
1

Turing Machines with Atoms
Mikołaj Bojańczyk, Bartek Klin, Sławomir Lasota, Szymon Toruńczyk

University of Warsaw, e-mail: {bojan,klin,sl,szymtor}@mimuw.edu.pl

Abstract—We study Turing machines over sets with atoms,
also known as nominal sets. Our main result is that deterministic
machines are weaker than nondeterministic ones; in particular,
P 6=NP in sets with atoms. Our main construction is closely
related to the Cai-Fürer-Immerman graphs used in descriptive
complexity theory.

I. INTRODUCTION

Motivation. Perhaps the first computational complexity result
learned by a student of Computer Science is the n log n
lower bound on sorting in the “comparison model”. Although
widely known, this fact is unusual from the standpoint of
mainstream computation theory: in the comparison model,
arbitrarily large numbers can be manipulated in a single step
of computation, but they can only be accessed by checking
whether they are greater, equal or smaller than other numbers.
This contrasts with the main tool of computation theory that
is Turing machines; there, complex objects such as numbers
are normally encoded as strings over a finite alphabet (so
that, e.g., comparing two numbers requires several steps of
computation), but these encodings are then open to arbitrary
manipulation (so that e.g. numbers can be added).
Turing machines. In this paper, we study Turing machines
that operate over infinite alphabets that can only be accessed
in limited ways. As an initial step, we restrict attention to
alphabets whose letters are finite structures built of atoms
(taken from a fixed countably infinite set) that can only
be tested for equality. The set of all atoms is denoted A.
Individual atoms will be written down as underlined positive
integers 1, 2, etc; the underlining is used to distinguish the
atoms from integers, since atoms have no structure (like order
or successor) except for equality.

For example, an input or work alphabet of a Turing machine
may contain letters of the following shape:
• atoms themselves,
• (ordered) pairs (or, in general, n-tuples) of distinct atoms,
• (unordered) sets of atoms of size 2.

More complex examples are used in the following sections.
Note that each shape of letters comes with an obvious action
of bijective atom renaming. Sometimes this action is trivial
even if the renaming is not; for example, the permutation that
swaps 3 and 5 does not alter the set {3, 5}.

We are interested in Turing machines that operate on
alphabets of such shapes, as well as store their letters as
parts of their state. The set of letters of a given shape is
normally infinite, so we need to speak of machines with
infinite state spaces. However, we shall restrict the behaviour
of such machines by requiring that their transition relations are
invariant with respect to bijective atom renaming. For example,

if a machine M in a state that stores a set of atoms {3, 5},
upon seeing the atom 3 on the tape, moves to a state where
just the atom 5 is stored, then M in a state that stores {8, 2},
upon seeing 2 must move to a similar state where just 8 is
stored. This property, formalized later using sets with atoms,
corresponds exactly to the intuition of a machine that “only
cares for atom equality”.

Example I.1. Over the input alphabet of atoms A, consider
the language of words where some letter appears at least twice:

L = {a1 · · · an ∈ A : ai = aj for some i < j}

This language is easily recognized by a nondeterministic
Turing machine (indeed, a left-to-right nondeterministic au-
tomaton) with atoms, with (infinite) state space {0,>} + A
where 0 is initial, > is accepting and the transition relation is
defined by the graph:

...

Alternatively, this may be seen as a machine with three
“control states” 0,> and A, where in the state A a single
atom is additionally stored. This is a machine that reads the
input word from the left, nondeterministically guesses the first
occurrence of a letter that appears more than once, and then
checks that it indeed appears afterwards.

The language L can also be recognized by a deterministic
Turing machine that, for each letter in the input word, stores
it in the state and checks whether it appears more than
once. An extended work alphabet is needed for this to allow
marking of the currently processed letter; more importantly, a
deterministic machine cannot process the input word in one
left-to-right pass. �

The above is quite similar to how classical Turing machines
recognize the counterpart of L in the world of finite alphabets
without atoms. The next example shows an additional aspect
of nondeterminism that appears in the presence of atoms.

Example I.2. Let the input alphabet consist of sets of the
form:

{(a, b, c), (b, c, a), (c, a, b)} for a, b, c ∈ A distinct. (1)

2

Such a letter is a triple of atoms up to cyclic shift, and it can
be visualized as a rotating, but oriented, triangle on a plane,
for example:

� 5
3

8
= �

5

3
8 = �5 3

8
. (2)

Consider the language of those sequences of such triples:

�
5

3
8

�

8

3
5 �5 3

8
� 83

2
�2
11

8
� 2

8

11
,

where every two consecutive triples share at least two atoms,
that can be glued together in a matching chain like this:

�
53

8
�

3
�

8
�

2
�
11
�

8
(3)

To recognize this language, a Turing machine first nondeter-
ministically “freezes” the leftmost triangle in some position
(or, equivalently, chooses an atom from it that shall not touch
the second triangle in the chain), and then progresses to the
right deterministically, checking that each subsequent letter
can be affixed to the emerging chain (if it can, there is a unique
way to do it, since the atoms in each letter are distinct).

One might think that a deterministic Turing machine can
recognize this language by trying each of the three possible
fixed positions of the leftmost letter one by one, much as
nondeterminism is resolved in the classical world. However,
this is impossible in our model! In particular, a transition
function that maps a rotating triangle to a fixed triple of atoms:

�
ba
c

7→ (a, b, c) (4)

is not invariant with respect to bijective atom renaming.
Indeed, the cyclic permutation (a 7→ b 7→ c 7→ a) does not
change the triangle, but it does change the resulting triple.
Intuitively, a function is unable to distinguish one of the three
possible outcomes, as it has only access to equality tests
on atoms; therefore “freezing” a rotating triangle in a fixed
position is an act of nondeterminism, and it cannot be done by
a deterministic machine. On the other hand, a nondeterministic
transition relation:

(a, b, c) �
ba
c

oo

��

// (b, c, a)

(c, a, b)

is fine (i.e., if a triangle and a triple are related then they are
so after any bijective atom renaming). �

The language in the above example can be recognized by a
deterministic machine: one that stores in its state all three atom
triples arising from the leftmost letter, and processes them in
parallel. However, this does not generalize: one of our main
results is that, with a more complex alphabet, deterministic
machines with atoms are weaker than nondeterministic ones.
Our contribution. We model atoms by using an alternative
model of set theory called sets with atoms (or nominal sets,
or Fraenkel-Mostowski sets). Turing machines with atoms are

defined by interpreting the standard definition in the alternative
model. The focus of our study is on the difference between
determinism and nondeterminism. Our main contributions are:

1) Theorem III.1 says that in the presence of atoms, de-
terministic decidability is weaker than nondeterministic
decidability. Even more, there is a language that is decid-
able in nondeterministic polynomial time, but not deter-
ministically decidable (even not deterministically semi-
decidable). In particular, P 6=NP in sets with atoms1, and
PSPACE 6=NPSPACE. Our proof may be adapted to show
that no interesting nondeterministic complexity class is
contained in deterministically semi-decidable languages.
The main construction used in Theorem III.1 is closely
related to Cai-Fürer-Immerman graphs [9].

2) Corollary V.3 says that even though they are weaker than
nondeterministic machines, deterministic machines still
have some good properties, in particular closure under
orbit-finite union, which is a form of guessing a fixed
number of atoms.

3) Theorem VI.3 characterises those input alphabets for
which deterministic and nondeterministic decidability
coincide.

4) Atoms are a natural way to speak of data that can be
accessed by an algorithm only in a limited way, e.g. by
testing equality. We briefly mention atoms equipped
with more structure, such as a linear order. This case
turns out to be simpler than the equality atoms; in
particular, nondeterminism can be eliminated just as
in the classical world. A more interesting example is
studied in Theorem VII.2, which shows that checking the
linear independence of binary vectors requires exponen-
tial time when vectors are equipped only with addition
and zero test. (Gaussian elimination tests independence
in polynomial time, but it uses more than just addition
and zero test.)

II. SETS AND MACHINES WITH ATOMS

We define sets with atoms following [11], and following [4]
for orbit-finiteness.

Consider a countably infinite set, denoted by A, whose
elements we call atoms. For most of the paper, we assume that
the atoms have no structure except for equality, and therefore
we use the name atom automorphism for any permutation of
the atoms. Occasionally, we call A the equality atoms (to dis-
tinguish from atoms with more structure which will be studied
in Section VII; there not all permutations are automorphisms.)
A set with atoms is any set that can contain atoms or other
sets with atoms, in a well-founded way. Formally, sets with
atoms are defined by ordinal induction: the empty set is the
only set at level 0, and sets at level α either are atoms (which
contain no elements) or contain sets at levels smaller than α.

Examples of sets with atoms include:
(a) any classical set without atoms,
(b) an atom 3, an ordered pair of atoms (3, 5) (encoded as a

set in a standard way, e.g. {{3}, {3, 5}}),

1In [5], we mistakenly conjectured that the P vs. NP problem with atoms
is equivalent to the classical one.

3

(c) {(3, 5, 8), (5, 8, 3), (8, 3, 5)}, i.e. the triple (3, 5, 8) con-
sidered up to cyclic shift,

(d) the set A, the set An of n-tuples of atoms, the set A(n)

of n-tuples of distinct atoms, the set
(A
n

)
of sets of atoms

of size n, etc.
One can perform standard set-theoretic constructions on sets
with atoms, including union, intersection, Cartesian product,
powerset etc.

Legal sets with atoms. For X a set with atoms and π an
atom automorphism, by π(X) we denote the set obtained
by application of π to the elements of X (this definition is
recursive; formally, this is again defined by ordinal induction).
We say that a set S ⊆ A supports X if X = π(X) for
every π which is the identity on S; such π is called an S-
automorphism. For example, (a) and (d) above are supported
by the empty set, and {3, 5, 8} supports (c). A set with atoms
is called legal if it has some finite support, each of its elements
has some finite support, and so on recursively. For example,
the legal subsets of A are precisely those which are either
finite or cofinite. The full powerset PA is not legal, but the
set PfsA of finitely supported sets of atoms is legal. Trivially,
every element of a legal set is legal.

We are only interested in sets with atoms that are legal.
From now on all sets with atoms are assumed to be legal.

Every legal set X has the least finite support with respect
to set inclusion (see e.g. [11, Prop. 3.4]). By the support of
X , we implicitly mean the least support.

A legal set supported by the empty set is called equivariant.
For example, A is equivariant, but {3} ⊆ A is not.

Relations and functions between sets with atoms can be
seen as sets with atoms themselves, as their graphs. A relation
R ⊆ X×Y is supported by S ⊆ A iff xRy implies π(x)Rπ(y)
for every S-automorphism π. Similarly, a function f : X →
Y is supported by S iff π(f(x)) = f(π(x)), for every S-
automorphism π. It follows that f(x) is supported by the union
of S with the least support of x.

The general rule is that a relation (function) is supported
by S (equivariant) if it can be defined without mentioning
any atoms outside of S (resp. any atoms at all). For example,
the only equivariant function from A to A is the identity, and
the only other equivariant relations on A are the full and the
empty relations and the complement of the equality relation. A
constant function from A to A with value a ∈ A is supported
by {a}. The only equivariant functions from A2 to A are the
projections; the only equivariant function in the other direction
is the diagonal. There is no equivariant function from

(A
2

)
to

A, but
{({a, b}, a) : a, b ∈ A}

is a legal equivariant relation between
(A
2

)
and A. (Note that

it relates e.g. {3, 5} both to 3 and 5.)

Orbit-finite sets. For X a set with atoms and S ⊆ A, the
S-orbit of X is

{π(X) : π is an S-automorphism}.

For every S, the S-orbits form a partition of all sets with
atoms. The definition of support can be phrased using S-orbits:

a set with atoms is supported by S if and only if it is a union
(possibly infinite) of S-orbits. As S grows, the partition of sets
with atoms into S-orbits becomes more refined. However, the
following fact shows that having a finite number of S-orbits
does not depend on the choice of S:

Fact II.1. For every S ⊆ T finite sets of atoms, every S-orbit
is a finite union of T -orbits.

As a result, it is meaningful to define a set with atoms X to
be orbit-finite if it is partitioned into finitely many S-orbits by
some (or, equivalently, every) S that supports X . The sets A,
An, A(n) and

(A
n

)
are all orbit-finite. Sets like A∗ and PfsA

are not orbit-finite.

Turing machines. The definition of a Turing machine with
atoms is exactly the same as the classical one, but with finite
sets replaced by (legal) orbit-finite sets with atoms. Thus the
ingredients of a machine are: states Q, distinguished subsets
of initial and accepting states, an input alphabet A, a work
alphabet B ⊇ A, and a (legal) transition relation:

δ ⊆ Q×B ×Q×B × {−1, 0, 1}

(elements of the set {−1, 0, 1} encode directions of the head
move2). All these ingredients are required to be orbit-finite
sets with atoms. An input is a finite word w ∈ A∗ over the
input alphabet. Then one defines configurations, transitions
between configurations, runs as sequences of configurations,
acceptance, language recognized by a machine, etc., exactly
as in the classical case. A machine is deterministic if it has
one initial state and its transition relation is a partial function.

The model we have defined is an atom version of a one-tape
machine. Two- or three-tape machines would not contribute
anything new. One could think about machines with tapes
indexed by atoms, or a tape where the directions for the head
movement are indexed by atoms. We do not study such models
here.

Observe that we do not stipulate rejecting states and there-
fore do not assume machines to be total. Thus we focus on
semi-decidability, not on decidability, in this paper.

Example II.1. Assume that the input alphabet is A. We show
a deterministic Turing machine which accepts words where
all letters are distinct, and the atom 5 does not appear. (This
is the complement of the language from Example I.1, with
the additional condition on 5 thrown in to illustrate non-
equivariant machines.) The idea is that the machine iterates
the following procedure until the tape is empty: if the first
letter on the tape is different from 5, replace it by a blank and
load it into the state, scan the word to check that the just-erased
letter does not appear again, and go back to the beginning of
the tape. Formally speaking, the machine is defined as follows.

– The work alphabet is the input alphabet plus the blank
symbol (a designated symbol with empty support, used for
demarcating the input word). The work alphabet has two ∅-

2Integers can be defined as sets without atoms, so they are also legal sets
with atoms. It is in this sense that we use −1, 0, 1 in the definition of the
transition relation. In particular, 1 is the von Neumann number {∅}, and it
should not be confused with the atom 1.

4

orbits: one orbit for the atoms, and one singleton orbit for the
blank symbol.

