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Abstract. We investigate data-enriched models, like Petri nets with
data, where executability of a transition is conditioned by a relation be-
tween data values involved. Decidability status of various decision prob-
lems in such models may depend on the structure of data domain. Ac-
cording to the WQO Dichotomy Conjecture, if a data domain is homoge-
neous then it either exhibits a well quasi-order (in which case decidability
follows by standard arguments), or essentially all the decision problems
are undecidable for Petri nets over that data domain.

We confirm the conjecture for data domains being 3-graphs (graphs with
2-colored edges). On the technical level, this results is a significant step
beyond known classification results for homogeneous structures.

1 Introduction

In Petri nets with data, tokens carry values from some data domain, and exe-
cutability of transitions is conditioned by a relation between data values involved.
One can consider unordered data, like in [25], i.e., an infinite data domain with
the equality as the only relation; or ordered data, like in [21], i.e., an infinite
densely totally ordered data domain; or timed data, like in timed Petri nets [I]
and timed-arc Petri nets [I5]. In [19] an abstract setting of Petri nets with an
arbitrary fixed data domain A has been introduced, parametric in a relational
structure A. The setting uniformly subsumes unordered, ordered and timed data
(represented by A = (N, =), A = (Q, <) and A = (Q, <, +1), respectively).
Following [I9], in order to enable finite presentation of Petri nets with data,
and in particular to consider such models as input to algorithms, we restrict
to relational structures A that are homogeneous [23] and effective (the formal
definitions are given in Section . Certain standard decision problems (like the
termination problem, the boundedness problem, or the coverability problem,
jointly called from now on standard problems) are all decidable for Petri nets
with ordered data [2I] (and in consequence also for Petri nets with unordered
data), as the model fits into the framework of well-structured transition systems
of [IT]. Most importantly, the structure A = (Q, <) of ordered data admits well
quasi-order (WQO) in the following sense: for any wQo X, the set of finite induced
substructures of (Q, <) (i.e., finite total orders) labeled by elements of X, ordered
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naturally by embedding, is a wQO (this is exactly Higman’s lemma). Moreover,
essentially the same argument can be used for any other homogeneous effective
data domain which admits wQO (see [19] for details). On the other hand, for
certain homogeneous effective data domains A the standard problems become
all undecidable. In the quest for understanding the decidability borderline, the
following hypothesis has been formulated in [I9]:

Congecture 1 (WQO Dichotomy Coinjecture [19]). For an effective homogeneous
structure A, either A admits wQO (in which case the standard problems are de-
cidable for Petri nets with data A), or all the standard problems are undecidable
for Petri nets with data A.

According to [19], the conjecture could have been equivalently stated for an-
other data-enriched models, e.g., for finite automata with one register [2]. In
this paper we consider, for the sake of presentation, only Petri nets with data.
WQO Dichotomy Conjecture holds in special cases when data domains A are
undirected or directed graphs, due to the known classifications of homogeneous
graphs [I86].

Contributions. We confirm the WQO Dichotomy Conjecture for data domains
A being stronglyﬂ homogeneous 3-graphs. A 3-graph is a logical structure with
three irreflexive symmetric binary relations such that every pair of elements of
A belongs to exactly one of the relations (essentially, a clique with 3-colored
edges).

Our main technical contribution is a complex analysis of possible shapes
of strongly homogeneous 3-graphs, constituting the heart of the proof. We be-
lieve that this is a significant step towards full classification of homogeneous
3-graphs. The classification of homogeneous structures is a well-known challenge
in model theory, and has been only solved in some cases by now: for undirected
graphs [I8], directed graphs (the proof of Cherlin spans a book [6]), multi-partite
graphs [16], and few others (the survey [23] is an excellent overview of homoge-
neous structures). Although the full classification of homogeneous 3-graphs was
not our primary objective, we believe that our analysis significantly improves
our understanding of these structures and can be helpful for classification.

Our result does not fully settle the status of the WQo Dichotomy Conjecture.
Dropping the (mild) strong homogeneity assumption, as well as extending the
proof to arbitrarily many symmetric binary relations, is left for future work.

