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V = non-terminal symbols V={X b (3}

independence I = binary symmetric and
irreflexive relation on V [={(BCH

context-free: | is identity

commutative context-free: I = V?
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5 % a

XW > VW

if there is a production X —— v

process = trace over (V, [)
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Strong bisimilarity

each elementary process

may terminate
normed processes

e on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller “96]

e on normed PA, bisimulation is in 2-NEXPTIME
[Hirshfeld, Jerrum "99]

o BPA~BPPisinP [Jancar, Kot, Sawa ‘08]




Strong bisimilarity

Challenge 1:

to extend the tractable class

Challenge 2:
BPA and BPP algorithms are totally different
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Theorem:

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Remark:

One polynomial-time algorithm for both BPA
and BPP
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Unique decomposition

Each non-terminal X is either:

o decomposable: X ~ «, or

e non-decomposable, or prime

Each process decomposes uniquely into primes

. Makes sense for congruences other than ~
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Cancellation

if xy~PBy then x~p

follows from the unique decomposition
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Decomposition vs cancellation

not only bisimilarity]
Theorem:

Each congruence on|transitive BPC that is:

o| norm-reducing bisimulation

o weakly cancellative

has unique decomposition property
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Base

a succinct representation of a congruence
with unique decomposition property

Base B:

e primes € V

o decompositions X = & into primes, one for
each non-prime X
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Further research

beyond transitive BPC

expressibility of “partially-commutative
context-free”

decidability for non-normed processes

beyond strong bisimilarity
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Question:

is BPA ~ BPP subsumed?




The answer: no!
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