– There are three states init , return and accept with empty
support, and a set of states A − {5}. A state a from this set
is denoted scan(a). Altogether there are four orbits for the
states: singleton ∅-orbits for init , return and accept , and one
{5}-orbit for the scan states. One can think of a state scan(a)
as consisting of a control component, namely the word scan ,
and a register storing the atom a.

– The state init is initial and the state accept is accepting.
– The transition relation is actually a partial function, and

therefore the machine is deterministic. The following set of
transitions (which form a single {5}-orbit) corresponds to
loading the first letter into the state, erasing it, and moving
the head to the right:

(init , a)→ (scan(a), blank , 1) for a ∈ A− {5}

The following set of transitions makes the head move to the
end of the tape as long as the atom seen in the first letter does
not reappear:

(scan(a), b)→ (scan(a), b, 1) for a 6= b ∈ A− {5}.

The set above also has one {5}-orbit, since every pair of
distinct atoms that are both different from 5 can be mapped
to any other such pair by a {5}-automorphism of the atoms.
The following set of transitions (two orbits) makes the head
return to the beginning of the tape:

(scan(a), blank)→ (return, blank ,−1)

(return, a)→ (return, a,−1)
for a ∈ A.

Note that when a = 5, then the transitions above are never
used. The following transition (one transition) makes the
machine repeat the procedure

(return, blank)→ (init , blank , 1),

and the following transition accepts once the tape has been
emptied (or if the input was empty to begin with)

(init , blank)→ (accept , blank , 0). �

A Turing machine is a set with atoms (recall that tuples
are encoded as sets), therefore it makes sense to talk about
the support of a machine. For instance, the machine in the
example above is supported by {5}. In general, if a machine
is supported by a set of atoms S, then its language is also
supported by S. The reason is that the function M 7→ L(M)
which maps a Turing machine to its language is equivariant
(its definition does not refer to any specific atoms) so L(M)
is supported by the least support of M .

Example II.2. We explain the nondeterministic machine
sketched in Example I.2 in some more detail. It is actually
a nondeterministic automaton, i.e., it does not write to the
tape and always moves the head right. Its state space is

{0} ∪ {4(a, b),5(a, b) : a, b ∈ A distinct}

so it has three orbits: one singleton orbit, and two orbits iso-
morphic to A(2). For better illustration we write

a

b

11 and
a
b

11

instead of 4(a, b) and 5(a, b), respectively. In the initial

state 0, the automaton inspects the leftmost input letter and
nondeterministically chooses a next state according to the set
of transitions:(

0, �
ba
c

)
→
(

a
b

11

 , �

ba
c
, 1

)
for a, b, c ∈ A distinct

(recall (2) to see that this defines three outgoing transitions
for any input letter).

The machine continues deterministically according to tran-
sitions:(

a
b

11

 , �

ca

b

)
→
(
a

c

11 , �
ca

b
, 1

)
for a, b, c ∈ A distinct(

a

b

11 , �
ca

b

)
→
(

c
b

11

 , �

ca

b
, 1

)
for a, b, c ∈ A distinct

This defines a partial mapping, as it requires the state and the
next letter share at least two atoms in a consistent way.

Each of the three kinds of transitions above forms an
equivariant one-orbit set. �

Complexity classes. A language over an orbit-finite alpha-
bet is called deterministically semi-decidable if there is a
deterministic Turing machine with atoms that recognizes it
(i.e. accepts the words in the language and does not accept the
other words). Likewise, we can talk of a nondeterministically
semi-decidable language. (We will prove that these notions are
not equivalent.)

Even in the presence of atoms, the number of letters in a
word and the number of computation steps are natural numbers
(without atoms). Therefore it makes sense to talk of time and
space resources. This leads to definitions of the classes P and
NP with atoms, or other complexity classes, such as PSpace.

When the input alphabet does not contain atoms, say the
input alphabet is {0, 1}, using atoms is not beneficial to the
machine. More precisely, when L is a language over an al-
phabet without atoms, then L is recognized by a deterministic
Turing machine with atoms if and only if it is recognized by a
deterministic Turing machine without atoms. (A deterministic
Turing machine with empty support, given an input word
without atoms, cannot produce any atoms during its run, as
it transition function has empty support. Similarly, a Turing
machine with support S can only produce a bounded number
of atoms.) Therefore, over alphabets without atoms, there is
only one notion of deterministic semi-decidable language. The
same holds for nondeterministic semi-decidable, P and NP.
Prior work. Sets with atoms appear in the literature under
various other names: Fraenkel-Mostowski models [2], nominal
sets [11], sets with urelements [1], permutation models [12].

Sets with atoms were introduced in the context of set theory
by Fraenkel in 1922, and further developed by Mostowski,
which is why they are sometimes called Fraenkel-Mostowski
sets. They were rediscovered for the computer science com-
munity by Gabbay and Pitts [11]. It turns out that atoms are a
good way of describing variable names in programs or logical
formulas, and the automorphisms of atoms are a good way of
describing renaming of variables. Since then, sets with atoms,
under the name of nominal sets, have become a lively topic
in semantics, see e.g. [14], [13]. Recently, sets with atoms

5

have been investigated from the point of view of automata
theory [4], [6], [7] and computation theory [3], [8]. The present
paper is a continuation of the latter line of research.

III. DETERMINISM IS WEAKER THAN NONDETERMINISM

In this section we show that, with atoms, the deterministic
and nondeterministic models are not equivalent. What is more,
already nondeterministic polynomial time is not included in
deterministic semi-decidable languages. This illustrates the
weakness of the deterministic model.

Theorem III.1. In sets with equality atoms, there is a lan-
guage that is decidable in nondeterministic polynomial time,
but not deterministically semi-decidable.

A consequence of the theorem is that, with atoms, P is not
equal to NP. It is not our intention to play up the significance
of this result. In a sense, the theorem is too strong for its own
good: it shows that computation with atoms is so different
from computation without atoms, that results on the power of
nondeterminism in the presence of atoms are unlikely to shed
new light on the power of nondeterminism without atoms.

The rest of Section III is devoted to proving Theorem III.1.
In Section III-A, we define a language L that witnesses
the difference between NP and deterministic decidability; we
also show that L is in NP. Then we prove that L is not
deterministically semi-decidable. The proof is in two steps.
In Section III-B, we define orbit-finite algebras and show that
every deterministic Turing machine can be simulated by an
orbit-finite algebra. In Section III-C we show that no orbit-
finite algebra can recognize L.

A. The language

The input alphabet. We begin by defining the input alphabet.
We use the name triangle for an unordered triple of ordered
pairs of atoms, where all six atoms are distinct. In other words,
a triangle is a set

{(a, a′), (b, b′), (c, c′)} where a, a′, b, b′, c, c′ are distinct.

We define the side sets of the triangle to be the unordered pairs
{a, a′}, {b, b′} and {c, c′}. We denote triangles by τ . The set
of all triangles is a one-orbit set. We visualise a triangle as
an unordered hyperedge that connects orientations of its side
sets:

Suppose that we have several triangles. A conflict is a side
set which appears in two triangles in different orientations. For
instance, the following two triangles have one conflict:

Triangles τ1, . . . , τn are called nonconflicting if they have no
conflicts. Consider a triangle which has a side set {a, a′}.
The swap on {a, a′} changes the orientation of the side, i.e.
changes (a, a′) to (a′, a) and vice versa. Note that doing a
swap (on any side set) does not change the set of side sets.
Swaps are a way of resolving conflicts. For instance, in the
picture above, doing a swap on the side set {b, b′} in the left
(or right, but not both) triangle will remove the conflict.

We say that two triangles are ≈-equivalent if one can
go from one to the other by an even number of swaps
(i.e. swapping zero or two side sets). We use the name ≈-
triangle for a ≈-equivalence class of triangles; each such a
class contains exactly four triangles. Doing a single swap
changes the ≈-class of a triangle, doing another swap comes
back to the original class. Therefore, when the side sets are
fixed, there are exactly two ≈-triangles with these side sets.
These two ≈-triangles are said to be dual, and changing a ≈-
triangle to its dual is called flipping. Note, however, that the
set of all ≈-triangles is a one-orbit set.
The language. We now define a language that witnesses
Theorem III.1. The input alphabet is ≈-triangles. The language
is the projection, by taking ≈-equivalence classes, of the
nonconflicting sequences of triangles.

L = {[τ1]≈ · · · [τn]≈ : τ1, . . . , τn are nonconflicting triangles}

Observe that membership in L does not depend on the order
or repetition of letters, and therefore it makes sense to talk
about a set of ≈-triangles belonging to L.

We will show that the language L is a witness for Theo-
rem III.1: it is in NP but not deterministically semi-decidable.
Membership in NP is straightforward: the machine has a work
alphabet that contains triangles (and not just ≈-triangles), and
uses nondeterminism to guess τ1, . . . , τn. Once the actual
triangles are given, the machine deterministically compares
every two of them to see if they conflict.

There are just exponentially many possibilities for
τ1, . . . , τn. One could ask why there is no deterministic
algorithm recognizing L, by exhaustively enumerating all the
possibilities? The reason is essentially the same as in (4) in
Example I.2: there is no function that would map a ≈-triangle
to some triangle that belongs to it. In particular, the set of all
pairs of the form ([τ]≈, τ) is a relation, not a function.

Remark: The language L is a variant of the Cai-Fürer-
Immerman (CFI) construction [9] from Descriptive Complex-
ity Theory. There, it is used to show that a certain logic
Cω∞ω cannot express a property of (unordered) graphs which
is, however, decidable in polynomial time. That result can also
be deduced from Theorem III.3 below. The details will appear
in the full version of this paper.

Our inspiration for the language L came from yet another
source: it is a generalization of a construction from Model
Theory ([10], Example on p. 819).

B. Algebras as a model of local computation

The reason why a deterministic Turing machine cannot
recognize the language L is that it has only a local view of the
computation: the decision for the next step is taken based on

6

the state of the machine, and one cell of the tape. In particular,
the decision depends only on the small set of atoms that is
found in the state and one cell; the size of this set is fixed
by the machine, and does not depend on the input. Our proof
will show that any computation model of this kind will not
recognize the language L. To model locally based decisions,
we use the notion of algebras and terms (similar to circuits).
Terms in an algebra are evaluated in a local fashion: the result
of a bigger term depends only on a single operation applied to
its subterms. By using terms and algebra, our proof will not
need to depend on the technical details of Turing machines
such as end-of-tape markers, the position of the head, etc.

An orbit-finite algebra consists of:
• an orbit-finite universe A,
• a finite set of finitely supported operations of finite arity:

f1 : An1 → A , . . . , fk : Ank → A.

We require the set of operations to be finite, although an orbit-
finite set of operations would also be natural. In this paper we
use algebras only as a technical tool, and we choose a truly
finite set of operations for technical convenience.

A term in an algebra is defined as usual: it is a finite tree
where internal nodes are operations, and the leaves are vari-
ables or constant operations. Given a term t, and a valuation
val which maps its variables to the universe of the algebra, we
write t[val] ∈ A for the value of the term under the valuation.

If there is some implicit order x1, . . . , xn on the variables of
a term, then we can also evaluate the term in a word w ∈ An,
by using the valuation that maps the i-th variable to the i-th
position. We denote this value by t[w].
Recognising a language. We now define what it means for
an algebra to recognize a language L ⊆ A∗. To input a word
from A∗, we require the universe of the algebra to contain the
input alphabet, but it can also contain some other elements,
which can be seen as a work alphabet. Finally, we require
the universe to contain the Boolean values true and false, so
that it can say when a word belongs to the language. We say
that such an algebra (non-uniformly) recognizes L if for every
input length n there is a term tn with n variables such that

tn[w] =

{
true if w ∈ L
false if w 6∈ L

for every w ∈ An.

Theorem III.2. For every deterministic Turing machine, there
is an algebra that recognizes its language.

Note that the statement does not require the machine to
be total: it is allowed to have non-terminating computations
on non-accepted words. In other words, the theorem says that
(deterministically) semi-decidable languages are recognized by
algebras. The proof is basically an unraveling of the definition
of a Turing machine, and is presented in Appendix A.

C. Algebras do not recognize L

By Theorem III.2, in order to show that L is not determin-
istically semi-decidable, it suffices to show the following:

Theorem III.3. No orbit-finite algebra recognizes L.

The rest of this section is devoted to proving this theorem.
Triangulations and parity. A set of triangles is called a
triangulation if
• side sets in the triangulation are either disjoint or equal,
• every side set appears in exactly two triangles.

This definition also makes sense for sets of ≈-triangles.
For a set of triangles T , we define

[T]≈
def
= {[τ]≈ : τ ∈ T }.

We say that two triangles are neighbouring if they share a
side set. A set of triangles is called connected if every triangle
can be reached from every other via a sequence of neigh-
bouring triangles. The following shows that, for connected
triangulations, membership in L is a parity-type property.

Lemma III.4. Let T be a finite set of triangles that is a
connected triangulation. Then [T]≈ ∈ L iff T has an even
number of conflicts.

The idea is that if two conflicts are connected via a path
of triangles, then appropriately performing two swaps in each
triangle along the path gives a set of triangles T ′, two conflicts
fewer than T , such that [T ′]≈ = [T]≈.
Torus. To construct an input that will confuse an algebra, we
will place triangles in a torus-like arrangement. Let n ∈ N.
An n-torus is a set of 2n2 ≈-triangles defined as follows. Let
us begin with 6n2 distinct atoms

aij , a
′
ij bij , b

′
ij cij , c

′
ij for i, j ∈ {0, . . . , n− 1}.

Define a proper n-torus to be the following set of ≈-triangles:

Tn = {[τij]≈, [σij]≈ : i, j ∈ {0, . . . , n− 1}},

where the triangles τij and σij are as follows:

We adopt the convention that all indices are counted modulo
n, so that e.g. ain = ai0. This means that the neighbourhood
graph of a proper n-torus, illustrated in Figure 1, indeed
resembles a torus: the triangles on the left are neighbours of
the triangles on the right, and likewise for the top and bottom.

An n-torus is obtained from a proper n-torus by flipping
any of its ≈-triangles in any way.
Toruses are difficult for algebras. We now complete the
proof of Theorem III.3. The key step is the following lemma.

Fix an algebra A. Let t be a term of A and T be an n-
torus. For a valuation val : variables(t)→ T and a ≈-triangle
τ ∈ T , we say that t and val ignore τ , if

t[val] = t[valτ],

where valτ is defined like val, but with the value of τ flipped.