Related research. Net models similar to Petri nets with data have been con-
tinuously proposed since the 80s, including, among the others, high-level Petri
nets [13], colored Petri nets [I7], unordered and ordered data nets [21], v-Petri
nets [25], and constraint multiset rewriting [BI8I9]. Petri nets with data can be
also considered as a reinterpretation of the classical definition of Petri nets in sets
with atoms [3/4], where one allows for orbit-finite sets of places and transitions
instead of just finite ones. The decidability and complexity of standard problems

! Strong homogeneity is a mild strengthening of homogeneity.



for Petri nets over various data domains has attracted a lot of attention recently,
see for instance [I42T222425].

WQos are important for their wide applicability in many areas. Studies of
WQOs similar to ours, in case of graphs, have been conducted by Ding [I0] and
Cherlin [7]; their framework is different though, as they concentrate on subgraph
ordering while we investigate induced subgraph (or substructure) ordering.

2 Petri nets with homogeneous data

In this section we provide all necessary preliminaries. Our setting follows [19]
and is parametric in the underlying logical structure A, which constitutes a data
domain. Here are some example data domains:

— Fquality data domain: natural numbers with equality A_ = (N, =). Note that
any other countably infinite set could be used instead of natural numbers,
as the only available relation is equality.

— Total order data domain: rational numbers with the standard order A< =
(Q,<). Again, any other countably infinite dense total order without ex-
tremal elements could be used instead.

— Nested equality data domain: Ay = (N2, =, =) where = is equality on the
first component: (n,m) =1 (n’,m’) if n = n’ and m # m'. Essentially, A is
an equivalence relation with infinitely many infinite equivalence classes.

Note that two latter structures essentially extend the first one: in each case the
equality is either present explicitly, or is definable. From now on, we always
assume a fixed countably infinite relational structure A with equality over a
finite vocabulary (signature) X.

Petri nets with data. Petri nets with data are exactly like classical place/tran-
sition Petri nets, except that tokens carry data values and these data values must
satisfy a prescribed constraint when a transition is executed. Formally, a Petri
net with data A consists of two disjoint finite sets P (places) and T (transitions),
the arcs A C PxT UTx P, and two labelings:

— arcs are labelled by pairwise disjoint finite nonempty sets of variables;

— transitions are labelled by first-order formulas over the vocabulary X' of A,
such that free variables of the formula labeling a transition ¢ belong to the
union of labels of the arcs incident to t.

FEzxzample 1. For illustration consider a Petri net with equality data A_, with two
places p1,p2 and two transitions t1,ts depicted on Fig. [[l Transition ¢; outputs
two tokens with arbitrary but distinct data values onto place p;. Transition ¢
inputs two tokens with the same data value, say a, one from p; and one from
p2, and outputs 3 tokens: two tokens with arbitrary but equal data values, say
b, one onto p; and the other onto po; and one token with a data value ¢ # a
onto po. Note that the transition ¢o does not specify whether b = a, or b = ¢,
or b # a,c, and therefore all three options are allowed. Variables 1,2 can be
considered as input variables of t5, while variables z1, 2o, z3 can be considered as
output ones; analogously, ¢; has no input variables, and two output ones x7, x5.
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Fig. 1. A Petri net with equality data, with places P = {p1,p2} and transitions
T = {t1,t2}. In the shown configuration, to can be fired: consume two tokens
carrying 3, and put, e.g., token carrying 4 on p; and tokens carrying 4,6 on ps.

The formal semantics of Petri nets with data is given by translation to multi-
set rewriting. Given a set X, finite or infinite, a finite multiset over X is a finite
(possibly empty) partial function from X to positive integers. In the sequel let
M(X) stand for the set of all finite multisets over X. A multiset rewriting system
(P,T) consists of a set P together with a set of rewriting rules:

T < M(P)x M(P).

Configurations C' € M(P) are finite multisets over P, and the step relation
— between configurations is defined as follows: for every (I,0) € T and every
M € M(P), there is the step (+ stands for multiset union)

M+1I — M+O.

For instance, a classical Petri net induces a multiset rewriting system where P is
the set of places, and T is essentially the set of transitions, both P and 7 being
finite. Configurations correspond to markings.

A Petri net with data A induces a multiset rewriting system (P, 7T ), where
P = P x A and thus is infinite. Configurations are finite multisets over P x A
(cf. a configuration depicted in Fig. . The rewriting rules 7 are defined as

T = UT

teT

where the relation 7; € M(P) x M(P) is defined as follows: Let ¢ denote the
formula labeling the transition ¢, and let X;, X, be the sets of input and output
variables of ¢. Every valuation v; : X; — A gives rise to a multiset M,, over
P, where M,, (p,a) is the (positive) number of variables x labeling the arc (p, t)
with v;(z) = a. Likewise for valuations v, : X, — A. Then let

Te={(My,, My,) |vi: Xi = A, vo: Xy = A v,0,FE}.

