

for P = {A(_, c) | c ∈ C } the set of column vectors of A. Therefore, a system of inequalities (A, t) has a finitary solution
if Fin-SpanF (A) contains some vector u ≥ t.

A.1 Proof of Theorems 17 and 22 (Section 3)

Recall that we consider supremum of a maximisation problem to be −∞ if the constraints in the problem are infeasible.
Therefore proving that two maximisation problems have the same supremum also proves that the underlying systems
of inequalities are equisolvable. In consequence, Theorem 22 implies 17, and hence we concentrate in the sequel on
proving the former one.

The proof of mutual reductions between Ineq-Max(F) and Nonneg-Eq-Max(F) amounts to lifting of standard
arguments from finite to orbit-finite systems, and checking that all constructed objects are finitely supported. We
include the reductions here mostly in order to get acquainted with orbit-finite systems. One of the remaining two
reductions builds on results of [16].

33

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

Reduction of Ineq-Max(F) to Nonneg-Eq-Max(F). Consider an instance (A, t, s) of Ineq-Max(F), supported by S ,
where A : B ×C →fs F, t : B →fs F and s : C →fs F. We construct an instance (A′, t, s′) of Nonneg-Eq-Max(F), with
the same target vector t, and A′ : B × (C ⊎C ⊎ B) →fs F, s′ : (C ⊎C ⊎ B) →fs F, such that

supremum(A′, t, s′) = supremum(A, t, s).

In the new system, we double each variable x into x+ and x−, and we add a fresh variable per each equation. The matrix
A′ of the new system is a composition of A, −A, and the diagonal matrix B × B →fs F with −1 in the diagonal:

A′ =

A

����������

−A

����������

−1
. . .

−1

Similarly, s′ is defined as the composition of s, −s and the zero vector B →fs F:

s′ =
[

s ��� −s ��� 0 · · · 0
]

A′ and s′ are thus supported by S .
Any vector x′ : (C ⊎C ⊎ B) →fs F can be written as

x′ = (x+ |x− |y),

where x+, x− : C →fs F and y : B →fs F. If any such non-negative vector x′ satisfies the above constructed system of
constraints, i.e. if we have

A′ · (x+ |x− |y) = t, (50)

then then vector x+ − x−, supported by supp(x′), is a solution of (A, t), namely

A · (x+ − x−) ≥ A · (x+ − x−) − y = A′ · (x+ |x− |y) = t.

Furthermore, by the very definition of s′ we have

s′ · (x+ |x− |y) = s · (x+ − x−), (51)

which implies supremum(A′, t, s′) ≤ supremum(A, t, s).
In the opposite direction, given a finitely supported vector x such that A · x ≥ t, we define a non-negative vector

x′ = (x+ |x− |y) supported by supp(x) ∪ S as follows:

x+ (c) =

x(c) if x(c) ≥ 0,

0 otherwise;
x− (c) =

−x(c) if x(c) < 0,

0 otherwise;

y(c) = (A · x − t) (c).

Then x = x+ − x− and A′ · (x+ |x− |y) = A · x − y = t. The equality (51) holds again, which implies supremum(A, t, s) ≤
supremum(A′, t, s′).

Reduction of Nonneg-Eq-Max(F) to Ineq-Max(F). For any orbit-finite system of linear equations supported by S :

A · x = t,

34

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

its nonnegative solutions are exactly solutions of the following system of linear inequalities, also supported by S :

A · x ≥ t A · x ≤ t x ≥ 0.

This implies an easy reduction from Nonneg-Eq-Max(F) to Ineq-Max(F).

Remark 70. The above two reductions preserve row-finiteness, i.e., transform a system of finite equations (inequali-
ties) to a system of finite inequalities (equations), or vice versa. ◁

Reduction of Fin-Ineq-Max(F) to Ineq-Max(F). Consider an instance (A, t, s) of Fin-Ineq-Max(F) supported by S ,
where A : B ×C →fs F. We construct an instance (A′, t′, s′) of Ineq-Max(F) as follows. The new system of inequalities
A′ · x′ ≥ t′ is obtained by extending the column index C by one additional variable y and extending the system by one
inequality:

A′ =

A

1 · · · 1

�������������

�������������

0
...