7

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•) (•,•) (•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•)

(•,•)

(•,•)

(•,•)

(•,•)(•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

(•,•)

(•,•) (•,•)

{

{
Fig. 1. An n-torus.

Lemma III.5. There is some k ∈ N (depending only on A)
such that for every n-torus T with a sufficiently large n, for
every term t in A and for every valuation val with values in T ,
t and val ignore all but at most k elements of T .

The lemma implies Theorem III.3. Indeed, suppose that an
algebra recognizes L, and consider terms tn recognizing L
over words of length n. Since (by Lemma III.4) flipping a
single input letter affects membership in L, for every valuation
val and every τ ∈ T we have that tn and val do not ignore τ .
This holds true for every n, and if 2n2 > k, this contradicts
Lemma III.5, since an n-torus is built of 2n2 ≈-triangles.

Proof: Let r be the maximal arity of all operations in A.
The proof of Lemma III.5 proceeds by induction on the size
of the term t. The base case is when the term is a variable, and
a variable ignores all τ ∈ T except for one. For the induction
step, fix some val. The topmost operation in t has arity at
most r, so by the inductive assumption, there are at most k · r
elements τ ∈ T which are not ignored by t and val. We need
to show, however, that there are actually only at most k such
elements τ . The argument has a geometric flavor, and builds
on the following easy observation that it is hard to decompose
a torus into small pieces:

Fact III.6. After removing m triangles in an n-torus, there
remains a connected component of at least 2n2−m2 triangles.

Define m = 2(k1 + k2), where k1 is the size of the least
support of all (finitely many) operations in the algebra A and
k2 is the maximal size of a least support of an element of the
universe of A. We now reveal the value of k; we put k = m2.

Let S be a set which supports all operations in the algebra
A and the value t[val]. By induction on the size of the term
t, one can show that

t[π(val)] = t[val] for any S-automorphism π. (5)

Without losing generality, S can be chosen so that it has at
most k1 +k2 elements. As every atom appears in at most two
≈-triangles, there are at most m elements in T whose least
support intersects S.

Assume now that n is sufficiently large; specifically, we
need that 2n2 > k · r + k. By Fact III.6, there is a connected
subset C ⊆ T such all elements of C have least supports

disjoint with S, and the size of C is at least 2n2 − k, so it is
bigger than k · r. By the inductive assumption, some τ ∈ C
is ignored by t and val. For the proof of Lemma III.5 it is
enough to prove that every τ ∈ C is ignored by t and val;
indeed, there are at most k elements outside of C in the torus.
To this end, since C is connected, it is now enough to show:

Lemma III.7. If some τ ∈ C is ignored by t and val, then
every neighbor τ ′ ∈ C of τ also is.

To prove this, note that applying the atom automorphism π
that swaps the atoms in the side set shared by τ and τ ′, has
exactly the same effect on the torus T as flipping both τ and
τ ′. (For this we use the assumption that these atoms do not
appear elsewhere in T .) In consequence, flipping τ ′ has the
same effect as applying π and then flipping τ . As the side set
is disjoint from S, π is an S-automorphism so, by (5), it does
not change the value of t[val]. As a result, flipping τ ′ has the
same effect on t[val] as flipping τ .

IV. THE CHURCH-TURING THESIS

Theorem III.1 shows that deterministic and nondeterministic
Turing machines lead to different notions of decidability. Does
this mean that there is no Church-Turing thesis for atoms,
i.e. no robust notion of decidability? In this section we argue
that there is one, with many equivalent formulations; it is just
that deterministic Turing machines are not one of them.

A. Representations

A robust notion of computation with atoms not only should
have several equivalent definitions, but it should also have
a connection to the standard notion of computation without
atoms. To make this connection, we represent objects with
atoms by using data structures without atoms, which can
be written down as bit strings. Atoms themselves can be
represented as natural numbers. Using the representation for
the atoms, finite permutations of atoms (i.e., those that are the
identity on almost all atoms) can be also represented, say as
lists of pairs of the form a1 → b1, . . . , an → bn.

Suppose that X is a set with atoms. A representation
function for X is an injective function

encode : X → 2∗,

which maps an element of X to its (unique) representation so
that there is an algorithm solving the following problem:
• Input. A finite permutation of atoms π, and an element
x ∈ X , both given by representations.

• Output. The representation of π(x), or an error if π(x) 6∈
X .

In [4] it is shown that every orbit-finite set has a representation
function. Note that a representation function cannot be finitely
supported. If it were supported by S, then it would assign the
same bit strings to all arguments in the same S-orbit of X .

B. The Church-Turing thesis

Suppose that A is an orbit-finite alphabet with atoms, and
encode is a representation function. A string a1 · · · an ∈ A∗

8

is represented as a list of representations of the individual
letters. For L ⊆ A∗, we write encode(L) to denote the set of
all encodings of words in L. Since encode(L) is a set of bit
strings, it makes sense to recognize it using a standard Turing
machine without atoms.

Theorem IV.1. Let A be an orbit-finite alphabet, and let
encode be a representation function. For a finitely supported
language L ⊆ A∗, the following conditions are equivalent:

(1) encode(L) is recognized by a nondeterministic Turing
machine without atoms;

(2) L is recognized by a nondeterministic Turing machine
with atoms.

Since (2) does not depend on the representation function, a
corollary of this is that the choice of representation function
encode does not affect the notion of computability. Observe
also that in (1) we could have used any other Turing-complete
mechanism without atoms, such as deterministic Turing ma-
chines. The proof of the theorem is Appendix B.

Programming languages. As more evidence for the atom
version of the Church-Turing thesis, nondeterministic Turing
machines with atoms have the same power as two program-
ming languages designed for sets with atoms: a functional
language from [3] called Nλ, and an imperative language
from [8] called while programs with atoms. Both languages
can process objects that are richer than simply strings over an
orbit-finite alphabet, e.g. they can transform orbit-finite sets
into other orbit-finite sets. Even if it is not their principal
design goal, both Nλ and while programs with atoms can
be used as language recognizers: when A is an orbit-finite
alphabet, one can use both programming languages to define
subsets of A∗. It turns out that, as language recognizers, both
programming languages are equivalent to nondeterministic
Turing machines.

Theorem IV.2. The conditions in Theorem IV.1 are also
equivalent to the following conditions:

3) L is recognized by a program of Nλ;
4) L is recognized by a while program with atoms.

V. ELIMINATING RESTRICTED NONDETERMINISM

In this section, we show how a deterministic Turing machine
can, to some extent, simulate nondeterministic guessing of
atoms. As we know from Theorem III.1, in general, such
guessing cannot be eliminated. We show that one can eliminate
guessing of atoms which are fresh, i.e. which do not belong
to the least support of the input word or configuration. This
simulation preserves computation time and space. We also
show that guessing a bounded number of non-fresh atoms can
be eliminated too. In particular, deterministic Turing machines
can simulate guessing a bounded number of (fresh or non-
fresh) atoms.

A Turing machine with the fresh oracle is a Turing machine
which, at any moment of the run, may consult the oracle to
obtain an atom which is fresh with respect to the current con-
figuration. The acceptance condition is defined existentially:
the machine accepts an input word if the oracle can respond

in such a way that the resulting run is accepting. The precise
definition is in Appendix C – there, the oracle provides a fresh
atom by writing it at the current head position; however, any
other reasonable definition would give an equivalent model.

It is not difficult to see that acceptance does not depend
on the responses of the oracle, as long as they are fresh
atoms. This observation underlies the proof of the following
result, stating that machines with the fresh oracle can be
simulated by usual Turing machines, preserving computation
time and space. We say that a machine with the fresh oracle
is deterministic if, apart from the choices made by the oracle,
its transitions are deterministic.

Proposition V.1. Let M be a deterministic Turing machine
with the fresh oracle. Then there exists a deterministic Turing
machine M ′ (without the fresh oracle) over the same input
alphabet, such that:

1) M and M ′ accept the same input words;
2) M and M ′ have the same supports;
3) The computation time and space used by M ′ is the same

as used by M , up to a constant multiplicative factor.

The proof relies on the notion of abstraction sets, intro-
duced by Gabbay and Pitts [11] in their nominal framework
for variable binding in semantics. We relegate the proof to
Appendix C. We only sketch the rough idea in the case when
M invokes the fresh oracle only once, in the first step of the
computation. The general statement can be deduced from this
special case by an appropriate nesting of Turing machines.
The idea is that M ′ stores in its state an abstraction, which
is roughly a set I of implications of the following form:

If the atom returned by the oracle is a, then the state
of the machine M is q.

Similar sets are used to represent each tape symbol. It is
important that not all the implications in I need to be true,
but the ones that involve fresh atoms do. Abstractions form
an orbit-finite set. Moreover, they behave well with respect to
applying functions, in particular, the transition function of M .

On the other hand, we define a Turing machine with
the choice oracle, which, at any moment of the run, may
nondeterministically obtain an atom from the least support of
the tape symbol under the current head position. Similarly as
for the fresh oracle, the machine accepts an input word if the
choice oracle can respond in such a way that the resulting
run is accepting. Contrary to the case of the fresh oracle,
acceptance of the run may depend on the answers of the oracle.

Example V.1. Consider an input alphabet
(A
n

)
, i.e. sets of n

atoms. We show how a Turing machine M with the choice
oracle can compute a linear ordering of atoms from a single
letter. The work alphabet of the machine is sets of at most
n atoms. Given a letter X , the machine invokes the choice
oracle to choose some atom a ∈ X . It writes this atom in one
cell of the tape, and in another cell it writes the set X −{a}.
The procedure is then repeated with X − {a} in place of X ,
until X becomes empty.

The choice oracle can be used to order the atoms in the least
support of a letter b from an arbitrary orbit-finite alphabet:

9

simply apply the above construction to X = supp(b), where
supp(b) is the least support of b; the mapping b 7→ supp(b) is
legal, so it can be carried out by a deterministic machine.

Theorem III.1 implies that the choice oracle cannot be
eliminated in general, but according to the following result,
a bounded number of calls can be eliminated.

Proposition V.2. Let n be a number and let M be a deter-
ministic Turing machine with the choice oracle, such that in
every run of M , M invokes the choice oracle at most n times.
Then there exists a deterministic Turing machine M ′ over the
same input alphabet, such that:

1) M and M ′ accept the same input words;
2) M and M ′ have the same supports;
3) The computation time and space used by M ′ is the same

as used by M , up to a constant multiplicative factor.

The proof is in Appendix C; the rough idea is similar as in
the proof of Proposition V.1.

A family of objects {xi}i∈I is modelled as a legal function
i 7→ xi. As a corollary from Proposition V.2, deterministic
Turing machines are closed under orbit-finite unions:

Corollary V.3. Let I be an orbit-finite set, and let {Mi}i∈I
be a family of deterministic Turing machines over a common
input alphabet. Then the language

⋃
i∈I L(Mi) is recognizable

by a deterministic Turing machine.

Proof: For every single-orbit set I there is some n ∈ N
and a surjective legal partial function f : An → I . Therefore,
it is enough to consider the case when I ⊆ An for some n.
Guessing an n-tuple of atoms can be simulated by invoking
the fresh oracle or the choice oracle at most n times.

VI. A DICHOTOMY FOR INPUT ALPHABETS

To separate deterministic and nondeterministic computation
in Theorem III.1, a rather complex input alphabet was needed.
For simpler alphabets, such as that of atoms, nondeterministic
Turing machines do determinise. As it turns out, there is a
dichotomy on input alphabets:

Theorem VI.1. Every input alphabet A is either:
1) Nonstandard. There is a language over A that is in NP

but not deterministically semi-decidable, or
2) Standard. For languages over A,

a) deterministic semi-decidable equals nondetermin-
istic semi-decidable.

b) the answer to P=NP is the same as classically.

The proof (to be found in Appendix D) also shows that
over a standard alphabet many complexity questions have the
same answer as classically, including any equality concerning
the classes P, NP, PSPACE and EXPTIME. Conversely, over
nonstandard alphabets, any complexity class that allows an
unbounded number of nondeterministic guesses (e.g. nonde-
terministic logarithmic space) is not included in the determin-
istically semi-decidable languages.
A canonical language. Whether an alphabet is standard or
not can be traced to one kind of language. For a finite set of

atoms S, define

LA,S = {wv ∈ A∗ : w = π(v) for an S-automorphism π}.

Note that w = π(v) implies that w and v have the same length.

Lemma VI.2. The language LA,S is in NP.

Proof sketch: Given input wv, a nondeterministic Turing
machine can guess the S-automorphism π, by nondetermin-
istically writing on the tape pairs of the form (a, π(a)) such
that a is in the least support of the word w and π(a) is in
the least support of the word v. Once π is written on the
tape, the condition w = π(v) can be verified in deterministic
polynomial time.

The following theorem shows that the language LA,S con-
tains all the difficulties for deterministic computation: if it
can be recognized by a deterministic Turing machine, then
all nondeterministic Turing machines can be determinised3.

Theorem VI.3. For every finite set S of atoms and every orbit-
finite alphabet A, the following conditions are equivalent:

1) the language LA,S is in P;
2) the language LA,S is deterministically semi-decidable;
3) the language LA,S is recognized by some orbit-finite

algebra;
Furthermore, for a fixed A, if one (or all) conditions above
hold for some S, then they hold for every S. Finally, the
alphabet A is standard if the conditions above hold, and
nonstandard otherwise.

We conclude with some examples of standard and nonstan-
dard alphabets.

Example VI.1. To see that the alphabet A is standard, by
Theorem VI.3, it is enough to show that the language LA,∅ is
in P. A word a1 · · · anb1 · · · bn belongs to this language if and
only if

ai = aj iff bi = bj for every i, j ∈ {1, . . . , n}.

This is easily checked in deterministic polynomial time. The
same argument works for alphabets of the form An.

Another example of a standard alphabet is
(A
2

)
, i.e. two-

element sets of atoms. To test if two given words of equal
length are in the same ∅-orbit, it is sufficient to check that the
intersection of every three letters has the same cardinality in
both words. (This implies that the intersection of any subset of
letters has the same cardinality in both words.) This decision
procedure generalizes easily to sets of atoms of cardinality
greater than two.

On the other hand, the alphabet used in Section III-A is
nonstandard, by Theorem III.1.