Like P, the set of rewriting rules 7 is infinite in general.



As usual, for a net N and its configuration C, a run of (N, (') is a maximal,
finite or infinite, sequence of steps starting in C.

Remark 1. As for classical Petri nets, an essentially equivalent definition can be
given in terms of vector addition systems (such a variant has been used in [14] for
equality data). Petri nets with equality data are equivalent to (even if defined
differently than) unordered data Petri nets of [2I], and Petri nets with total
ordered data are equivalent to ordered data Petri nets of [21].

Effective homogeneous structures. For two relational X-structures .4 and
B we say that A embeds in B, written A < B, if A is isomorphic to an induced
substructure of B, i.e., to a structure obtained by restricting B to a subset of its
domain. This is witnessed by an injective functiorﬂ h: A — B, which we call
embedding. We write AGE(A) = { A a finite structure | A <A} for the class of
all finite structures that embed into A, and call it the age of A.

Homogeneous structures are defined through their automorphisms: A is ho-
mogeneous if every isomorphism of two its finite induced substructures extends
to an automorphism of A. In the sequel we will also need an equivalent defini-
tion using amalgamation. An amalgamation instance consists of three structures
A, B1,B; € AGE(A) and two embeddings hy : A — By and hy : A — By. A solu-
tion of such instance is a structure C € AGE(A) and two embeddings g1 : By — C
and g2 : By — C such that g1 ohy = gaoha (we refer the reader to [12] for further
details). Intuitively, C represents 'gluing’ of B; and By along the partial bijection
ho o (hl_l). In this paper we will restrict ourselves to singleton amalgamation
instances, where only one element of B; is outside of h;(.A), and likewise for Bs.
An example singleton amalgamation instance is shown on
the right, where the graph A consists of the single edge |
connecting two middle black nodes, B is the left triangle,
and Bs the right one. The dashed line represents an edge
that may (but does not have to) appear in a solution. A is homogeneous if, and
only if every amalgamation instance has a solution; in such case we say that
AGE(A) has the amalgamation property. See [23] for further details.

A solution C necessarily satisfies g1 (h1(A)) = ga(h2(A)) C g1(B1) N g2(B2);
a solution is strong if g1(h1(A)) = g1(B1) N g2(B2). Intuitively, this forbids ad-
ditional gluing of By and By not specified by the partial bijection ho o (hy™1).
If every amalgamation instance has a strong solution we call A strongly ho-
mogeneous. This is a mild restriction, as homogeneous structures are typically
strongly homogeneous.

The equality, nested equality, and total order data domains are strongly
homogeneous structures. For instance, in the latter case finite induced substruc-
tures are just finite total orders, which satisfy the strong amalgamation property.
Many other natural classes of structures have the amalgamation property: finite
graphs, finite directed graphs, finite partial orders, finite tournaments, etc. Each
of these classes is the age of a strongly homogeneous relational structure, namely

2 We deliberately do not distinguish a structure A from its domain set.



the universal graph (called also random graph), the universal directed graph, the
universal partial order, the universal tournament, respectively. Examples of ho-
mogeneous structures abound [23].

Homogeneous structures admit quantifier elimination: every first-order for-
mula is equivalent to (i.e., defines the same set as) a quantifier-free one [23].
Thus it is safe to assume that formulas labeling transitions are quantifier-free.

Admitting wQo. A well quasi-order (WQO) is a well-founded quasi-order with
no infinite antichains. For instance, finite multisets M(P) over a finite set P,
ordered by multiset inclusion C, are a WQO. Another example is the embedding
quasi-order < in AGE(A<) (= all finite total orders) isomorphic to the ordering
of natural numbers. Finally, the embedding quasi-order in AGE(A) can be lifted
from finite structures to finite structures labeled by elements of some ordered set
(X, <): for two such labeled structures a : A — X and b : B — X we define
a<x b if some embedding h : A — B satisfies a(z) < b(h(x)) for every z € A. We
say that A admits wQO when for every wQo (X, <), the lifted embedding order
dx is a WQO too. For instance, A< admits wQo by Higman’s lemma. The WQo
Dichotomy Conjecture for homogeneous undirected (and also directed) graphs
is easily shown by inspection of the classifications thereof [I8/6]:

Theorem 1. A homogeneous graph A either admits WQO, or all standard prob-
lems are undecidable for Petri nets with data A.

