';/

Concur 2009

I N L R L R R R L AR AR R A A A LA LR

Outline

o Whatis “partially-commutative context-free” ?

Outline

o Whatis “partially-commutative context-free” ?

o What is “processes” ?

Outline

o Whatis “partially-commutative context-free” ?
o What is “processes” ?

o Strong bisimilarity checking

Outline

What is “partially-commutative context-free” ?
What is “processes” ?
Strong bisimilarity checking

Our contribution

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

~ context-free grammars

context-free grammars

in Greibach Normal Form

under left-most derivations

» aXBC

context-free grammars

in Greibach Normal Form

under left-most derivations

s =, YBC

context-free grammars

in Greibach Normal Form

under left-most derivations

? - XBC B

X

d

 BC C

language = . be

Commutative
context-free grammars

in Greibach Normal Form

under left-most derivations

s =, YBC

Commutative
context-free grammars

X B and C pairwise independent

b 2

C

language

Commutative
context-free grammars

X B and C pairwise independent

s =, YBC

language = #a = #b = fic,
a “preceeds” b and c

Partially-commutative
context-free grammars

X B and C pairwise independent

b 2

C

language = #a = #b = fic,
a “preceeds” b and c

~ Partially-commutative
- context-free grammars

only B and C independent

d > B b >

d

@

language =

~ Partially-commutative
- context-free grammars

only B and C independent

d > B b >

X

d

X @

language = a.a(b.blc..c

Independence

Independence

e V =non-terminal symbols

Independence

e V =non-terminal symbols V={X b (3}

e independence I = binary symmetric and
irreflexive relation on V [={(BCH

Independence

e V =non-terminal symbols V={X b (3}

e independence I = binary symmetric and
irreflexive relation on V [={(BCH

context-free: | is identity

Independence

V = non-terminal symbols V={X b (3}

independence I = binary symmetric and
irreflexive relation on V [={(BCH

context-free: | is identity

commutative context-free: I = V?

Expressibility

partially-
commutative
context |

trace context-free

Expressibility

e e (oo | €.

partially-
commutative
context |

trace context-free

Expressibility

e e (oo | €.

partially-
commutative
context |

trace context-free

(Belode) | ¢

Expressibility

e e (oo | €.

partially-
commutative
context |

trace context-free

(Belode) | ¢

context-free processes

non-terminal = elementary process

context-free processes

d

> | XBC

context-free processes

X < > [XBC 4

N

BC

. \
C b Q
A e’

Partially-commutative
context-free processes

X < > IXBE 4

N

BC

CBC X
& Y\b y
/ BCBC |

B and C independent

~ Partially-commutative
~ context-free processes

X > [4

/\ \CBC E
g " gm

BC

- e
e S

~ Partially-commutative
~ context-ire Qrocesses

- EABC =

/ig\é a

g \BCBC!
o ‘wm”
e S

Transition rules

wvelV

a
XW > VW

if there is a production X .y

Transition rules

up to
transposition of
independent
non-terminals

Transition rules

up to
transposition of
independent

non-terminals W, V — V*

5 % a

XW > VW

if there is a production X —— v

process = trace over (V, [)

B I L L A L L R AR LR

B I L L A L L R AR LR

B I L L A L L R AR LR

B I L L A L L R AR LR

Transitive BPC

Transitive BPC

transitive dependence D = Vil

Transitive BPC

transitive dependence D = v

Transitive BPC

transitive dependence D = Vi)

Transitive BPC - example

Transitive BPC - example

Transitive BPC - example

{ (X, C), (B,C)}
= X, B}, 1€} }

D

E = XBC Bt

d

X - BC c ot

Transitive BPC - example

D - X Bl AL

Transitive BPC - example

“threads”
{ (X/ C)/W e
Lo H e

D

E = XBC Bt

d C

s B & >

X

language = (a..ab.b)lc.g
d preceeds ¢

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

Strong bisimilarity

normed processes

otrong bisimilarity

each non-terminal

generates a word
normed processes

otrong bisimilarity

each elementary process

may terminate
normed processes

Strong bisimilarity

each elementary process

may terminate
normed processes

e on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller “96]

Strong bisimilarity

each elementary process

may terminate
normed processes

e on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller “96]

e on normed PA, bisimulation is in 2-NEXPTIME
[Hirshfeld, Jerrum "99]

Strong bisimilarity

each elementary process

may terminate
normed processes

e on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller “96]

e on normed PA, bisimulation is in 2-NEXPTIME
[Hirshfeld, Jerrum "99]

o BPA~BPPisinP [Jancar, Kot, Sawa ‘08]

Strong bisimilarity

Challenge 1:

to extend the tractable class

Challenge 2:
BPA and BPP algorithms are totally different

Contribution

Theorem:

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Contribution

Theorem:

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Contribution

Theorem:

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Remark:

One polynomial-time algorithm for both BPA
and BPP

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Naive implementation in exponential time

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Naive implementation in exponential time

Compression of strings helps

Contribution

Idea:

The BPP algorithm works for BPA just as well |

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

Outline

What is “partially-commutative context-free” ?
What is “processes” ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research