VII. ATOMS WITH STRUCTURE

So far, we have assumed that the only structure on the atoms
is equality. To study atoms with some additional structure,
following [4], we can model the atoms as a relational structure
(as in model theory). We can then define (legal) sets with
atoms and orbit-finite sets in the same way as before, with

3Note, however, that we do not claim NP-completeness of LA,S .

10

the notion of atom automorphism now inherited from the
relational structure. The atoms with equality that have been
discussed so far correspond to the relational structure (N,=),
or any other countable set with equality. Sets without atoms
correspond to the empty relational structure.

In this section we show two other examples of relational
structures for the atoms, and see what happens to determini-
sation of Turing machines with those atoms.

A. Total order atoms

Consider the atom structure where the universe is the ratio-
nal numbers with order: (Q,≤). We use the name sets with
total order atoms for sets with atoms built on this relational
structure. In sets with total order atoms, Turing machines
behave the same way as without atoms.

Theorem VII.1. Consider the total order atoms. For every
input alphabet:
• deterministic semi-decidable is equal to nondeterministic

semi-decidable; and
• the answer to P=NP is the same as classically.

The intuition is that having a linear order on the atoms, the
choice oracle can be easily eliminated, simply by choosing the
minimal element of the least support of a symbol – in presence
of a linear order, this is an equivariant function.

B. Bit vector atoms

We now present another example of atoms, where de-
terministic polynomial time is weaker than nondeterministic
polynomial time (as in the equality atoms), but deterministic
semi-decidable is equal to nondeterministic semi-decidable
(unlike in the equality atoms). The example also shows how
atoms can be used to model limited access to the input data
(in this case, the data is a vector space).

We use the name bit vector for an infinite sequence of zeros
and ones which has finitely many ones. By ignoring the trailing
zeros, a bit vector can be represented as a finite sequence
such as 00101001. Bit vectors can be added modulo two, and
multiplied by 0 or 1. Equipped with this structure, we get a
vector space over the two element field. The dimension of this
vector space is countably infinite, an example basis consists
of bit vectors which have a 1 on exactly one coordinate:

1, 01, 001, 0001, . . .

The bit vectors can be seen as a relational structure, with a
ternary predicate x + y = z for addition modulo 2 and a
unary predicate 0(x) for distinguishing the zero vector. Using
the automorphisms of this structure (such an automorphism
is required to preserve addition; it is uniquely defined by a
mapping from one basis to another), we can define sets with
bit-vector atoms.

Theorem VII.2. Over sets with bit-vector atoms, for the input
alphabet of (bit-vector) atoms,
• deterministic semi-decidable is equal to nondeterministic

semi-decidable; and
• P 6= NP.

The problem that separates P from NP is testing linear
dependence of vectors, i.e. the following language:

D
def
= {a1 · · · an ∈ A : a1, . . . , an are linearly dependent}.

It is easy to see that the language D is recognized by a
nondeterministic polynomial time Turing machine. The ma-
chine uses nondeterminism to guess a linear combination that
witnesses dependence:

c1 · a1 + · · ·+ cn · an = 0

The coefficients c1, . . . , cn ∈ {0, 1} are guessed as the ma-
chine moves through the input tape, after i steps the machine
stores in its state the partial sum of a subset of the first i
vectors. (To do this, the state space Q of the machine needs
to be built using atoms.)

In the appendix, we show that checking all linear combi-
nation is inevitable: every deterministic Turing machine will
need an exponential number of computation steps to recognize
the language D.

CONCLUSIONS

We mostly study computation over atoms whose structure
allows only for equality tests. It turns out that deterministic
Turing machines are strictly less expressive than nondetermin-
istic ones, the reason being that the state of the machine can
only store a bounded number of atoms. A natural question is to
find a deterministic model for computation with atoms which
is expressively equivalent to the nondeterministic machines.
Two such models are mentioned in this paper: the functional
programming language Nλ, and while programs with atoms.
Is there such a model in the spirit of Turing machines?

We also initiate the study of computation over atoms whose
structure is richer than just equality tests. It would be inter-
esting to see for what structures one can prove lower bounds
similar as in Theorem VII.2, or that P 6=NP.

REFERENCES

[1] Jon Barwise. Admissible sets and structures. Springer-Verlag, Berlin,
1975. An approach to definability theory, Perspectives in Mathematical
Logic.

[2] Jon Barwise, editor. Handbook of Mathematical Logic. Number 90 in
Studies in Logic and the Foundations of Mathematics. North-Holland,
1977.

[3] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin, and Sławomir Lasota.
Towards nominal computation. In POPL, pages 401–412, 2012.

[4] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata with
group actions. In LICS, pages 355–364, 2011.

[5] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory
in nominal sets. Submitted, 2012.

[6] Mikołaj Bojańczyk and Sławomir Lasota. A machine-independent
characterization of timed languages. In ICALP (2), pages 92–103, 2012.

[7] Mikołaj Bojańczyk and Thomas Place. Toward model theory with data
values. In ICALP (2), pages 116–127, 2012.

[8] Mikołaj Bojańczyk and Szymon Toruńczyk. Imperative programming
in sets with atoms. In FSTTCS, pages 4–15, 2012.

[9] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound
on the number of variables for graph identifications. Combinatorica,
12(4):389–410, 1992.

[10] G. Cherlin and A.H. Lachlan. Stable finitely homogeneous structures.
Trans. AMS, 296(2):815–850, 1985.

[11] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[12] Thomas Jech. The Axiom of Choice. North-Holland, 1973.

11

[13] Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic nominal game
semantics. In ESOP, pages 419–438, 2011.

[14] David Turner and Glynn Winskel. Nominal domain theory for concur-
rency. In CSL, pages 546–560, 2009.

APPENDIX A
PROOFS FOR SECTION III

A. Proof of Theorem III.2

Let M be a deterministic Turing machine (we will some-
times write shortly TM) with atoms. Define the universe to be
the disjoint union of the work alphabet B of the machine, the
state space Q of the machine, the Booleans, and an undefined
value:

B ∪Q ∪ {true, false} ∪ {undefined}.

A partial function on the universe is encoded by using the
undefined value. The machine is encoded in the algebra in the
most straightforward way:
• A constant for the initial state.
• A function for the accepting states:

accept : Q→ {true, false}.

When given an argument outside Q, the result is unde-
fined. The same encoding for partiality is done for the
functions below.

• The transition function is represented by the following
functions. The new state is given by a function

state : Q×B → Q.

The symbol written on the tape is given by

write : Q×B → B.

The direction of the head is given by two functions:

moveleft : Q×B → {true, false}
moveright : Q×B → {true, false}

If both functions above say false, then the head does not
move.

There are constants for true and false. Finally, to simulate
control flow, the algebra contains an if-then-else construction:

ifthenelse : {true, false} × U × U → U.

This construction yields, among other things, the standard
Boolean operations. This completes the definition of the al-
gebra.

We now show that the algebra recognizes the language of
the Turing machine. We will show that for every input length
n and i, j ∈ N, there are the following terms:
• There is a term staten,i, with values in Q, which evalu-

ated in a word w returns the state of the machine after i
steps of computation on w.

• There is a term tapen,i,j , with values in B, which
evaluated in a word w returns the contents of the j-th
cell of the tape after i steps of computation on w.

• There is a term headn,i, with values in the Booleans,
which evaluated in a word w returns true if the head of
the machine is over cell j after i steps of computation on
w.

The terms are defined by induction on the time i of com-
putation, by simply formalising the definition of a Turing
machine’s run.

12

To complete the proof, we observe that for each input
length n, there is a maximal running time in that is used by
the machine over accepted inputs of length n. (The function
n 7→ in might not be decidable, but we are using a non-
uniform model, so this is not a problem.) Therefore, the term
for input length n uses Boolean operations to test if for some
i ∈ {1, . . . , in}, the machine reaches an accepting state.

B. Proof of Lemma III.4

Lemma III.4 says that if T is a set of triangles that is a
connected triangulation, then [T]≈ ∈ L iff T has an even
number of conflicts.

We begin with the left to right implication, which does not
use the assumption on connectedness. Since every side set
appears in exactly two triangles, doing a swap on a single
triangle in T changes the number of conflicts by one: either
it adds one or removes one. Changing a single triangle to a
≈-equivalent does an even number of swaps, and therefore
preserves the parity of the number of conflicts. If [T]≈ ∈ L,
then there is some S which has zero (an even number) of
conflicts, and [T]≈ = [S]≈. It follows that T has an even
number of conflicts.

We now do the right to left implication, which uses the
assumption on connectedness. Suppose that T is a connected
triangulation with an even (but nonzero) number of conflicts.
We will find a set of triangles S that has two inconsistencies
less, and satisfies [T]≈ = [S]≈. By iterating this procedure, we
eventually reach a set in L. Let then {a, a′} and {b, b′} be two
conflicting sides of two triangles in T . By the assumption on
connectedness, there are neighboring triangles τ1, . . . , τn ∈ T
that connect {a, a′} with {b, b′} as in the following picture:

For each i ∈ {0, . . . , n}, let σi be the triangle obtained from
τi by swapping the side sets {ai−1, a′i−1} and {ai, a′i}. Since
two side sets are swapped it follows that τi ≈ σi. Let S be the
set of triangles obtained from T by replacing τ1, . . . , τn with
σ1, . . . , σn. Since two or zero swaps are done on each letter,
we have [S]≈ = [T]≈. We claim that S has two less conflicts
than T . Indeed, the side {a, a′} is no longer an inconsistency,
since we swapped the atoms a and a′ on one of the triangles
incident to it, namely the triangle τ0, but not on the other
triangle. The same argument holds for the side {b, b′}. On the
other hand, for each i ∈ {1, . . . , n − 1}, the side {ai, a′i} is
an inconsistency in T if and only if it was an inconsistency in
S, because we swapped the atoms ai and a′i on both triangles
that contain the edge set.

APPENDIX B
APPENDIX TO SECTION IV

A. Proof of Theorem IV.1

The theorem says that the following conditions are equiv-
alent for a finitely supported language L over an orbit-finite
alphabet A, under a representation function encode:

1) encode(L) is recognized by a nondeterministic Turing
machine without atoms;

2) L is recognized by a nondeterministic Turing machine
with atoms.

Other operations on representation functions. Before prov-
ing Theorem IV.1, we show some simple results on represen-
tation functions.

Lemma B.1. Let encode : X → 2∗ be a representation
function. The following problem is semi-decidable:

• Input. Elements x, y ∈ X , and a finite set S of atoms,
given by representations.

• Output. The representation of a partial S-permutation π
of atoms such that π(x) = y, or an error if there is none.

Proof: By enumerating all partial S-permutations of
atoms.

Using the same argument as in the above lemma, we can
show:

Lemma B.2. Let encode : X → 2∗ be a representation
function. For every finitely supported relation R ⊆ Xn, the
set of representations of tuples in R is semi-decidable.

Proof: A finitely supported relation on an orbit-finite set
is orbit-finite, as a set of tuples. Therefore, R is orbit-finite.
Let S be a support of R, and let

x̄1, . . . , x̄k ∈ Xn

be tuples such that every other tuple of R is equal to one
of them, up to S-permutations. Since S-permutations can be
enumerated, for every i ∈ {1, . . . , n}, the representations of
the S-orbit of x̄i form a semi-decidable set of bit strings.
Therefore, the representations of all tuples in R form a semi-
decidable set of bit strings.

The above “algorithms” are very inefficient, but have the
advantage of only using the abstract definition of a represen-
tation function. The representation functions that are shown
in [4] realise the operations above in polynomial time.

The following lemma shows that representation functions
can be easily extended to representation functions for bigger
sets.

Lemma B.3. Let encode : X → 2∗ be a representation func-
tion. For every orbit-finite Y ⊇ X , there is a representation
function encode′ : Y → 2∗ such that

encode′(x) = 0 · encode(x) for every x ∈ X.

Proof
The set Y −X is also orbit-finite, and therefore by [4] it has
a representation function, call it encode′′. The representation

13

function for Y is obtained by combining the two:

y ∈ Y 7→

{
0 · encode(y) if y ∈ X
1 · encode′′(y) otherwise.

�

We now proceed to the proof of Theorem IV.1.
Implication from 2) to 1). Fix a nondeterministic Turing
machine with atoms M , which recognizes the language L. Let
B be the work alphabet of the machine, and Q the state space.
By Lemma B.3, we can assume without loss of generality that
the representation function for the input alphabet extends to
a representation function for the disjoint union B tQ, which
we also denote by encode:

encode : B tQ→ 2∗.

We now prove that encode(L) is recognized by a nondeter-
ministic Turing machine without atoms.

Let us denote configurations of M by letters c and d.
We write encode(c) for an encoding of a configuration: first
we encode the contents of the tape (letter by letter), then
we encode the state of the machine, and then we write a
number indicating the position of the head. We claim that the
encodings of the one-step transition relation, namely

{(encode(c), encode(d)) : M can go from c to d in one step},

is a decidable language. Indeed, we only need to test that the
configuration has changed in the vicinity of the head in a way
consistent with the transition function. For this, all we need is
that the following set of tuples of bit strings is semi-decidable:

{(encode(a), encode(q), encode(b), encode(p), dir) :

(a, q → b, p, dir) is a transition in the machine M}.

This follows from Lemma B.2.
Implication from 1) to 2). The main idea in this implication
is that a nondeterministic Turing machine with atoms can
produce an encoding of its input. In a literal sense, this is not
true. For instance, it is impossible to write a nondeterministic
Turing machine which recognizes the language

{w#encode(w) : w ∈ A∗} (6)

The problem is that the language above is not finitely
supported, for the same reasons that the encode function is
not finitely supported. Because of this issue, we can only hope
for a machine that produces and encoding of its input, or some
other input in the same orbit. This machine is described in the
following lemma.

Lemma B.4. Let S be a finite set of atoms, and A an S-
supported orbit-finite alphabet. The language

{w#encode(π(w)) : w ∈ A∗ and π is an S-automorphism}

is recognized by a nondeterministic Turing machine with
atoms.

Before we prove the lemma, we show how it yields the
implication from 1) to 2) in Theorem IV.1.

Proof of implication 1) to 2) in Theorem IV.1: Let S be a
finite set of atoms that supports L, and let M be a Turing ma-
chine without atoms that recognizes the language encode(L).
Below we describe a nondeterministic Turing machine with
atoms that recognizes L. Given an input w ∈ A∗ the machine
uses Lemma B.4 to nondeterministically guess a word v such
that v = encode(π(w)) for some S-automorphism π. Because
L is supported by S, we know that

w ∈ L iff π(w) ∈ L.