Note the natural correspondence between configurations of a Petri net with data
A, and structures A € AGE(A) labeled by finite multisets over the set P of places:

MPxA) = {m:A—-M(P)|AcAce(A)}.
Thus the lifted embedding quasi-order <J,4(p) is an order on configurations.

Standard decision problems. A Petri net with data N can be finitely repre-
sented by finite sets P, T, A and appropriate labelings with variables and formu-
las. Due to the homogeneity of A, a configuration C' can be represented (up to
automorphism of A) by a structure A € AGE(A) labeled by M(P). We can thus
consider the classical decision problems that input Petri nets with data A, like
the termination problem: does a given (N, C) have only finite runs? The data
domain is considered as a parameter, and hence itself does not constitute part
of input. Another classical problem is the place non-emptiness problem (mark-
ability): given (IV,C) and a place p of N, does (N,C) admit a run that puts
at least one token on place p? One can also define the appropriate variants of
the coverability problem (equivalent to the place non-emptiness problem), the
boundedness problem, the evitability problem, etc. (see [19] for details). All the
decision problems mentioned above we jointly call standard problems.

A Y-structure A is called effective if the following age problem for A is de-
cidable: given a finite X-structure A, decide whether A < A. If A admits wQO
then application of the framework of well-structured transition systems [I1] to
the lifted embedding order <, p) yields:

Theorem 2 ([19]). If an effective homogeneous structure A admits WQO then
all the standard problems are decidable for Petri nets with data A.



3 Results

A 3-graph G = (V, C1, Cs, Cs) consists of a set V' and three irreflexive symmetric
binary relations C,Cy, C3 C V2 such that every pair of distinct elements of V'
belongs to exactly one of the three relations. In the sequel we treat a 3-graph as
a clique with 3-colored edges. Any graph, including A_ and A;, can be seen as a
3-graph. Our main result confirms the WQo Dichotomy Conjecture for strongly
homogeneous 3-graphs:

Theorem 3. An effective strongly homogeneous 3-graph G either admits WQO,
or all standard problems are undecidable for Petri nets with data G.

The core technical result of the paper is Theorem [ below. A path is a finite
graph with nodes {v1,...,v,} whose only edges are pairs {v;,v;11}. The nodes
v1, Uy, are ends of the path, and n is its length.

Theorem 4. A strongly homogeneous 3-graph G either admits WQO, or for
some i,j € {1,2,3} (not necessarily distinct) the graph (V,C; U C;) contains
arbitrarily long paths as induced subgraphs.

In the rest of the paper we concentrate solely on (parts of) the proof of Theo-
rem [4] The omitted parts, and well as the proof that Theorem [ implies Theo-
rem |3} are to be found in the full version of this paper [20].

Ezample 2. For a quasi-order (X, <), the multiset inclusion is defined as follows
for m,m’ € M(X): m' is included in m if m’ is obtained from m by a sequence of
operations, where each operation either removes some element, or replaces some
element by a smaller one wrt. <. The structure A— = (N, =) admits wQo. Indeed,
AGE(A_) contains just finite pure sets, thus <Jx is quasi-order-isomorphic to the
multiset inclusion on M(X), and is therefore a WQO whenever the underlying
quasi-order (X, <) is. Similarly, A; = (N2, =;,=) also admits WQoO, as <x is
quasi-order-isomorphic to the multiset inclusion on M (M (X)).

On the other hand, consider a 3-graph
(N2, =, =9, #12) where =, is symmetric to
=1 and (n,m) #12 (n/,m’) if n # n’ and
m # m'. It refines A; and does not admit
WQO. Indeed, in agreement with Theorem EL
the graph (N?,=; U =3) contains arbitrar-
ily long paths of the shape presented on the
right, where the two colors depict =1 and =,,
respectively, and lack of color corresponds to
#12. Note that (N? =1, =5, #12) is homoge-
neous but not strongly so.