0
−1

t′ =

t

0

and the new objective function s′ is defined as expected:

s′ =
[

s | 0
]
.

The so constructed instance is supported by S , and its solutions have the form x′ = (x,y), where

A · x ≥ t
∑
c ∈C

x(c) ≥ y.

Any such finitely supported solution is necessarily finitary. This implies supremum(A, t, s) = supremum(A′, t′, s).

Reduction of Ineq-Max(F) to Fin-Ineq-Max(F). We rely on the following result of [16]10:

Claim 71 ([16] Claim 20). Let F ∈ {Z,R}. Given an S-supported orbit-finite matrixM one can effectively construct an

S-supported orbit-finite matrix M̃ such that SpanF (M) = Fin-SpanF
(
M̃
)
.

Consider an instance (A, t, s) of Ineq-Max(F), and apply the above claim to the matrixM (left) in order to get the
matrix M̃ (right),

M =

A

s

M̃ =

A′

s′

such that

SpanF (M) = Fin-SpanF
(
M̃
)
. (52)

This yields an instance (A′, t, s′) of Fin-Ineq-Max(F), supported by supp(A, t, s).

10The result, as shown in [16], holds for any commutative ring F.

35

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

By the equality (52), for every r ∈ R we have the following: there exists a finitely supported vector x such that
A · x ≥ t and s · x = r if and only if there exists a finitary vector x′ such that A′ · x′ ≥ t and s′ · x′ = r . In consequence,

supremum(A, t, s) = supremum(A′, t, s′).

Theorem 22 is thus proved.

A.2 Proof of Theorem 20 (Section 3)

We consider cases F = R and F = Z separately.

Case F = R. Decidability of Fin-Nonneg-Eq-Solv(R) follows by a direct reduction of Fin-Nonneg-Eq-Solv(R) to
Nonneg-Eq-Solv(R) (similar to the reduction of Fin-Ineq-Max(F) to Ineq-Max(F)) and Theorem 18.

Case F = Z. Decidability of Fin-Nonneg-Eq-Solv(Z) follows by results of [16] and [21].
Let (A, t) be an instance of Fin-Nonneg-Eq-Solv(Z), where A : B ×C →fs Z, and consider the set of column vectors

P = {A(_, c) | c ∈ C } ⊆ Lin(B)

of A. Then the system of equations A · x = t has a finite non-negative integer solution if and only if

t ∈ Fin-SpanN (P) . (53)

We rely on Theorem 3.3 of [16] which says that Lin(B) has an orbit-finite basis. Let B̂ ⊆ Lin(B) be such a basis. This
implies that there exists a linear isomorphism φ : Lin(B) → Fin-Lin(B̂). In consequence, (53) is equivalent to

φ (t) ∈ Fin-SpanN (φ (P)) . (54)

By Remark 11.16 of [21] we can compute a finite set of vectors
{
t′1, . . . , t

′
k

}
⊆ Fin-Lin(B̂) and an orbit-finite subset

P ′ ⊆ φ (P) such that (54) holds if and only if

t′i ∈ Fin-SpanZ
(
P ′
)

(55)

for some i ∈ {1, . . . ,k }. The question (55) is nothing but finitary integer solvability of an orbit-finite system of equations,
which is decidable using Theorem 6.1 of [16].

A.3 Proof of Theorem 24 (Section 5)

We show decidability of Poly-Ineq-Solv by encoding the problem into real arithmetic, i.e., first-order theory of
(R,+, ·, 0, 1, ≤). We say that a real arithmetic formula φ (x1, . . . ,xk) with free variables x1, . . . ,xk defines the set of all
valuations

{
x1, . . . ,xk

}
→ R satisfying it. When the order of free variables is fixed, we naturally identify the set defined

by φ with a subset of Rk .

Claim 72. Every real arithmetic formula φ (x) with one free variable, defines a finite union of (possibly infinite) disjoint

intervals.