Then, we run the machine M to test if π(w) belongs to L.
Proof of Lemma B.4: We first prove the lemma for

the case when A is the atoms. An input to the machine is
a sequence of atoms a1, . . . , an, followed by a separator #,
followed by a list of bit strings b1, . . . , bn. The machine first
tests if the input is actually legal, i.e. the bit strings b1, . . . , bn
are encodings of atoms. Then it accepts if:
• The sequences a1, . . . , an and b1, . . . , bn have the same

equality type. In other words, for every i, j ∈ {1, . . . , n},
the letters ai and aj are equal if and only if the bit strings
bi and bj encode the same atom.

• For every i ∈ {1, . . . , n}, if ai ∈ S then bi = encode(ai).
Both conditions above can be easily tested by a Turing
machine. (For the second condition it is necessary that the
machine is actually S-supported.)

This completes the proof of the lemma for the case when
A is the atoms. The same proof works for the case when A
consists of tuples of atoms. We now proceed to the case when
A is an arbitrary orbit-finite set.

Every orbit-finite set A is a surjective image of non-
repeating tuples of atoms. This means that there is some k ∈ N
and a surjective function

α : A(k) → A.

When A is S-supported, then the function α can also be
assumed to be S-supported.

Choose some representation function for A(k), which by
abuse of notation we will also denote by encode. (Strictly
speaking, we apply Lemma B.3 and get a common represen-
tation function for A(k) ∪A.)

Let α̂ : 2∗ → 2∗ be the lifting of α to encodings, i.e. the
function

x 7→ encode(α(encode−1(x))

Using the definition of a representation function, one can show
that α̂ is semi-decidable in the usual sense, on bit strings. We
now describe the machine from the statement of the lemma.
Suppose that the input word is

a1 · · · an ∈ A∗

The machine first uses nondeterminism to guess letters

b1 ∈ α−1(a1) · · · bn ∈ α−1(an)

and stores these letters on the tape. Since we have already
proved the lemma for alphabets of the form A(k), the machine
can now guess strings

c1, . . . , cn ∈ 2∗

14

such that for some S-automorphism π, we have

c1 · · · cn = encode(π(b1 · · · bn)).

We can now compute

α̂(c1) · · · α̂(cn).

To complete the lemma, it suffices to show that

α̂(c1) · · · α̂(cn) = encode(π(a1 · · · an)). (7)

The proof of (7) is a simple calculation:

α̂(ci) = encode(α(encode−1(ci))) =

encode(α(encode−1(encode(π(bi))))) =

encode(α(π(bi)))

Because α is S-supported and π is an S-automorphism, the
above becomes

encode(π(α(bi))) = encode(π(ai)),

as required by (7).

B. Proof of Theorem IV.2

The theorem says that the conditions from Theorem IV.2
are equivalent to:

3) L is recognized by a program of Nλ;
4) L is recognized by a while program with atoms.

Proof: The implication from 4) to 1) is a special case
of Theorem 5 in [8]. For the implications from 2) to 3) and
from 3) to 4), we only give a rough sketch, since a more
detailed proof would require a more detailed description of
the programming languages involved.

The basic idea behind the implication from 2) to 3) is that
Nλ, as a language which processes orbit-finite sets, can sim-
ply implement the definition of Turing machine acceptance.
Suppose that M is a nondeterministic Turing machine with
atoms. Given an input word w, the set of configurations of
the machine that can be reached in n steps is an orbit-finite
set, call it conf(w, n). In Nλ one can write a program that
inputs w and n and outputs conf(w, n). This set can then
be searched for an accepting configuration, since Nλ allows
exhaustive search of orbit-finite sets.

The basic idea behind the implication from 3) to 4) is the
same as above: while programs with atoms, as a language
which processes orbit-finite sets, can simply implement the
operational semantics of the language Nλ.

APPENDIX C
APPENDIX TO SECTION V

Before proving the results concerning the oracles, we in-
troduce some preliminary notions, which originate from the
work of Gabbay and Pitts [11].

For an atom or set with atoms X , we denote by supp(X)
the least support of X .

A. Freshness

Let X be a set. For (a, x), (a′, x′) ∈ A × X , we write
(a, x) ∼ (a′, x′) if there is a permutation π such that:
• π · (a, x) = (a′, x′)
• π(b) = b for each b ∈ supp(x)− {a}.

The relation ∼ is easily seen to be an equivalence relation.
We write [a].x for the equivalence class of a pair (a, x); such
equivalence classes are called abstractions. We write [A]X
for the set of equivalence classes of the relation ∼. Observe
that if X is orbit-finite, then so is [A]X , as the image of the
orbit-finite set A×X . Also, if X ⊆ Y , then [A]X ⊆ [A]Y .

Example C.1. Let X = A3. Then (3, (1, 2, 3)) ∼
(4, (1, 2, 4)). Both pairs define the equivalence class
[3].(1, 2, 3).

Remark: The definition of the equivalence relation ∼ is
borrowed from [11]. There, the equivalence class of (a, x) is
denoted simply a.x.

The following proposition lists several important properties
of [A]. The first two suggest that [a].x is a way of “variation
of the parameter” a in x.

Proposition C.1 ([11]). 1) For any a ∈ A and x ∈ X ,
supp([a].x) = supp(x)− {a}.

2) Each equivalence class x̃ ∈ [A]X is a subset of A×X
which is a partial mapping from A to X with domain
A− supp(x̃), such that for a ∈ A− supp(x̃),

x̃(a) = x if and only if x̃ = [a].x.

3) There is a bijection [A](X × Y) ' [A]X × [A]Y, which
maps [a].(x, y) to ([a].x, [a].y).

4) If f ⊆ X × Y is a function from X to Y , then [A]f ⊆
[A](X ×Y) ' [A]X × [A]Y is a function from [A]X to
[A]Y . This function satisfies

([A]f)([a].x) = [a].f(x).

For proofs, see [11], Section 5.
a) Higher orders: Observe that the operator [A] can be

iterated; we define [A]0X
def
= X and [A]iX

def
= [A]([A]i−1X)

for i = 1, 2, We say that the elements of [A]kX have
order k. By [A]≤iX we denote X ∪ [A]X ∪ . . . ∪ [A]iX , and
by [A]∗X we denote

⋃∞
i=0 AiX . Observe that if X is orbit-

finite, then so is [A]≤iX , for i = 0, 1, 2, A weaker form
of this fact also holds for [A]∗X:

Fact C.2. Let X be an orbit-finite set, and let S be its support.
There are finitely many S-orbits Y1, Y2, . . . , Yk of [A]∗X such
that for every S-orbit Y of [A]∗X there is a bijection between
Y and Yi, for some i ∈ {1, . . . , k}.

Proof: Let d ∈ N be a number such that every element
of X has a support of size at most d.

Then, every element of [A]∗X also has a support of size
at most d, according to the first item of Proposition C.1.
Moreover, [A]∗X is supported by S, so it is a union of S-
orbits. According to Theorem 10 of [4], up to isomorphism,
there are only finitely many S-supported single-orbit sets,
whose elements have supports of size at most d.

15

B. Fresh oracles

In this section, we prove Proposition V.1. First, we give a
precise definition. Formally, a Turing machine with the fresh
oracle is a nondeterministic Turing machine, whose work
alphabet B contains A, and state space Q contains two distin-
guished states qfresh and q0, both with empty support. More-
over, the transition relation δ ⊆ Q×B ×Q×B × {−1, 0, 1}
is of the form δ = δ0 ∪ δfresh, where δ0 is a transition relation
with no transitions leaving from the state qfresh, and

δfresh = {(qfresh, b, q0, a, 0) : b ∈ B, a ∈ A}.

Note that the transitions in δfresh involve a nondeterministic
choice of a ∈ A; we view this choice as being made by
the oracle and not the machine, so we say that that M is
deterministic if the transition relation δ0 is deterministic. We
say that M accepts an input word if there is an accepting run
in which each time the fresh oracle is invoked, the atom chosen
by the oracle is fresh with respect to the current configuration.

We will first prove Proposition V.1 in the special case, when
the machine invokes the fresh oracle only once, in the first step
of the computation. Simplifying this case further, we assume
that the atom a replied by the oracle is not written on the
tape, but instead, the machine moves to a state qa, which
equivariantly depends on a. This special case is handled by
the lemma below. The general case can be deduced by an
appropriate nesting of deterministic Turing machines.

Lemma C.3. Let M be a deterministic Turing machine, and
let {qa}a ∈ A be an equivariant family of states of M . For
a ∈ A, let Ma denote the machine M , but whose initial state
is qa.

Then the following language is recognizable by a determin-
istic Turing machine:

{w : L(Ma) for some a ∈ A which is fresh with respect to w}.

Proof: We construct a deterministic Turing machine M ′

which recognizes the language in the above statement. By fresh
atom we mean an atom which is fresh with respect to the input
word for the machine M ′.

Let the transition function of the machine M be
δ : Q×B → Q×B × {−1, 0, 1}, where Q is the state space
and B is the work alphabet. The constructed machine M ′ has
state space [A]Q and work alphabet [A]B. The initial state of
M ′ is q̃0 = [a].qa. We view the input alphabet A of M as a
subset of [A]B, via the natural embedding which maps a letter
x to the letter [a].x, where a /∈ supp(x).

We now define the transition function of M ′. Recall that
according to the notation from Section C-A,

[A]δ ⊆ [A](Q×B ×Q×B × {−1, 0, 1}).

Using the isomorphism from the third item of Proposition C.1,
[A]δ can be viewed as a subset of the set

[A]Q× [A]B × [A]Q× [A]B × [A]{−1, 0, 1}.

Observe that [A]{−1, 0, 1} is naturally isomorphic to
{−1, 0, 1}, since all elements −1, 0, 1 have empty support.
According to the last item of Proposition C.1, the relation
[A]δ is in fact a function from [A]Q× [A]B to [A]Q× [A]B×

{−1, 0, 1}. Hence indeed, [A]δ defines a deterministic Turing
machine M ′.

Fix an input word w and an atom a which is fresh with
respect to w.

Claim C.3.1. In every step of the computation, the atom a is
fresh with respect to the configuration of M ′.

This follows from the fact that the machine M ′ is determin-
istic, so the n-th configuration of M is a function of the input
word w. In particular, the support of the n-th configuration
is contained in the support of the input word, which, in turn,
does not contain the atom a. According to the second item of
Proposition C.1, we can therefore apply the state in the n-th
configuration to the atom a, obtaining a state of the machine
M . Similarly, we can apply each tape symbol to the atom a.

We now describe an invariant which binds the behavior of
M ′ and of Ma, at each moment of the computation.

The following invariant will be satisfied throughout the
computation.

Suppose that n steps of computation have elapsed. If
we feed a to the functions defined by the state and
the symbols in the tape cells, we recover the n-th
computation step of the machine Ma on the original
input (the head position will be the same).

Initially, the invariant is granted thanks to choice of the
initial state, and the interpretation of the input symbols as
elements of [A]B.

We argue that a step of the computation maintains the
invariant. Suppose that the current state and tape symbol of
M ′ constitute the pair ([a].q, [a].b). By Claim C.3.1, a is not
in the least support of this pair. On the other hand, by the
invariant, the current state and tape symbol of Ma is (q, b).

From the second and last item of Proposition C.1 it follows
that (

([A]δ)([a].q, [a].b)
)
(a) = δ(q, b),

since a is not in the support of ([a].q, [a].b). From this it
follows that the invariant is maintained in the (n+ 1)-th step
of the computation.

We now sketch the proof of Proposition V.1 in the general
case. Let M be a deterministic Turing machine with the fresh
oracle, and let Q be its state space and B be its work alphabet.

By repeatedly applying the Lemma C.3, we deduce the
following.

Lemma C.4. Let n ∈ N be a natural number. Then there is
a deterministic Turing machine Mn whose work alphabet is
[A]≤nB and state space is [A]≤nQ, and which recognizes the
following language.

Ln
def
= {w ∈ L(M) : w in the run of M over w,

the fresh oracle is invoked at most n times}.

Moreover, for m < n, the machines Mm and Mn are
consistent, i.e. there is a mapping from states of Mm to the
states of Mn and likewise for the work alphabets, such that
the induced mappings of runs maps each run of Mm to a run
of Mn.

16

Let M0,M1,M2, . . . be the machines obtained from the
above lemma. They use, as their state space, orbit-finite subsets
of [A]∗Q. The crucial observation is that, up to isomorphism,
the set [A]∗Q has only finitely many orbits; this follows from
Fact C.2. A similar argument applies to the work alphabet.

Using this observation one can construct a deterministic
Turing machine with a truly orbit-finite set space, which
recognizes the union

⋃∞
n=0 Ln. This language is equal to

the language recognized by the machine M . This proves the
proposition.

C. Choice oracle

In this section, we prove Proposition V.2.
To simplify the description, again we assume that the

choice oracle is invoked only once, and at the beginning
of the run. We will define a nondeterministic machine, but
one which uses “non-atomic nondeterminism”, which involves
guessing a number in {0, 1}. Non-atomic nondeterminism can
be eliminated, using the standard determinisation construction.
Actually, our machine will be such that it can be determinised
with linear slowdown.

Simulating a bounded number of such invocations can be
done by nesting obtained machines.

Lemma C.5. Let M be a deterministic Turing machine, and
let {qa}a∈A be an equivariant family of states of M . For a ∈
A, let Ma denote the machine M , but whose initial state is
qa.

Then the following language is recognizable by a Turing
machine M ′ using non-atomic nondeterminism:

{w : w ∈ L(Ma) for some a in the least support

of the first letter of w}.

Moreover, the machine M ′ is such that over each run, the
number of nondeterministic {0, 1}-choices is bounded by a
constant depending on M .

Proof: Let d ∈ N be such that all letters in the input
alphabet have a support of size at most d. The machine M ′

has the following state space:

Q̃
def
=

⋃
X⊆A
|X|≤d

(X → Q).

This set Q̃ is orbit-finite, since it is an orbit-finite union of
orbit-finite sets. For a state q̃ ∈ Q̃, which is a function q : X →
Q, we will call X the domain of q̃. Observe that the domain
is a set of at most d atoms. A state q̃ should be interpreted as

The guessed atom is in the domain of q̃. Further-
more, if the guessed atom is a, then the current state
of the machine is q̃(a).

The work alphabet of the new machine is defined in the
same way:

B̃
def
=

⋃
X⊆A
|X|≤d

(X → B).