4 Proof of Theorem [

From now on we consider a fixed 3-graph G = (V,Cy,C5,C3) as data domain,
assuming G to be countably infinite and strongly homogeneous. We treat G as
a clique with 3-colored edges: we call C1,Cy and C3 colors and put Colors =
{C1,C5,C3} C P(V x V). To denote individual colors from this set, we will
use variables a, b, ¢ and x,y,z. A path in the graph (V,aUb) we call ab-path
(ab € Colors); for simplicity, we will write a-path instead of aa-path. Likewise
we speak of ab-cliques, a-cliques, ab-cycles, etc. A triangle Aabc is a 3-clique
with edges colored by a, b, c. (Note that Aabc = Abca = Acba).

Sketch of the proof The lemma [I] bellow states that any 3-graph G has to meet
one of the four listed cases. It splits the proof into four separate paths:

Lemma[l ~A) (vertices) (edges)  (paths of len. 2) (any paths)
° e S o )
B OO L
° X=X ° emmam: (1) (in the full version)

©) Lem 2 Thm EL Lemma [3] Lemma [
Ve o
-] -] Lemma
©® - G embeds arbitrarily long paths @ - G admits WQO

D)

O

We present in detail only one of the three nontrivial paths — one corresponding to
case C). Cases A) and B) are treated in the full version [20]. Case A) constitutes
the most difficult part of the proof and involves a complex and delicate analysis of
consequences of the amalgamation property. It consists of four step that deduce
extension of the assumed induced substructures by individual vertices, individual
edges, paths of length 2, resp., culminating in derivation of arbitrarily long paths.
Thus in case A) only the second condition of Theorem@ is possible, while in the
other two cases both conditions of Theorem [ may hold true.

Lemma 1. Every homogeneous 3-graph G = (V,Cy,Cy, C3) satisfies one of the
following conditions:

A) for some color ¢ € Colors, G contains the following induced substructures:

C /. C /.\C

a ’ a

a) arbitrarily large b) two triangles: Aaxc and Nacc
c-cliques for some colors a, = different than c

B) for some colors x # vy, (V,xUy) is a union of disjoint cliques,
C) for some color =, (V,x) is a union of finitely many disjoint infinite cliques,
D) for some colors x # vy, (V,xUy) contains arbitrarily long paths.



Proof. By Ramsey theorem, G contains an arbitrarily large monochromatic
cliques. Let us state a bit stronger requirement:

Condition & For some a, c € Colors, G contains arbitrarily large c-cliques and
a triangle Aacc with exactly two c-edges (a # c).
Consider two cases, depending on whether the condition # is satisfied or not.

Case 1° Assume that G contains both arbitrarily large c-cliques and a triangle
Aacc for some a, c € Colors. Let b be the third, remaining color. Our goal will
be to show that either A) or B) holds.

If the graph (V,aUDb) is a disjoint sum of cliques, we immediately obtain B).
Suppose the contrary. We get that G has to contain one of the three possible
counterexamples for transitivity of relation a U b:

® ® ® .
:/_\if Naac ¢ :/_\‘f Nabc ¢ :/_b\‘ Abbc
a a

If it contains the triangle Aaac or Aabc, case A) holds.

Suppose we got Abbc. Let us check this time whether colors a and ¢ form
a union of disjoint cliques. Again, if it is so, we easily get B), so we assume the
contrary. Similarly, we necessarily obtain one of the following triangles:

b b b A
’/_\if Aaab ./_\:f Nacb « .)/_\: — Acch «
a a C

This time case A) also holds for two out of the three triangles above:

— for Aach, because together with subgraphs resulting from assumption &
(i.e. with triangle Aacc and the c-cliques) we get all graphs required by A).

— for Acch paired with the triangle Abbc we just obtained, using color b
appearing in those triangles in place of a in condition A).

It only remains to consider the situation when we got Aaab. We use it to-
gether with previously obtained triangle Abbc to build the following instance

of singleton amalgamation:
a @, C
<>
a g b

Depending on the color of the dashed edge, in the solution we get one of the
following triangles:

(&) — Aaac (%) — Aabc (ﬁ) — Aabc

a

and each one alone completes the requirements of A). This closes case 1°.

Case 2° Suppose condition # is false. Remind that G contains arbitrarily large
c-cliques for some ¢ € G. Since # does not hold, the graph does not contain
a triangle Acca — in other words, the color ¢ appears only within cliques. We



conclude that (V,c) is a union of disjoint cliques. Clearly at least one of such
cliques has to be infinite. By homogeneity we get that all the cliques in (V)
have to be infinite. Now our target is to show that either C) or D) holds.