Outline of the algorithm

Bisimilarity ~ is a congruence with

the unique decomposition property

Outline of the algorithm

Bisimilarity ~ is a congruence with

the unique decomposition property

Hence it is representable by a finite base

Outline of the algorithm

Bisimilarity ~ is a congruence with

the unique decomposition property

Hence it is representable by a finite base

éAlgorithm computes iteratively the bisimilarity base

Outline of the algorithm

Bisimilarity ~ is a congruence with

the unique decomposition property

Hence it is representable by a finite base

éAlgorithm computes iteratively the bisimilarity base

Outline of the algorithm

the unique decomposition property

Unique decomposition

like prime decomposition of natural numbers

Unique decomposition

~ Each non-terminal X is either:

Unique decomposition

~ Each non-terminal X is either:

o decomposable: X ~ «, or

Unique decomposition

~ Each non-terminal X is either:

o decomposable: X ~ «, or

e non-decomposable, or prime

Unique decomposition

Each non-terminal X is either:

o decomposable: X ~ «, or

e non-decomposable, or prime

Each process decomposes uniquely into primes

Unique decomposition

Each non-terminal X is either:

o decomposable: X ~ «, or

e non-decomposable, or prime

Each process decomposes uniquely into primes

. Makes sense for congruences other than ~

Cancellation

if xy~PBy then x~p

Cancellation

if xy~PBy then x~p

follows from the unique decomposition

Decomposition vs cancellation

 BPA BPP

Decomposition vs cancellation

 BPA BPP

cancellation

Decomposition vs cancellation

 BPA BPP

cancellation

v

decomposition

Decomposition vs cancellation

BPA BPP

cancellation decomposition

v

decomposition

Decomposition vs cancellation

BPA BPP

cancellation decomposition

v v

decomposition cancellation

Decomposition vs cancellation

BPA BPP

cancellation decomposition
BPC ?

v v

decomposition cancellation

Decomposition vs cancellation

BPC weak cancellation

Decomposition vs cancellation

BPC weak cancellation

v

decomposition

Decomposition vs cancellation

BPC weak cancellation

v

decomposition

v

cancellation

Decomposition vs cancellation

~ Theorem:

Each congruence on transitive BPC that is:

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

o norm-reducing bisimulation

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

o norm-reducing bisimulation

o weakly cancellative

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

o norm-reducing bisimulation

o weakly cancellative

has unique decomposition property

Decomposition vs cancellation

not only bisimilarity]
Theorem:

Each congruence on|transitive BPC that is:

o| norm-reducing bisimulation

o weakly cancellative

has unique decomposition property

Outline of the algorithm

Bisimularity ~ is a congruence with

the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Outline of the algorithm

computes iteratively

Base

a succinct representation of a congruence
with unique decomposition property

Base

a succinct representation of a congruence
with unique decomposition property

Base B:

e primes & V

Base

a succinct representation of a congruence
with unique decomposition property

Base B:

e primes € V

o decompositions X = & into primes, one for
each non-prime X

Bisimulation approximants

 BPA

Bisimulation approximants

BPA

initialization:
b2 B

Bisimulation approximants

BPA BPP

initialization: initialization:

B, 2 B. B, represents
norm-equality

Bisimulation approximants

BPA

initialization:
b2 B

refinement:
removing pairs
from B

BPP

initialization:

B, represents
norm-equality

Bisimulation approximants

BPA BPP

initialization: initialization:

B, 2 B. B, represents
norm-equality

refinement: refinement:
removing pairs bisimulation

from B “expansion”

Bisimulation approximants

BPA BPP

BIRIE 7
initialization: initialization:

B, 2 B. B, represents
norm-equality

refinement: refinement:
removing pairs bisimulation

from B “expansion”

Bisimulation approximants

BPA

initialization:
b2 B

refinement:
removing pairs
from B

BPC ?

BPP

ﬁtialization:

N

|

B, represents
norm-equality

refinement:
bisimulation

“expansion”

Further research

Further research

o beyond transitive BPC

Further research

o beyond transitive BPC

o expressibility of “partially-commutative
context-free”

Further research

o beyond transitive BPC

o expressibility of “partially-commutative
context-free”

o decidability for non-normed processes

Further research

beyond transitive BPC

expressibility of “partially-commutative
context-free”

decidability for non-normed processes

beyond strong bisimilarity

The algorithm

strong bisimulation
on BPP

%[Hirshfeld, Jerrum, Moller "96]

The algorithm

strong bisimulation
on BPA

strong bisimulation
on BPP

é[Hirshfeld, Jerrum, Moller "96]

The algorithm

strong bisimulation
on BPA

strong bisimulation other bisimulations
on BPP on BPP

£

é[Hirshfeld, Jerrum, Moller "96] [Froeschle, Lasota "06]

The algorithm

strong bisimulation
on BPA

strong bisimulation other bisimulations
on BPP on BPP

£

é[Hirshfeld, Jerrum, Moller "96] [Froeschle, Lasota "06]

R R R L R L R AR R AL A A R L AR LR

Question:

is BPA ~ BPP subsumed?

The answer: no!

R R R L R L R AR R AL A A R L AR LR