Let w be an input word, and let X denote the least support
of the first input letter. The letters of the input alphabet are
naturally viewed as elements of the work alphabet, where a
letter a ∈ A is interpreted as the constant mapping which
maps each element of X to a. The initial state is the mapping
which maps an element x ∈ X to the state qx.

The following invariant will be satisfied throughout the
computation.

Suppose that n steps of computation have elapsed
and the current state has domain X . Then

1) The domain of all letters on the tape con-
tains X .

2) Let a ∈ X . If we feed a to the functions in
the state and the tape cells, we recover the n-
th computation step of the machine Ma on the
original input (the head position will be the
same).

We now describe a single computation step of the machine.
Suppose that its state is q̃ and the letter on the current cell
is b̃. Let X be the domain of q̃. For each a ∈ X , the machine
Ma makes a certain transition when its state is q̃(a) and its
input letter is b̃(a); suppose that for a ∈ X , this transition is

(q̃(a), b̃(a))→ (q̃′(a), b̃′(a), d̃(a)).

This defines functions q̃′, b̃′, d̃′ from X to Q,B and {−1, 0, 1},
respectively. These functions may be partial, but their domains
coincide; let X ′ denote their common domain.

The function b̃′ is in the work alphabet, so it can potentially
be written to the tape. The function q̃′ is in the state space,
so it can potentially be chosen as a new state. The interesting
issue concerns the direction: depending on the choice of atom
a ∈ X , the machine might want to move left, stay, or move
right; while the head cannot split. Let us then partition X ′ into
three sets:

X−1, X0, X1,

where Xi = d̃−1(i) for i = −1, 0, 1. The key point is that the
machine can compute this partition, because it can compute the
direction function d̃. Therefore, the machine guesses a number
i ∈ {−1, 0, 1} and does the following:
• On the current cell, it writes the function b̃′, but restricted

to the set Xi;
• Assumes the state q̃′, but restricted to the set Xi;
• Moves the head in direction i.
Observe that in each run of M ′, the set X is initially of size

at most d, and each nondeterministic step of M ′ decreases
the size of X by at least 1. Therefore, in each run, there is
at most d nondeterministic choices, each involving a choice
from {−1, 0, 1}.

This finishes the proof of the lemma.

D. Fresh algebras

A result analogous to Proposition V.1 holds for orbit-finite
algebras. We will need such a result in Appendix D-C.

The definition of an orbit-finite algebra allows the universe
to be orbit-finite, but the set of operations must be finite.

17

Consider an orbit-finite algebra A. If we extend A by adding
one constant per each atom in A, we end up with an algebra
where the set of operations is no longer finite (although it is
still orbit-finite). We denote the resulting algebra AA.

Let val be a valuation with values in A, i.e. a mapping
from some set of variables to A. We say that a term t of the
algebra AA is fresh with respect to val, if the least support of
t is disjoint from the least support of val and from the least
support of A.

The following proposition shows that AA is equivalent to an
algebra with finitely many operations, when only fresh terms
are concerned.

Proposition C.6. For every orbit-finite algebra A there exists
an orbit-finite algebra Afresh with the same support, having
the following property:

For each Boolean term t over AA there is a Boolean
term tfresh over Afresh such that t[val] = tfresh[val] for
every valuation val for which t is fresh.

In order to prove the above proposition, first we extend the
notions from Section C-A.

b) Compressed abstraction: We extend the notions from
Section C-A, allowing to remove from the support of an
element x all the atoms which come from a linearly ordered
finite set C. The formal definition follows.

Let C = (c1, c2, . . . , ck) be a tuple of distinct atoms. By |C|
we denote the set {1, . . . , k}. For any element x, let 1 ≤ i1 <
i2 < . . . < ij ≤ k be such that supp(x) ∩ {c1, c2, . . . , ck} =
{ci1 , ci2 , . . . , cij}. Define:

[C∗].x
def
= ([ci1].[ci2]. . . . [cij].x, (i1, i2, . . . , ij)).

In particular, [C∗].x ∈ [A]jX × |C|j . Let [C∗]X denote the
set of all elements of the form [C∗].x, where x ∈ X . Below,
by |C|≤d we denote the set of tuples of length at most d of
elements of |C|.

The main goal of the construction of [C∗]X is that its
elements can be encoded in a set whose number of orbits
depends only on X , and not on C – the encoding uses
numbers:

Fact C.7. If every element of X has a support of size at
most d, then

[C∗]X ⊆ [A]≤dX × |C|≤d,

and supp([C∗]X) = supp(X)− supp(C).

Proposition C.8. Let C be a finite tuple of distinct atoms.
Then,

1) For any x, supp([C∗].x) = supp(x)− C.
2) Any mapping f : X → Y induces a mapping

[C∗]f : [C∗]X → [C∗]Y , such that

([C∗]f)([C∗].x) = [C∗].f(x).

Moreover, the least support of [C∗]f is contained in the
least support of f , and the mapping [C∗]f only depends
on the length of the tuple C, and not on C itself.

3) There is a bijection [C∗](X × Y) ' [C∗]X × [C∗]Y,
which maps [C∗].(x, y) to ([C∗].x, [C∗].y).

c) Proof of Proposition C.6: Let d be a number such
that each element of A has a support of size at most d. The
universe of the new algebra Afresh is [A]≤dA; note that this is
an orbit-finite set. Let N be the maximal arity of a function in
the algebra A. We equip the algebra Afresh with all functions of
arity at most N , whose support is contained in the least support
of A. There are only finitely many such functions. It remains
to show that the algebra Afresh satisfies the required property,
i.e. that a term t of the algebra AA can be ‘simulated’ by a
term tfresh of the algebra Afresh, when restricted to valuations
for which t is fresh.

Let t be a term over the algebra AA. A fresh constant of t
is an atom a which belongs to supp(t) − supp(A). Note that
each fresh constant is a subterm of t, but is not a legal term
in the algebra A. The aim is to eliminate the fresh constants
from the term t.

As t is a finite term, we may linearly order its subterms,
for instance by performing a Depth-First-Search. In particular,
this induces a linear ordering of the fresh constants. By Ct we
denote the tuple of all fresh constants, ordered increasingly
according to the above linear order. Then, for an element x,
[C∗t].x can be interpreted as a way of extracting from the
support of x all the fresh constants of t.

Fact C.9. For any element x,

[C∗t].x = ([ci1].[ci2]. . . . , [cij].x, (i1, . . . , ij)),

where ci1 , . . . , cij are all the fresh constants of supp(x) (in
the ordering induced by t).

We will prove the following:

Claim C.9.1. For any term t over the algebra AA there exists
a term tfresh over the algebra Afresh, such that for any valuation
val for which t is fresh,

[C∗t].t[val] = (tfresh[val], I0) (8)

for some tuple of numbers I0 ∈ |C|≤d.

If t is a Boolean term, then t[val] has empty support, so
[C∗t].t[val] = (t[val], ε), where ε is the empty tuple. In partic-
ular, (8) implies tfresh[val] = t[val], proving Proposition C.6.

It remains to prove the above claim. The proof of proceeds
by induction on the structure of t.

If t = x for some variable x, then we set tfresh = x. Let
val be a valuation which maps x to an element a ∈ A. Then,
t[val] = a, so

[C∗t].t[val] = [C∗t].a

If t is fresh with respect to a, then supp(a) ∩ Ct = ∅, so
[C∗t].a = (a, ε) = (tfresh[val], ε). This gives the required
property (8), for I0 = ε.

If t = a for atom a which is not a constant of A, we set
tfresh = [a].a. Let val be a valuation for which t is fresh. Then,

[C∗t].t[val] = [C∗t].a = ([a].a, (1)) = (tfresh[val], (1)),

yielding (8) for I0 = (1).
It remains to consider the interesting case, when t =

f(t1, . . . , tn) for some function f of the algebra A. For
i = 1, 2, . . . , n, let tifresh be the term obtained from ti by using

18

the inductive assumption. Let val be a valuation for which t
is fresh; then, by assumption,

[C∗ti].t
i[val] = (tifresh[val], Ii) (i = 1, 2, . . . , n), (9)

for some tuples of numbers I1, I2, . . . , In. Since t is fresh
for val,

supp
(
ti
)
∩ supp

(
ti[val]

)
= supp(t) ∩ supp

(
ti[val]

)
.

This gives:

[C∗ti].t
i[val] = [C∗t].ti[val].

Therefore, equation (9) yields:

[C∗t].ti[val] = (tifresh[val], Ii) (i = 1, 2, . . . , n). (10)

Recall the mapping [C∗t]f defined in Proposition C.8; its
support is contained in the support of f , which is contained
in the support of A. We have:

[C∗t].t[val] = [C∗t].f(t1[val], . . . , tn[val]) =

= ([C∗t]f)
(
[C∗t].t1[val], . . . , [C∗t].tn[val]

)
(10)
= ([C∗t]f)

(
(t1fresh[val], I1), . . . , (tnfresh[val], In)

)
= (ã0, I0),

for some ã0 ∈ Afresh and some tuple of numbers I0. Define
an n-ary mapping g so that for ã0, ã1, . . . , ãn ∈ Afresh,

g(ã1, ã2, . . . , ãn) = ã0

whenever there is a tuple I0 such that

([C∗t]f)
(
(ã1, I1), . . . , (ãn, In)

)
= (ã, I0).

The definition of g only refers to Afresh, the mapping [C∗t]f
and the equivariant tuples I1, . . . , In. Thus it follows that g
supported by the support of A. Therefore, g is a function of
the orbit-finite algebra Afresh. To conclude, there is a function
g of the algebra Afresh such that for each valuation val for
which t is fresh, there exists a tuple of numbers I0 such that

[C∗t].t[val] = (g(t1fresh[val], t2fresh[val], . . . , tnfresh[val]), I0).

Therefore, setting tfresh = g(t1fresh, t
2
fresh, . . . , t

n
fresh) gives a term

with the required property. This ends the proof of Proposi-
tion C.6.

APPENDIX D
PROOFS FOR SECTION VI

We use the notation x ∼S y when x and y are in the same S-
orbit, i.e. y = π(x) for some S-automorphism π. Thus LA,S =
{wv : w ∼S v}. For two sets of atoms we call them S-disjoint
if their intersection is included in S.

A. Equivariant alphabets

For convenience, in the sequel we assume that the alphabets
are equivariant. No generality is lost as the alphabet may be
restricted to any finitely-supported subset by a language L ⊆
A∗.

Every orbit O of A is a surjective image of non-repeating
tuples of atoms. This means that there is some k ∈ N and a
surjective mapping

α : A(k) → O. (11)

Indeed, α is obtained by choosing a pair

(t, a) ∈ A(k) ×O,

where atoms appearing in t are the least support of a, and then
closing the pair on all atom automorphisms. The mapping α
can be computed by a deterministic machine, but the inverse
function α−1 requires nondeterminism in general. In the sequel
we will use the same symbol α to denote the mapping (11)
for every orbit of A.

A set is called straight if each of its orbits is isomorphic
to A(k) for some k. This corresponds to the mapping α
being a bijection, and implies that the inverse function α−1 is
computable by a deterministic machine.

B. Straight alphabets

Before dealing with arbitrary alphabets in the sequel, con-
sider here only straight ones. Straight alphabets admit deter-
minisation, as shown below:

Lemma D.1. Turing machines over straight alphabets admit
determinisation.

Proof: Essentially we prove that in case of straight
alphabets, the general nondeterminism of Turing machines
may be simulated by two restricted variants: the non-atomic
nondeterminism and fresh-atoms-nondeterminism. The former
one may be eliminated in the classical way, by an exhaustive
enumeration of all computation paths. Then the latter one may
be also eliminated, due to Proposition V.1.

Consider a machine M recognizing a language L over a
straight alphabet A. We may assume that the work alphabet
and state space are also straight. Indeed, if this is not the
case we replace the two sets by their inverse images along
the mapping (11); then the transition relation is also replaced
by its inverse image. We may also assume that the machine
has a single initial state, as otherwise we add a new state
from which the machine nondeterministically guesses one of
the former initial states. Thus we only need to show how a
single nondeterministic transition step of M may be simulated
deterministically.

Fix a configuration of M and its least support S. The
configuration includes the local configuration consisting of a
state q, a head position, and a tape content u at the head
position. Denote by Nq,u the set of all triples 〈q′, u′, d〉 such
that 〈q, u, q′, u′, d〉 is in the transition relation of M , where d
stands for the direction of head move. Nq,u has finitely many
S-orbits, being a subset of an orbit-finite set. The simulation
of the step of M consists of two phases:

19

• Choose one S-orbit of the set Nq,u; this may require
scanning the whole tape content and may involve non-
atomic nondeterminism.

• Build q′ and u′; this may require using fresh-atoms-
nondeterminism.

As both kinds of nondeterminism involved may be eliminated,
there is a deterministic machine recognizing L.

C. Optimal least supports

Before showing Theorem VI.3 we prove two auxiliary
lemmas, Lemma D.4 and D.5, that state that the support of
a deterministic machine, or an orbit-finite algebra, needs not
be greater than the support of the language recognized. The
idea of both the proofs below is the same: atoms in the
least support of the algebra/machine that are not in the least
support of the language are irrelevant and thus may be renamed
arbitrarily without changing the language recognized by the
algebra/machine.

Lemma D.2. Let M be a deterministic Turing machine with
the least support T . For any S ⊆ T , there is a equivalent
deterministic machine whose state-space, work alphabet and
transition function are supported by S.

(Note however that we do not claim the initial state or the
accepting states to be supported by S.)

Proof: Let Q, B and δ denote the state-space, work
alphabet and the transition function of M . Wlog. assume that
a tuple containing all the atoms from T − S is permanently
explicitly stored in the state of M .

The machine M ′ is obtained from M by essentially closing
on S-orbits, i.e. by applying all S-automorphisms. Namely, let
Q′ be the union of all S-orbits of all elements of Q (clearly
Q ⊆ Q′), and similarly let B′ the union of S-orbits of elements
of B, and let δ′ be the union of all S-orbits of all tuples in
the graph of δ. Clearly in state π(q), for an S-automorphism
π, the machine M ′ stores, instead of the atoms from T − S,
the atoms from π(T − S).

That δ′ is a function, follows easily from the assumption
that M stores atoms from T − S.

The following lemma is an analog of the last one for
algebras. It is proved similarly, hence we omit the proof.