The case C) is fulfilled when there are only finitely many c-cliques. Let us
assume the contrary. In each of the c-cliques we chose one vertex. Edges between
the chosen vertices form an infinite ab-clique K. Using Ramsey theorem again,
we conclude that in K one of the colors a, b forms arbitrarily large monochro-
matic cliques. W.l.o.g. suppose that this is color b.

If the graph G contained Aybb for some y # b, then the assumptions of &
would be met, leading to a contradiction. Therefore we conclude that (V,b) is a
union of disjoint infinite b-cliques.

When there are only finitely many b-cliques, condition C) is fulfilled. Other-
wise we know that G is a union of infinitely many x-cliques for both x = ¢ and

= b. Using homogenity, it is easy to show that then every pair of differently
colored cliques has ezactly one common vertex, so the graph G takes the form as
depicted in Example [2l A graph of such form contains arbitrarily long bc-path,
so the requirements of D) are met. O

4.1 Case C)

Let ¢ be the color that satisfies condition C), and a, b — the remaining two
colors. In this section we often treat G as the k-partite graph (V,aUb) (for some
k € N): k cliques of color ¢ allow to distinguish k& groups of vertices V; U V5 U
-+ UV, =V (from now on we will refer to them as layers). The remaining two
colors can be interpreted as existence (a) and nonexistence (b) of edges between
these groups.

Remark % We observe that the special color c between vertices within each layer
V; ensures that the automorphisms of G will not 'mix’ those layers: when two
vertices u, v belong to a common layer V;, then their images f(u), f(v) will also
belong to some common layer V;, no matter what automorphism f € Aut(G)
we choose. Obviously, the automorphisms can switch positions of whole layers,
e.g. move all vertices from V; to some V; and vice versa — in this respect the
layers are undistinguishable.

Lemma 2. For every i,j € {1,2,...,k}
and a € Colors (a # c) the bipartite graph
Gi,j = (Vl Uvj,an (ViU ‘/}')27 Vi, VJ) (with
two distinguishable sides V;,V;) is homoge-
neous.

The vertex sets V; and V; are used here as
unary relations that allow to tell the two
layers of G; ; (sides of G, ;) apart. An ex- remaining . Vs
ample is shown on the right, with three (k = 3) layers

layers Vi,Vo and V3, and three bipartite

graphs Gi 2, G2 3 and Gy 3.

10



Proof. Fix G; ; a bipartite graph. To prove its homogeneity we have to show that
each isomorphism of two of its finite induced subgraphs may be extended to some
automorphism of G; ;. Let us then take some given automorphism f: G; — G
for some finite induced subgraphs G1, G2 of G; ;. It is easy to extend it to a full
automorphism when it ’touches’ both layers of G; ;, i.e.:

V(G)NVi#D A V(G)NV; #0

where V(G1) is the set of vertices of Gy. In this case, by homogeneity of G, we
construct a full automorphism f’ : G — G, which extends f. It is easy to see
that in this case f has to fix the layers V; and Vj}, and hence f’ restricted to the
graph G; ; is a correct automorphism of this graph.

Things get more complicated when f operates only on some single layer of
Gi,j. W.lo.g. suppose that it 'touches’ only V;, so V(G1) N V; = 0. Now the
above construction will not work out of the box — if we were unlucky, the
automorphism of G we get by homogeneity moves the whole layer V; to some
V,, located ’outside’ the graph G, ; (n ¢ {7,7}).

It will be handy to make the following observation: when f ’touches’ only V;
we may assume that V(G1) N V(Gs) = 0. Indeed, every function g : G — Go
that violates this condition may be decomposed as g = f o f1 for some f1, fa:

[ENELNy; JELNTEN

such that H is disjoint both with G; and with Gs.

Now, let N = |V(G1)| = |V(G2)| be the size of the domain of isomorphism f.
Let us take an arbitrary infinite family (S, )nen of subgraphs of G with disjoint
vertex sets, such that the following conditions are met:

— [V(S,) NV,,| =1 for m # 4 (and this single vertex will be denoted as vﬁf)),
— |V(Sn)NV;] = N (denote these vertices as s§“), sé"), sén), e sg’;)).

We define a connection type of a layer V; with V,, in the graph S, as the N-
element sequence of colors of edges from the list bellow:

({88, 0l (s 0, s, 0

E.g. in the graph bellow, the connection type of layer V; = V3 with V; is abba,
and with V5 — aaba (remembering that b is treated as lack of an edge):

Furthermore, we define the type of graph S,, to be the sequence of types arising
between V; and other layers plus the list of edge-colors between all pairs of

vertices v{" (enumerated in some consistent way). As there are only finitely

11



many such types, by pigeonhole principle there exists a pair of graphs S, and
Sp with the same type.

Let us fix some order on vertices of G1: V(G1) = {¢1,92,---,9n}. Let h be
the partial isomorphism that moves the vertices as follows:

a b

51 = g1 st = f(g1)
a b

s\ = gy s = fgn)

By homogeneity, it has to extend to a full automorphism A’ € Aut(G). In par-
ticular, in the neighbourhood of G; and G5 there will be images of all vertices

vga) of graphs S, and Sy:

W () 0 (o) (o)) o (051) o ()

(for @ in {a,b}). What follows is that G; with added vertices h’ (vsa)) has the
same type as G with h’(vﬁb)) respectively (that type may differ from the type

of S, and Sy though!). It is best illustrated on a picture:

_______________________

! vy v ; W (") W (@)
W ! Q [ ] i
|
1 é M ! _ h'/ué\”) h'&m
: ‘ 0 /®
|
\
|
|

Vi
Vi
5(1a) 3

|

|

|

‘

|

|

1 o—0 o @
|

‘ EORNONNG)
|

|

|

|
Il
!
EORMORNO) Sng |91 92 93 ga F(91)F(92)f(95) £ (94)
|
!
!
!

Above, the colored triangles represent the types of connections. The order of
those types may get permuted when applying h’, but still — in line with the

remark % — for each 8 € {1,2,...,k} \ {i} the vertex h’ (v(a)) must stay in

the same layer as h' (v 5 )> furthermore their type of connection with layer V; is

preserved.
Extending the isomorphism f in a natural way (thanks to the compatibility
of types) on those newly obtained vertices:

B (vsa)) S N <v£b))

we get an isomorphism that this time ’operates’ on all layers V,. If we now
extend it to an automorphism of the whole G, we will get a function that fixes
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all layers V,. This function may be safely restricted to V; UV}, staying a correct
automorphism of our initial bipartite graph G;_ ;, which completes the proof. O

We are going to apply to graphs G; ; the following classification result:

Theorem 5 ([16]). A countably infinite homogeneous bipartite graph (with dis-
tinguishable sides) is either empty, or full, or a perfect matching, or the comple-
ment of a perfect matching, or a universal graph.

From our point of view, all we need to know about the universal graph is that it
contains arbitrarily long paths which — translated to our notation — would mean
that G;; contains arbitrarily long a-paths. Therefore in our further consider-
ations we assume that G; ; is not universal which, in our notation, leaves two
types of G; ;:

1. all edges of G; ; have the same color x € {a, b}, i.e. G;; is a full or empty
bipartite graph,

2. one of the colors x € {a, b} forms a perfect matching in G, ;, the second one
(v # %) is then the complement of this matching.

Graphs of type 2. may be seen as bijections between their sets of vertices
(layers). Lemma [3| states that those bijections have to agree with each other.

Lemma 3. Let V;,V;, V), be some arbitrary pairwise different layers, such that
G;,; is of type 2 and v : V; — V; is the bijection it determines. Then i takes
an(V;UVg) toan (V;UVy), or to its complement. Formally:

Y VW@w(u)av VIY V uave () av

ueV; veVy * —— ueV; veVy o
L) &

Proof. We head towards a contradiction. Negating the claim we get:

( J 3 -k vV .Mm) A ( J 3 -9A0 v @/\—K})

ueV; veEVE ueV; veVy

which leads to four cases with similar proofs. We will consider one of them
(corresponding to O A > and & A —#) and omit the other. Let us then assume
that there exist z, 2’ € V; and y,y’ € Vi such that:

ray N 2ay AN Y@)ay A )ay.

Let g be a partial isomorphism of the form ¢ = {z — z’,y — ¥'}. By ho-
mogeneity of G, there is some full automorphism ¢’ € Aut(G) extending g. If
additionally we were able to force g to fix the layer V;, we would be almost done.
Let us try to achieve that property.

For that purpose, in V; we choose a vertex v such that:

L vé¢yp({z,2'}),

13



II. if G, is a graph of type 2. defining a bijection ¢ : Vi, — V;, then also

v ¢ o({y,y'})

Clearly such vertex must exist — two above conditions exclude at most 4 different

vertices from the infinite set of candidates. The function g extended with v 2 v
stays a correct isomorphism, because:

— in G, ; by definition of isomorphism we need the edges {x, v} and {g(x), g(v)}
to be equally colored, and, in fact, they are. We get this thanks to the
condition I.: z is connected with all vertices from V; \ {¢(x)} by x-edges,

€ {a,b}. We similarly handle z'.

— in turn in G;; — if it is a graph of type 1., the needed equality of colors of
edges {y,v} and {g(y),g(v)} trivially holds. If it is a graph of type 2., the
equality of colors is derived similarly as in G; ;, using the condition II.

Presence of the vertex v ensures that layer V; is preserved by the full automor-
phism ¢’ € Aut(G) we get by homogeneity.
Since G; ; is of type 2., the vertex ¢ (') is the only possible choice for the

image of ¢(x) under ¢’ — this is the only vertex z’ is connected to by an
appropriately colored edge. Because ¢’ is an automorphism, we get that ¢(2’) a
y’, which leads us to the contradiction. O

From the lemma we have just proved one easily derives the following corollary:
Corollary 1. The following relation = on layers is transitive:
Vi, =V; & the graph G, ; is of type 2.

Furthermore, if Vi = V; and V; = Vj, then fir o fij = fix, where fij, fir, fik
are the bijections determined by graphs G, ;,G; i and G .

In Lemma [5 below, which is the last step of the proof of case C), we will apply
the following fact:

Lemma 4. Consider a homogeneous 3-graph G and a partition of its vertex set
V' = U,enUn into sets Us of equal finite cardinality. Suppose further that for
every n € N, there is an automorphism m, of G that swaps Uy with U, and is
identity elsewhere. Then G admits WQO.

Proof. Let G = (V,a,b,c) be a 3-graph. Define for u € Uy the sets V,, C V,
which we call layers:
Vi={m(u)|neN}.

We will prove that the structure G' = (V,a, b, c, (Vy)uecv,) admits wQo. This
will imply that G admits WQO as well; indeed, compared to G, structure G’ is
equipped with additional unary relations V,, which only makes the order < in
AGE(G’) finer than the analogous order in AGE(G).

Let G, denote the induced substructure of G’ on vertex set U,. By the
assumptions, for every n,m € N there is a swap of U, and U, that, extended
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with identity elsewhere, is an automorphism of G’. In consequence, all structures
G, are isomorphic, and the embedding order < of induced substructures of G’ is
isomorphic to finite multisets over AGE(Gy), ordered by multiset inclusion. Thus
(AGE(G’), Q) is isomorphic to the multiset inclusion in M(AGE(Gy)), which is a
wQO as Uy is finite. For any wQo (X, <), analogous isomorphism holds between
the lifted embedding order (AGE(G’), <x) and the multiset inclusion in multisets
over induced substructures of G labeled by elements of X, and again the latter
order is a WQO. Thus G’ admits WQoO. a

Lemma 5. The 3-graph G admits WQO.

Proof. We are going to prepare the ground for the use of Lemma @] By Corol-

lary the vertex set V' partitions into V' = J,,cyy Un so that

a) every layer V; shares with every set U,, exactly one vertex: U, NV, = {Ul(n)},
b) if f; ; is the bijection determined by G; ; (a graph of type 2.), then f; ; (vl(n)) €
U, so all the bijections preserve every set Us,.

Intuitively, G can by cut into thin ’slices’ perpendicular to the layers V4. By thin
we mean that the slices have exactly one vertex in each layer. The cut is made
along the bijections dictated by the graphs of type 2. as in the picture bellow:

We observe that for every n, the bijection h,, : V — V that swaps U; and U,

along the only bijection U; — U, that preserves layers, and is identity elsewhere,

is an automorphism of G. Indeed, for any three slices U,, Uy, U. we have that:
(a) _ . (c) (

c
v; an <:>Ui

b) a véc)

so the edges {vfa),vj(-c)} and {Ugb),v](-c)} are colored the same way. The above

equivalence is obvious in case when G; ; is a graph of type 1. In the case of
(e)

graph of type 2., the vertex v;”’ is connected with all vertices from V; but one

by x-edges for some x € {a,b}. However, the special vertex fm(vgc)) that is not
connected by a x-edge, by the condition b), also belongs to U,, so it does not
interfere with above equivalence.

By Lemma[4 we deduce that G admits wQO, which completes the proof. O
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