Proof. By quantifier elimination [32], the formula φ (x) is equivalent to a quantifier-free formula φ (x) with constants,
namelyφ (x) andφ (x) define the same set. Thereforeφ (x) is a Boolean combination of inequalitiesp (x) ≥ 0, for univariate
polynomials p ∈ R[x], and validity of φ (x) depends only on the sign of p (x), for (finitely many) polynomials that appear
in φ (x). This implies the claim. □

36

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Consider a fixed system P of polynomially-parametrised inequalities over unknowns x1, . . . ,xk , and let n range
over reals, not just over nonnegative integers. For each n ∈ R, we get the system P (n) of linear inequalities with real

coefficients. Let

σP (n,x1, . . . ,xk) (56)

be the conjunction of inequalities in P , each of the form (12); it is thus a quantifier-free real arithmetic formula which
says that a tuple x = x1, . . . ,xk is a solution of P (n). The existential real arithmetic formulaψ (n) ≡ ∃x : σP (n, x) with
one free variable n, says that P (n) has a real solution. Thus Poly-Ineq-Solv has positive answer exactly whenψ (n) is
true for some n ∈ N.

Evaluating real arithmetic formulas of fixed quantifier alternation depth is doable in ExpTime [3], [2, Theorem 14.16].
In order to decide Poly-Ineq-Solv, the algorithm evaluates the closed formula

∃ñ : ∀n : n > ñ =⇒ ψ (n)

and answers positively if the formula is true. Otherwise, we know that the set D defined byψ , being a finite union of
intervals (cf. Claim 72), is bounded from above. The algorithm computes an integer upper boundm0 of D, by evaluating
closed existential formulas

φm ≡ ∃n : n > m ∧ ψ (n),

for increasing nonnegative integer constantsm = 0, 1, . . ., until φm eventually evaluates to false. Finally, the algorithm
evaluates the formulaψ (m) for all nonnegative integersm between 0 andm0, and answers positively ifψ (m) is true for
some suchm; otherwise the algorithm answers negatively.

A.4 Proofs of Lemmas 42 and 65 (Sections 7 and 8)

We sketch the proofs only, as they amount to a slightly tedious but entirely standard exercise in sets with atoms.
Consider an instance (A, t, s) of the maximisation problem Fin-Ineq-Max(R). Let S = supp(A, t, s), and let A :

B × C →fs Z. Thus the row and column index sets B and C are necessarily supported by S . We want to effectively
transform the instance into another one (Ã, t̃, s̃), where the row and column index sets are disjoint unions of sets of
the form A(ℓ) (non-repeating tuples of atoms of a fixed length), as in (25) in Section 7.1. Moreover, the transformation
should preserve the supremum:

supremum(A, t, s) = supremum(Ã, t̃, s̃). (57)

Recall that we consider supremum of a maximisation problem to be −∞ if the constraints are infeasible. Therefore
proving that twomaximisation problems have the same supremum also proves that the underlying systems of inequalities
are equisolvable.

We proceed in two steps. First we show that the row and column index sets B and C may be assumed to be disjoint
unions of sets of the form (A \ S) (ℓ) . As mentioned in Section 4, B and C are assumed to be given as finite union of
S-orbits of the form (A \ S) (n)/G where n ∈ N and G is a subgroup of Sn , the group of all permutations of the set
{1, . . . ,n}. Consider the partition of B and C into S-orbits:

B = B1 ⊎ · · · ⊎ Bk C = C1 ⊎ · · · ⊎Cℓ ,

where
Bi = (A \ S) (pi)/Gi and Cj = (A \ S) (qj)/Hj

37

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

LICS ’23, June, 2023, Boston, NY Ghosh, Hofman, and Lasota

for some pi ,qj ∈ N and subgroups Gi and Hj of respectively Spi and Spj . Let fi and дj be the quotient maps

fi : (A \ S) (pi) → Bi дj : (A \ S) (qj) → Cj .

Notice that for every i, j and x ∈ Bi and y ∈ Cj

| f −1i (x) | = |Gi | |д−1j (y) | = |Hj |. (58)

We put:

B′ = (A \ S) (p1) ⊎ · · · ⊎ (A \ S) (pk) C ′ = (A \ S) (q1) ⊎ · · · ⊎ (A \ S) (qℓ) (59)

and define maps f : B′ → B and д : C ′ → C by disjoint unions of f1, . . . , fk and д1, . . . ,дℓ , respectively:

f = f1 ⊎ · · · ⊎ fk д = д1 ⊎ · · · ⊎ дℓ .

Both the maps are surjective. We write (f ,д) : B′ ×C ′ → B ×C for the product of the two maps. Finally, we define a
matrix A′ : (B′ ×C ′) →fs Z and vectors t′ ∈ Lin(B′) and s′ ∈ Lin(C)′ by pre-composing with the above-defined maps:

A′ = A ◦ (f ,д) t′ = t ◦ f s′ = s ◦ д. (60)

Lemma 73. supremum(A, t, s) = supremum(A′, t′, s′).

Proof. Define two functions F : Lin(C) → Lin(C ′) and G : Lin(C ′) → Lin(C) as follows:

F (x) : c ′ 7→
x(д(c ′))
|Hi |

, where д(c ′) ∈ Ci G (x′) : c 7→
∑

д (c ′)=c

x′(c ′).

Both F and G are supported by S . By the very definition of F and G, together with (58), we deduce the following
two facts, assuming either x′ = F (x) or x = G (x′), where x ∈ Lin(C) and x′ ∈ Lin(C ′). First, the value of A · x is
well-defined if and only if the value of A′ · x′ is so, and in such case

A · x ≥ t ⇐⇒ A′ · x′ ≥ t′.

Second, the value of s · x is well defined if and only if the value of s′ · x′ is so, and in such case s · x = s′ · x′. The two
facts prove the lemma. □

The instance (A′, t′, s′) is supported by S .
As the second step we transform the instance (A′, t′, s′) further so that the row and column index sets B and C are

disjoint unions of sets of the form A(ℓ) . Let h : A→ A \ S be an arbitrarily chosen bijection. Since atoms from S do not
appear in tuples belonging to B′ or C ′, the map h induces two further bijective maps

f : B̃ → B′ д : C̃ → C ′,

where
B̃ = A(p1) ⊎ · · · ⊎ A(pk) C̃ = A(q1) ⊎ · · · ⊎ A(qℓ)

(cf. (59)). We define a matrix Ã : B̃ × C̃ →fs Z and two vectors t̃ : B̃ →fs Z and s̃ : C̃ →fs Z by pre-composing with the
two above-defined maps, similarly as in (60):

Ã = A′ ◦ (f ,д) t̃ = t′ ◦ f s̃ = s′ ◦ д.
38

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Orbit-finite linear programming LICS ’23, June, 2023, Boston, NY

Knowing that A′, t′ and s′ are all supported by S , we deduce that the so defined instance (Ã, t̃, s̃) is equivariant and
independent from the choice of the bijection h : A→ A \ S . The size blowup is exponential only in atom dimension of
(A, t, s), and hence polynomial when atom dimension if fixed.

Lemma 74. supremum(A′, t′, s′) = supremum(Ã, t̃, s̃).

Proof. Similarly as before, assuming x′ = д (̃x) for some vectors x′ ∈ Lin(C ′) and x̃ ∈ Lin(C̃), we deduce the
following two facts. First, the value of A′ · x′ is well-defined if and only if the value of Ã · x̃ is so, and in such case

A′ · x′ ≥ t′ ⇐⇒ Ã · x̃ ≥ t̃.

Second, the value of s′ · x′ is well defined if and only if the value of s̃ · x̃ is so, and in such case s′ · x′ = s̃ · x̃. The two
facts prove the lemma. □

The last two lemmas prove Lemmas 42 and 65.

39

	Abstract
	1 Introduction
	2 Preliminaries on orbit-finite sets
	3 Orbit-finite (integer) linear programming
	4 Results
	5 Polynomially-parametrised inequalities
	5.1 Monotonic polynomially-parametrised inequalities

	6 Finitely setwise-supported sets
	7 Decidability of real solvability
	7.1 Preliminaries
	7.2 Idea of the reduction
	7.3 Reduction of Fin-Ineq-Solv(R) to Almost-all-Poly-Ineq-Solv

	8 Optimisation problems
	8.1 Polynomially-parametrised maximisation problem
	8.2 Reduction of Fin-Ineq-Max(R) to Almost-all-Poly-Ineq-Max

	9 Undecidability of integer solvability
	10 Conclusions
	Acknowledgments
	References
	A Missing proofs
	A.1 Proof of Theorems 17 and 22 (Section 3)
	A.2 Proof of Theorem 20 (Section 3)
	A.3 Proof of Theorem 24 (Section 5)
	A.4 Proofs of Lemmas 42 and 65 (Sections 7 and 8)