Lemma D.3. Let A be an orbit-finite algebra with the least
support T . For any S ⊆ T , there is an algebra with constant
operations, one for every atom from T − S, such that the
universe of the algebra and all other operations are S-
supported.

Lemma D.4. If a language L is recognized by a deterministic
TM, then the language is recognized by some deterministic TM
with the same least support as L.

Proof: Suppose the language, say L, with the least sup-
port S, is recognized by a deterministic TM M with the least
support T . Necessarily S ⊆ T as the language of a machine
is an equivariant function of the machine. S-automorphisms
do not change L, hence:

L(π(M)) = L(M) for every S-automorphism π. (12)

Consider all injections ρ from T to A that fix S. We write
ρ(M) for action of any extension of ρ to all atoms; as T
supports M , this notation is unambiguous. The set of all such
injections ρ is orbit-finite.

By Lemma D.2 we may assume that the atoms from T are
stored initially in state of M , and the transition function of
M is supported by S. In other words, the transition function
of ρ(M) is the same as the one of M .

Construct a nondeterministic machine M ′ that works as
follows, for a given input word w: it guesses |T − S| fresh
atoms (these atoms are thus outside of S and outside of the
least support of w), stores them in place of atoms from T −S
(any such guessing defines an injection ρ from T to A that fixes
S), and then runs the machine ρ(M) (whose transition function
is the same as the one M). The machine M ′ is supported by
S and recognizes the same language as M . The equivalence
of M and M ′ follows by (12).

We may apply Proposition V.1 to the machine M ′ to get an
equivalent deterministic one. As the construction in the proof
of Proposition V.1 does not increase the least support, we are
done.

In fact the same simple argument works for nondeterministic
machines as well. In this section however we will only need
the deterministic version.

Lemma D.5. If a language L is recognized by a an orbit-finite
algebra then the language is recognized by some algebra with
the same least support as L.

Proof: Similarly as in the proof of Lemma D.4, but
using Proposition C.6 instead of Proposition V.1. Let S and
T denote the least supports of the language L, and an algebra
A recognizing L, respectively. S ⊆ T .

Due to Lemma D.3 we may assume without loosing gen-
erality that atoms in T − S are constants in the algebra A
recognizing L, and that all the remaining operations and the
universe are supported by S. Then define an orbit-finite algebra
A′ that differs from A only with the following: instead of
every constant for T − S, there is a one-orbit set of atom-
constants, one per every atom outside S. The orbit-finite
algebra obtained in this way is supported by S and still
recognizes L.

Finally, using Proposition C.6 we transform the orbit-finite
algebra A′ into an ordinary algebra A′′ with finitely many
operations. As the construction of Proposition C.6 does not
increase the least support, the algebra A′′ is supported by S,
i.e. invariant under S-automorphisms. We thus only need to
show that A′′ still recognizes L.

Let tn be a term recognizing L over words of length n
in A′. We know that there is a term t′n of A′′ such that for
any v ∈ An whose least support is S-disjoint from the least
support of tn, that is S-disjoint from atom-constants appearing
in tn,

tn[v] = t′n[v].

We claim that the term t′n of A′′ recognizes L over words of
length n. Indeed, applied to a word v that is S-disjoint from
t′n yields the correct result. Then by invariance of the algebra

20

A′′ under S-automorphisms one gets the correct result of tn[v]
for every v ∈ An.

D. Distinguishing by algebras

Let A be now an arbitrary orbit-finite alphabet. For an orbit-
finite algebra with the universe including A, we say that the
algebra distinguishes two words w, v ∈ An if there is a term
t with

t[w] = true and t[v] 6= true.

Lemma D.6. For every algebra, there is a polynomial-time
deterministic TM that decides, for given words w, v, whether
the algebra distinguishes w and v.

Proof: We show that for every orbit-finite algebra, there is
a deterministic polynomial-time Turing machine that decides,
for given two words, whether the algebra distinguishes these
words.

Fix an algebra for the rest of the proof. Let A be the universe
of the algebra. For a word w = a1 . . . an ∈ A∗, define the
subalgebra generated by w, as the least subalgebra containing
{a1 . . . an}. As the algebra is fixed, we claim the following:

Claim D.6.1. There is a polynomial p, such that the subalge-
bra generated by any word w ∈ A∗ of length n has at most
p(n) elements.

Proof: Denote by Tw the union of the least supports of
the algebra and of the word w. The size of Tw is linear with
respect to the length of w. For any term t, the value t[w] in
the algebra is supported by Tw, and thus every element in
the subalgebra generated by w is supported by Tw. The claim
follows if one proves that there are only polynomially many
elements in the algebra supported by Tw, which in turn follows
from the following simple observations:
• the size of the least support of every element in the

subalgebra is bounded by a constant;
• the number of k-element subsets of Tw is polynomial, for

a constant k;
• for every orbit of the universe of the algebra, the number

of its different elements sharing the least support is
constant (at most k! if the size of the least support is
k).

The remaining part of the proof is easy with the above claim.
The deterministic machine works as follows, given input words
w and v. It computes the following relation between elements
of the subalgebras generated by w and v, respectively:

{〈t[w], t[v]〉 : t a term}.

By the above claim, the relation may be computed incre-
mentally in polynomial time, using values t[w], t[v] of only
polynomially many terms t. If the value true is related to
any element different that true, the machine decides ’yes’.
Otherwise true is related (possibly) only to true, hence the
machine decides ’no’.

We say that an algebra distinguishes S-orbits of A∗ if the
algebra distinguishes precisely those pairs of words that are

not in the same S-orbit: for every two words w, v of the same
length,

w ∼S v ⇐⇒ ∀ t (t[w] = true ⇔ t[v] = true). (13)

E. Proofs of Theorems VI.1 and VI.3

The two theorems follow from Theorems D.7, Lemma D.8
and Theorem D.9 formulated and proved below.

Theorem D.7. For any finite subset S of atoms and any orbit-
finite alphabet A, the following conditions are equivalent:

1) the language LA,S is in P;
2) the language LA,S is recognized by a deterministic TM;
3) the language LA,S is recognized by some orbit-finite

algebra;
4) there is an orbit-finite algebra that distinguishes S-

orbits of A∗;

Proof: We aim at the circular sequence of implications:

1) =⇒ 2) =⇒ 3) =⇒ 4) =⇒ 1).

The first implication is immediate, the implication 2) =⇒ 3)
follows by Theorem III.2, and the implication 4) =⇒ 1)
follows by Lemma D.6. Thus we only need to show the single
implication 3) =⇒ 4).

For the proof of the implication 3) =⇒ 4), fix A an
algebra that recognizes LA,S . By Lemma D.5 we may assume
the algebra to be S-supported. It is enough to show that there
is another algebra that is supported by S and recognizes any
S-orbit of A∗, i.e. such that for every w ∈ An there is a term
tw such that

tw[v] =

{
true if v ∼S w
false if v 6∼S w

holds for every v ∈ An. (14)

As the first step we define, using the algebra A, another
algebra A′ with an orbit-finite set of operations (thus we relax
here the definition from Section III-B). The algebra A′ will
recognize every S-orbit of A∗. The universe of A′ is the
same as the universe of A. The operations of A′ are all the
operations of A, extended with two families of new operations.
The first family is infinite but orbit-finite, and contains one
constant operation for every atom. The second family is finite
and contains the equivariant mappings α, as in (11), one for
every orbit of the alphabet A. Thus, for every element a of
the alphabet A, there is a term t′a without variables denoting
the value a.

To show that A′ recognizes every S-orbit of A∗ consider
any w = a1 . . . an ∈ An and the term t2n that recognizes
LA,S over words of length 2n. Indeed, the term

tw(x1, . . . , xn) = t2n(x1, . . . , xn, t
′
a1 , . . . , t

′
an), (15)

obtained by substituting t′a1 . . . t
′
an in place of xn+1 . . . x2n,

has the required property (14). Note that the particular choice
of the word w inside the S-orbit is inessential. The idea used
below is that for any v, one could choose a word w such that
the least supports of v and w are S-disjoint. In short, we will
say that v and w are S-disjoint.

21

As the second step, we apply Proposition C.6 to obtain an
algebra A′′ with only finitely many operations. The algebra
A′′ is still supported by S and thus all its operations are
invariant under S-automorphisms. Moreover, A′′ witnesses the
following property: for any Boolean term t of A′ there is a
corresponding term t′ of A′′ such that for any v whose least
support is S-disjoint from the least support of t,

t[v] = t′[v].

We claim that the term t′ of A′′ corresponding to the term
tw (15) of A′ satisfies the property (14). Indeed, applied to
a word v that is S-disjoint from w yields the correct result.
Then by invariance of the algebra A′′ under S-automorphisms
one gets the correct result of t[v] for any v ∈ An.

The proof of Theorem VI.3 is thus completed.
In fact the equivalent conditions in Theorem VI.3 hold either

for all supports S, or for none, which follows from:

Lemma D.8. For a finite set S of atoms and any orbit-finite
alphabet A, the following conditions are equivalent:

1) the language LA,S is recognized by a deterministic TM
2) the language LA,∅ is recognized by a deterministic TM

As a conclusion, if one of the conditions 1)–4) in The-
orem VI.3 holds for some S then every condition holds for
every S. The conditions define thus the property of an alphabet
A, independently from the set S.

Proof: For the implication 1 =⇒ 2, observe that

LA,∅ =
⋃
T

LA,T

where T ranges over finite sets of atoms of the same cardi-
nality as S. In other words, two words are in the same ∅-
orbit if and only if they are in the same T -orbit, for some
set of atoms T disjoint with the least supports of the words.
Indeed, if a permutation of atoms maps a word to a word,
then a permutation may be chosen to fix some T outside
of the least supports of the words. As LA,S is recognized
by a deterministic machine, we know that each of languages
LA,T is recognized by a deterministic TM too. Thus by
Corollary V.3 we get a deterministic TM for LA,∅.

For the opposite implication 2 =⇒ 1, suppose there is
a deterministic TM M that recognizes LA,∅. For a fixed S,
we define a machine MS to recognize LA,S as follows. In
the preprocessing, the machine MS will append to each half
w, v of the input word wv a suffix uS ∈ A∗ that satisfies the
following condition:

π(uS) = uS ⇔ π is an S-automorphism (16)

for any automorphism π of atoms. Then MS runs the machine
M on the input wuSvuS . Indeed, condition (16) guarantees
correctness:

w ∼S v ⇔ wuS ∼∅ vuS .

It remains only to show that a word satisfying (16) exists
and may be computed by the machine.

Choose any infinite orbit O of A. We may assume that
cardinality of S is strictly greater than the dimension of O
(by dimension we mean cardinality of the least support of

its elements). Indeed, otherwise the machine MS guesses the
necessary number of fresh atoms, artificially extending the set
S. Then by Proposition V.1 the guessing may be eliminated.

The word uS is any word from O∗ such that:
• the least support of every letter is a subset of S;
• for every letter a except the last one, there is exactly one

atom that belongs to the least support of a but does not
belong to the least support of the next letter (call such
atom leaving a);

• every atom from S is leaving some letter.
The conditions enforce (16), as every permutation that maps
a word to itself must necessarily fix every atom leaving any
letter.

Theorem D.9. Let A be an orbit-finite set. If A satisfies the
conditions 1)–4) of Theorem VI.3, then

i) Turing machines over alphabet A admit determinisation;
ii) P=NP over alphabet A iff P=NP classically.

If A does not satisfy the conditions 1)–4) of Theorem VI.3
then there are languages in NP that are not deterministically
semi-decidable. (In particular, P 6=NP.)

Proof: If the input alphabet A does not satisfy the
conditions 1)–4) of Theorem VI.3, then the canonical language
LA,∅ is a witness that belongs to NP, due to Lemma VI.2, but
is not deterministically semi-decidable. Assume thus for the
following that the alphabet does satisfy the conditions 1)–4)
of Theorem VI.3.
i) Turing machines over A admit determinisation.

Suppose that a language L ⊆ A∗ over a determinizable
alphabet A is recognized by a nondeterministic TM M . We
will construct an equivalent deterministic TM M ′. For conve-
nience we will use the non-atomic nondeterminism, which may
be easily eliminated in the classical way, and the fresh-atoms-
nondeterminism, which may be eliminated by Proposition V.1.

Let S be the least support of L. For an input word w =
a1 . . . am, denote by n the number of elements of the least
support of w that do not belong to S.

In the first phase, the machine M ′ constructs a word v =
b1 . . . bn that is S-disjoint from w and such that w ∼S v. This
is done in three steps:
• Guess n fresh atoms that do not appear in the least

support of w; this involves fresh-atoms-nondeterminism.
• For each position i of the word w, guess a tuple ti and

a letter bi ∈ A such that ti ∈ α−1(bi); the letter bi may
be an arbitrary element of A supported by the union of
S and the fresh atoms. This step involves non-atomic
nondeterminism.

• Check whether w ∼S v.
After the successful test above, w ∈ L if and only if v ∈
L. Thus after the first phase the input word might be safely
replaced by v. The advantage is that for each letter of v, the
machine knows a tuple of atoms that belongs to that letter.
This will enable simulation of nondeterministic behavior of
M using Lemma D.1, as described below.

After the first phase described above, the machine M ′

actually ignores both words w and v, and only works with
the word t = t1 . . . tn. The idea is to check whether the latter

22

word belongs to the straightening of L, defined as the inverse
image of L along the mapping (11):

{u1 . . . um : u1∈α−1(b1), . . . , um∈α−1(bm), b1 . . . bm ∈ L}.

This is doable due to the following:

Claim D.9.1. If a language L is recognized by a TM then the
straightening is also so.

Indeed, the machine recognizing the straightening may be
constructed from the machine recognizing L by taking the
inverse image, along the mapping α (11), of the work alphabet,
of the state space, of the subsets of initial and accepting states,
and of the transition relation.

To complete the construction of machine M ′, consider the
nondeterministic machine recognizing the straightening of L.
By Lemma D.1 there is an equivalent deterministic machine.
Thus in the second phase, the machine M ′ executes that
deterministic machine on the input t.

For correctness, recall that the mapping α maps the word t
to v. Thus the word t is accepted by M ′ in the second phase
if and only if v ∈ L, which in turn is equivalent to w ∈ L.

ii) P=NP over A if and only if P=NP classically.
We start with an easier ’only if’ direction: assuming P=NP

over the input alphabet A, we will show that P=NP classically.
The proof works in fact for an arbitrary alphabet A.

Observe that a finite alphabet is a special case of an orbit-
finite equivariant set, each orbit being a singleton. Thus a
language L over a finite alphabet may be considered as a
language over an orbit-finite equivariant alphabet.

It is sufficient to show that every deterministic machine
M with atoms over a finite equivariant alphabet is actu-
ally a classical machine, without atoms. Indeed, applying
Lemma D.4 allows to assume that M is equivariant. Then, as
every configuration of a deterministic machine is supported by
the least support of input, we deduce that every configuration
of M is equivariant. Thus the state space and work alphabet
are necessarily finite.

Now we turn to the ’if’ direction. The proof is based on
atom-less encoding, as in Section IV. In the sequel we assume
that operations on encodings are implemented efficiently in
polynomial time. This is legitimate due to the representation
theorem of [4]. Namely, due to the result of [4] one can assume
without loss of generality that elements of A are hereditarily
finite sets. Such sets may be described using essentially only
atoms, the empty set ∅, and symbols ’{’ and ’}’, for instance

{{a, b, ∅}, {a}, b}.

Then an efficient encoding may be obtained by replacing
atoms with natural numbers, via an arbitrary bijection between
the two sets.

The proof is based on the two claims stated below, both
being refinements of the two implications in Theorem IV.1.

Claim D.9.2. If a language L ∈ A∗ is recognized by a nonde-
terministic polynomial-time TM with atoms, then encode(L) is
recognized by a nondeterministic polynomial-time TM without
atoms.

Claim D.9.3. For a finitely-supported language L ∈ A∗, if
encode(L) is recognized by a deterministic polynomial-time
TM without atoms, then L is recognized by a deterministic
polynomial-time TM with atoms.

The two claims easily prove the theorem. Assume that
P=NP classically and let L be a language over an orbit-
finite alphabet A that belongs to NP, i.e. is recognized by
a nondeterministic polynomial-time TM. We need to prove
that L is recognized by a deterministic polynomial-time TM.
By the first claim, encode(L) is in NP classically. By the
assumption that P=NP classically, we get that encode(L) is
in P. Finally, by the second lemma we obtain that L is in P
with atoms, as required.

Now we justify the claims. The first claim is proved anal-
ogously to the first implication of Theorem IV.1 and actually
works for an arbitrary alphabet.

The proof of the second claim is again analogous to the
second implication of Theorem IV.1, but this time a little more
care is needed. In particular we will have to use the assumption
on the alphabet A.

Let S be a support of L. We first demonstrate that the
language

{w#encode(u) : w, u ∈ A∗ and w ∼S u} (17)

is recognized by a deterministic TM in polynomial time. On
input w#v, the machine guesses fresh atoms, one per every
atom appearing in w, and deterministically produces a word
u ∈ A∗, supported by the union of S and the guessed fresh
atoms, such that

v = encode(u′) for some u′ ∼S u.

Then the machine tests if w ∼S u, in deterministic polynomial
time due to the assumption on A. Thus we have shown that the
language (17) is recognized in deterministic polynomial-time.

Now assume that L is finitely supported and encode(L)
is recognized by a deterministic polynomial-time TM without
atoms. A natural way to recognize L would be to guess first an
encoding v of the input word w, up to S-automorphism, then
check correctness by the membership of w#v test in (17),
and finally run the deterministic machine without atoms on
v. We claim the nondeterministic guessing in the first step
may be eliminated in polynomial time if, instead of guessing
the whole encoding, the machine would incrementally add
encodings of consecutive letters. The correctness check, using
the membership test in (17), would be done after each letter.
We will thus only describe how encoding of one letter is added.

An crucial observation is that it is sufficient to use only
encoding of polynomial size, as we are only interesting in
encoding of a word up to S-permutation (the polynomial
encodings again follow by the representation theorem of [4]).
Thus, when encoding of a next letter is guessed, there is
only polynomially many possible results of guessing. In con-
sequence, the guessing may be eliminated while staying in P.

Example D.1. We end this section with an example of an
alphabet A for which the language LA,S is in P, but the
decision procedure is not as apparent as in the examples

23

from Section VI. The alphabet is similar to the one used
in Section III-A, with the only difference that a letter will
have two side sets instead of three. Formally, the alphabet A
contains sets of the form:

{(a, a′), (b, b′)}

but the two sets:

{(a, a′), (b, b′)} and {(a′, a), (b′, b)}

are not distinguished. The alphabet has one-orbit. Equivalently,
A may be presented in canonical form as A(4)/ ≡, where the
group inducing ≡ is generated by two permutations:

(1 2) (3 4) (1 3) (2 4).

We demonstrate that the language LA,S is recognized by a
deterministic TM; by our results shown later in this section
if follows that the language is necessarily in P. Assume for
simplicity that the side sets of different letters are either
disjoint or equal, and that S = ∅.

The idea is to consider side sets as nodes in a graph, and
letters in the input word as undirected edges between side
sets. Note however that the edges are ordered according to
their appearance in the input word.

The deterministic decision procedure for w ∼S v runs in
two phases. In the first phase two graphs are built, for w and
v, with the side sets as vertices and letters as edges. Then it is
checked whether the two graphs are related by an isomorphism
that respects the order of edges. The isomorphism test is easily
done in polynomial time.

The second phase of the procedure computes, for every
cycle in the graphs, the multiplication of edges along the cycle.
The multiplication of two neighboring edges is defined as the
equivariant mapping:

{(a, a′), (b, b′)}{(b, b′), (c, c′)} 7→ {(a, a′), (c, c′)}.

(This defines a mapping from A × A to A.) For a fixed
vertex on a cycle, say {a, a′}, there are two possible results
of multiplication along the cycle:

{(a, a′), (a, a′)} or {(a, a′), (a′, a)}

which defines two types of cycles. The procedure checks if
every pair of corresponding cycles in the two graphs has the
same type. This ensures that the two input words w and v
are in the same orbit, i.e. there is a permutation of atoms that
maps w to v. Indeed, in any connected component choose any
pair of corresponding vertices, that is, two side sets, and any
of two possible bijections between the two side sets. Then
extend this bijection along edges. As all cycles have the same
types, the extension will never produce a conflict.

APPENDIX E
APPENDIX TO SECTION VII

In this part of the appendix, consider sets with bit-vector
atoms. We show that the language

D
def
= {a1 · · · an ∈ A : a1, . . . , an are linearly dependent}

is not recognized by a deterministic polynomial time Turing
machine. To simplify the notation, we only show a slightly
weaker result: the language D is not recognized by an
equivariant deterministic polynomial time Turing machine. (A
machine is equivariant if all of its ingredients are equivariant:
the work alphabet, the states, the initial state, the final states
and the transition function.) For the rest of the proof, we only
consider bit-vector atoms, and therefore we use the term atom
to refer to bit-vectors.

The proof has two steps.
1) The input alphabet is the set of atoms, which is a straight

set. One could imagine a Turing machine that quickly
recognizes dependence by using a non-straight work
alphabet or state space. The first step shows that this is
not the case: every deterministic machine can be made
straight (i.e. have a straight work alphabet and state
space), without affecting the running time.

2) In the second step, we show that a straight deterministic
machine needs exponential time to reject a sequence of
linearly independent vectors4.

Step 1: Reduction to straight machines: The reduction
to straight machines breaks down into two further substeps.
We first show that the bit vector atoms have a property called
least closed supports. Then, we show that when the atoms
have least closed supports, then every deterministic machine
over a straight input alphabet can be made straight without
affecting the running time.

The closure of a set S of atoms is the set of all atoms that
are supported by S. Of course the closure contains S, because
every atom is supported by itself. A set of atoms is called
closed if it is its own closure.

Lemma E.1. For every set with atoms X , there is a finite
closed support that is contained in all finite closed supports
of X .

Proof
We first show that there exists a finite closed support. Indeed:
take any finite support, and use its closure. This closure is
finite, because the closure of a set S of atoms is the linear
space spanned by S, i.e. the set of vectors of the form∑

v∈T
v for some T ⊆ S.

We now show that there exists a least closed support with
respect to inclusion. The reason is that closed supports are
closed under intersection, as stated in the following lemma.

Lemma E.2. If an element x of a set with atoms is supported
by closed sets S and by T , then it is also supported by S∩T .

�

To complete step 1, we will show the following result.

4For every length of the input, there is actually only one rejecting run,
up to automorphism. A rejected input is a tuple of independent vectors.
All independent n-tuples of vectors are in the same equivariant orbit. If the
transition function is equivariant, then all runs over independent n-tuples of
vectors are in the same orbit. In particular all of these runs have the same
behaviour of the head (when it moves left or right, and when it produces a
zero vectors).

24

Lemma E.3. Every equivariant deterministic machine M over
a straight alphabet can be transformed into an equivariant
straight deterministic machine M ′, with the same running
times.

To prove the above lemma, we show that least closed
supports (as in Lemma E.1) allow us to represent non-straight
sets in a canonical way by straight sets. A canonical straight
representation for an equivariant set Y is defined to be a
surjective function r : X → Y such that X is a straight
set, and the function preserves and reflects supports: for every
x ∈ X , both x and r(x) have the same supports.

Lemma E.4. Every equivariant set has a canonical straight
representation.

Proof
It suffices to prove the lemma for single-orbit equivariant
sets. Let X be a single-orbit equivariant set. Choose some
x ∈ X , and let {a1, . . . , an} be the least closed support
of x, as postulated by Lemma E.1. The function mapping
(a1, . . . , an) 7→ x extends uniquely to an equivariant function

r : Aut · (a1, . . . , an)→ Aut · x = X.

The function r is a canonical straight representation, because
both (a1, . . . , an) and x have the same least closed support,
and this extends to the whole orbit by equivariance. �

The following lemma shows that an equivariant function can
be lifted to canonical straight representations.

Lemma E.5. Let r1 : Y1 → X1 and r2 : Y2 → X2 be
canonical straight representations, and let f : X1 → X2 be
an equivariant function. There is an equivariant function g :
X1 → X2 which makes the following diagram commute

X1

r1��

g // X2

r2��
Y1

f // Y2

Proof
We define the function g separately for each orbit of X1.
Choose some x1 in some orbit of X1. Because r2 is surjective,
there must be some x2 ∈ X1 with

r2(x2) = f(r1(x1)).

Because r2 is a canonical straight representation, x2 has
the same support as the f(r1(x1)). Because r1 is preserves
supports, and f is equivariant, it follows that the least closed
support of f(r1(x1)) is included in the least closed support
of x1. Summing up, the least support of x2 is included in the
least closed support of x1. Therefore, the mapping x1 7→ x2
can be extended to an equivariant function on the orbit of x1.
We do the same for the other orbits. �

Proof (of Lemma E.3)
By applying Lemma E.4 to the work alphabet and the state
space, and then applying Lemma E.5 to the transition function.
�

Step 2.: In this step, we show that deterministic straight
machines need exponential time to recognize if vectors are
linearly independent, as stated in the following lemma.

Lemma E.6. When run on independent vectors a1 · · · an, an
equivariant straight deterministic machine for the language D
must make exponentially many steps.

The rest of this section is devoted to proving the above
lemma. Fix a1, . . . , an as in the statement of the lemma. We
begin with the following sublemma.

Lemma E.7. Let n ∈ N. For every I ⊆ {1, . . . , n} there is a
set b1, . . . , bn of vectors such that∑

i∈J
bi = 0 iff J = ∅ or J = I

Proof (of Lemma E.7)
When I is empty, the lemma is immediate.

Otherwise, we can assume without loss of generality that
n ∈ I . Choose some independent vectors b1, . . . , bn−1. Define

bn
def
=

∑
i∈I−{n}

bi.

This means that ∑
i∈I

bi = bn + bn = 0.

We now show that ∑
i∈J

bi 6= 0

holds whenever J is nonempty and not equal to I . If J contains
some j 6∈ I then the sum cannot be zero, because bj is linearly
independent from all the remaining vectors. Otherwise, J is
a proper subset of I . If J does not contain n, then the sum
cannot be zero, because the vectors with indexes in I−{n} are
linearly independent. Finally if J contains n but omits some
i ∈ I , then the sum from the statement of the lemma will be
nonzero on coordinate bi. �

Proof (of Lemma E.6)

Consider a run of deterministic normal form machine on an
input a1 · · · an which consists of independent vectors. Since
the vectors are independent, the machine should reject.

As usual, a computation can be visualised as a rectangular
grid, where each tile of the grid gets a colour which consists of
a symbol of the work alphabet and a possibly a state (if the tile
coincides with the head). The set of colours is an orbit-finite
set. Since the machine is straight, the set of colours is also
straight, i.e. each colour is a tuple of atoms. We say an atom
appears in a colour if it is found in one of the coordinates of
the tuple of atoms that is the colour.

We say that an atom is locally supported by a computation
if it is supported by the atoms that appear in the colours
of two neighbouring tiles (neighboring either vertically or
horizontally). The number of atoms that can appear in the
colours of two tiles is bounded by the Turing machine. The
number of colours supported by these atoms is therefore

25

also bounded by the machine, if exponentially bigger. This
exponential depends only on the fixed Turing machine and
not its input, and therefore can be treated as a constant with
respect to the input. It follows that the number of atoms that
are locally supported by a computation is quadratic in the
length of the run, assuming that the machine is fixed.

The transition function of the machine is equivariant, so
everything it produces has smaller or equal support to its
arguments. It follows that every atom which appears in the
computation, or is locally supported by it, is already supported
by the input, and therefore each of these atoms is a linear
combination of the input vectors. Since the computation is
not exponentially long, then some linear combination must be
missing, i.e. there must be some nonempty I ⊆ {1, . . . , n}
such that the atom ∑

i∈I
ai

is not two-supported by the computation.
Apply Lemma E.7, to the set I , yielding a tuple of linearly

dependent atoms b1, . . . , bn. We will show that this input is
also rejected by the machine, which contradicts the assumption
that the machine accepts all dependent tuples. Consider the
computations of the machine on inputs a1 · · · an and b1 · · · bn,
encoded as coloured grids, call them ρ and σ.

Claim E.7.1. For every two tiles x, y the pairs of colours

(ρ(x), ρ(y)) (σ(x), σ(y))

are in the same equivariant orbit.

Proof
By induction on the distance of the tiles from the top row of
the grid, which contains the input. �

By taking x = y, the claim implies that for every individual
tile, the colours in both grids are in the same equivariant orbit.
Whether or not a state is accepting is an equivariant property,
and therefore one computation contains an accepting state if
and only if the other computation contains an accepting state.
�

