
On completeness of logical relations for monadic types ?

Sławomir Lasota1 ?? David Nowak2 Yu Zhang3 ? ? ?

1 Institute of Informatics, Warsaw University, Warszawa, Poland
2 RCIS, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

3 Project Everest, INRIA Sophia-Antipolis, France

Abstract. Software security can be ensured by specifying and verifying secu-
rity properties of software using formal methods with strong theoretical bases.
In particular, programs can be modeled in the framework of lambda-calculi, and
interesting properties can be expressed formally by contextual equivalence (a.k.a.
observational equivalence). Furthermore, imperative features, which exist in most
real-life software, can be nicely expressed in the so-called computational lambda-
calculus. Contextual equivalence is difficult to prove directly, but we can often use
logical relations as a tool to establish it in lambda-calculi. We have already de-
fined logical relations for the computational lambda-calculus in previous work.
We devote this paper to the study of their completeness w.r.t. contextual equiva-
lence in the computational lambda-calculus.

1 Introduction

Contextual equivalence. Two programs are contextually equivalent (a.k.a. observa-
tionally equivalent) if they have the same observable behavior, i.e. an outsider cannot
distinguish them. Interesting properties of programs can be expressed using the notion
of contextual equivalence. For example, to prove that a program does not leak a secret,
such as the secret key used by an ATM to communicate with the bank, it is sufficient to
prove that if we change the secret, the observable behavior will not change [13, 3, 14]:
whatever experiment a customer makes with the ATM, he or she cannot guess infor-
mation about the secret key by observing the reaction of the ATM. Another example is
to specify functional properties by contextual equivalence. For example, if sorted is a
function which checks that a list is sorted and sort is a function which sorts a list, then,
for all list l, you want the expression sorted(sort(l)) to be contextually equivalent to the
expression true. Finally, in the context of parameterized verification, contextual equiv-
alence allows the verification for all instantiations of the parameter to be reduced to the
verification for a finite number of instantiations (See e.g. [5] where logical relations are
one of the essential ingredients).
? Partially supported by the RNTL project Prouvé, the ACI Sécurité Informatique Rossignol,

the ACI jeunes chercheurs “Sécurité informatique, protocoles cryptographiques et détection
d’intrusions”, and the ACI Cryptologie “PSI-Robuste”.

?? Partially supported by the Polish KBN grant No. 4 T11C 042 25 and by the European Commu-
nity Research Training Network Games. This work was performed in part during the author’s
stay at LSV.

? ? ? This work was mainly done when the author was a PhD student under an MENRT grant on
ACI Cryptologie funding, École Doctorale Sciences Pratiques (Cachan).

Logical relations. While contextual equivalence is difficult to prove directly because
of the universal quantification over contexts, logical relations [11, 6] are powerful tools
that allow us to deduce contextual equivalence in typed λ-calculi. With the aid of the
so-called Basic Lemma, one can easily prove that logical relations are sound w.r.t. con-
textual equivalence. However, completeness of logical relations is much more difficult
to achieve: usually we can only show the completeness of logical relations for types up
to first order.

The computational λ-calculus [8] has proved useful to define various notions of
computations on top of the λ-calculus, using monadic types. Logical relations for
monadic types can be derived by the construction defined in [2] where soundness of
logical relations is guaranteed. However, monadic types introduce new difficulties. In
particular, contextual equivalence becomes subtler due to the different semantics of
different monads: equivalent programs in one monad are not necessarily equivalent in
another! This accordingly makes completeness of logical relations more difficult to
achieve in the computational λ-calculus. In particular the usual proofs of completeness
up to first order do not go through.
Contributions. We propose in this paper a notion of contextual equivalence for the
computational λ-calculus. Logical relations for this language are defined according to
the general derivation in [2]. We then explore the completeness and we prove that for the
partial computation monad, the exception monad and the state transformer monad, logi-
cal relations are still complete up to first-order types. In the case of the non-determinism
monad, we need to restrict ourselves to a subset of first-order types.

Not like previous work on using logical relations to study contextual equivalence
in models with computational effects [12, 10, 9], most of which focus on computations
with local states, our work in this paper is based on a more general framework for
describing computations, namely the computational λ-calculus. In particular, very dif-
ferent forms of computations like non-determinism are studied, not just those for local
states.

Note that all proofs that are omitted in this short paper, can be found in the full
version [4].

2 Logical relations for the simply typed λ-calculus

Let λ→ be a simple version of typed λ-calculus with only base types b (booleans, inte-
gers, etc.) and function types τ → τ ′. Terms consist of variables, constants, abstractions
and applications. Notations and typing rules are as usual. We consider the set theoretical
semantics of λ→. A Γ -environment ρ is a map such that, for every x : τ in Γ , ρ(x) is
an element of JτK. Let t be a term such that Γ ` t : τ is derivable. The denotation of
t, w.r.t. a Γ -environment ρ, is given as usual by an element JtKρ of JτK. We write JtK
instead of JtKρ when ρ is irrelevant, e.g., when t is a closed term. When given a value
a ∈ JτK, we say that it is definable if and only if there exists a closed term t such that
` t : τ is derivable and a = JtK.

Let Obs be a subset of base types, called observation types, such as booleans,
integers, etc. A context C is a term such that x : τ ` C : o is derivable, where o
is an observation type. We spell the standard notion of contextual equivalence in a

denotational setting: two elements a1 and a2 of JτK, are contextually equivalent (written
as a1 ≈τ a2), if and only if for any context C such that x : τ ` C : o (o ∈ Obs) is
derivable, JCK[x := a1] = JCK[x := a2]. We say that two closed terms t1 and t2 of
the same type τ are contextually equivalent whenever Jt1K ≈τ Jt2K. We also define a
relation ∼τ : for every pair of values a1, a2 ∈ JτK, a1 ∼τ a2 if and only if a1, a2 are
definable and a1 ≈τ a2.

Essentially, a (binary) logical relation [6] is a family (Rτ)τ type of relations, one
for each type τ , on JτK such that related functions map related arguments to related
results. More formally, it is a family (Rτ)τ type of relations such that for every f1, f2 ∈
Jτ → τ ′K,

f1 Rτ→τ ′ f2 ⇐⇒ ∀a1, a2 ∈ JτK . a1 Rτ a2 =⇒ f1(a1) Rτ ′ f2(a2)

There is no constraint on relations at base types. In λ→, once the relations at base types
are fixed, the above condition forces (Rτ)τ type to be uniquely determined by induction
on types.

A so-called Basic Lemma comes along with logical relations since Plotkin’s work
[11]. It states that if Γ ` t : τ is derivable, ρ1, ρ2 are two related Γ -environments, and
every constant is related to itself, then JtKρ1 Rτ JtKρ2. Here two Γ -environments ρ1,
ρ2 are related by the logical relation, if and only if ρ1(x) Rτ ρ2(x) for every x : τ in
Γ . Basic Lemma is crucial for proving various properties using logical relations [6]. In
the case of establishing contextual equivalence, it implies that, for every logical relation
(Rτ)τ type such that Ro is the equality for every observation type o, logically related
values are necessarily contextually equivalent, i.e., Rτ ⊆ ≈τ for any type τ .

Completeness states the inverse: a logical relation (Rτ)τ type is complete if every
contextually equivalent values are related by this logical relation, i.e., ≈τ ⊆ Rτ for
every type τ . Completeness for logical relations is hard to achieve, even in a simple
version of λ-calculus like λ→. Usually we are only able to prove completeness for
types up to first order (the order of types is defined inductively: ord(b) = 0 for any base
type b; ord(τ → τ ′) = max(ord(τ) + 1,ord(τ ′)) for function types). The following
proposition states the completeness of logical relations in λ→, for types up to first order:

Proposition 1. There exists a logical relation (Rτ)τ type for λ→, with partial equality
on observation types, such that if ` t1 : τ and ` t2 : τ are derivable, for any type τ up
to first order, t1 ≈τ t2 =⇒ Jt1K Rτ Jt2K.

3 Logical relations for the computational λ-calculus

3.1 The computational λ-calculus λComp

Moggi’s computational λ-calculus has proved a nice framework for expressing vari-
ous forms of side effects (exceptions, non-determinism, etc.) [8]. The computational
λ-calculus, denoted by λComp , extends λ→ with a unary type constructor T: Tτ de-
notes the type of computations which return values of type τ . It also introduces two
extra term constructs val(t) and let x⇐ t in t′, representing respectively the trivial
computation and the sequential computation, with the typing rules:

Γ ` t : τ

Γ ` val(t) : Tτ

Γ ` t : Tτ Γ, x : τ ` t′ : Tτ ′

Γ ` let x⇐ t in t′ : Tτ ′

Moggi also builds a categorical model for the computational λ-calculus, using the
notion of monads [8]. We shall focus on Moggi’s monads defined over the category Set
of sets and functions. For instance, the non-determinism monad is defined by JTτK =
Pfin(JτK), with

Jval(t)Kρ = {JtKρ},
Jlet x⇐ t1 in t2Kρ =

⋃
a∈Jt1Kρ

Jt2Kρ[x := a].

In the rest of this paper, we shall restrict ourselves to four concrete monads: partial
computations, exceptions, state transformers and non-determinism. Definitions of these
monads can be found in [8, 4]. We write λPESN

Comp for the particular version of λComp

where the monad is restricted to be one of these four monads.
The computational λ-calculus is strongly normalizing [1]. In fact, every term of

a monadic type can be written in the following βc-normal-η-long form, w.r.t. the βc-
reduction rules and η-equalities in [1] (see the proof in the full version [4]):

let x1 ⇐ d1u11 · · ·u1k1 in · · · let xn ⇐ dnun1 · · ·unkn
in val(u),

where n = 0, 1, 2, . . ., every di (1 ≤ i ≤ n) is either a constant or a variable, u and
uij (1 ≤ i ≤ n, 1 ≤ j ≤ kj) are all βc-normal terms or βc-normal-η-long terms (of
monadic types).

As argued in [3], the standard notion of contextual equivalence does not fit in the
setting of the computational λ-calculus. In order to define contextual equivalence for
λComp , we have to consider contexts C of type To (o is an observation type), not of
type o. Indeed, contexts should be allowed to do some computations: if they were of
type o, they could only return values. In particular, a context C such that x : Tτ ` C : o
is derivable, meant to observe computations of type τ , cannot observe anything, because
the typing rule for the let construct only allows us to use computations to build other
computations, never values. Taking this into account, we get the following definition:

Definition 1 (Contextual equivalence for λComp). In λComp , two values a1, a2 ∈ JτK
are contextually equivalent, written as a1 ≈τ a2, if and only if, for all observable types
o ∈ Obs and contexts C such that x : τ ` C : To is derivable, JCK[x := a1] =
JCK[x := a2]. Two closed terms t1 and t2 of type τ are contextually equivalent if and
only if Jt1K ≈τ Jt2K. We use the same notation

3.2 Logical relations for λComp

A uniform framework for defining logical relations relies on the categorical notion of
subscones [7], and a natural extension of logical relations able to deal with monadic
types was introduced in [2]. The construction consists in lifting the CCC structure and
the strong monad from the categorical model to the subscone. We reformulate this con-
struction in the category Set. The subscone is the category whose objects are binary
relations (A,B, R ⊆ A × B) where A and B are sets; and a morphism between
two objects (A,B, R ⊆ A × B) and (A′, B′, R′ ⊆ A′ × B′) is a pair of functions
(f : A → A′, g : B → B′) preserving relations, i.e. a R b ⇒ f(a) R′ g(b).

The lifting of the CCC structure gives rise to the standard logical relations given
in Section 2 and the lifting of the strong monad will give rise to relations for monadic
types. We write T̃ for the lifting of the strong monad T . Given a relation R ⊆ A ×
B and two computations a ∈ TA and b ∈ TB, (a, b) ∈ T̃ (R) if and only if there
exists a computation c ∈ T (R) (i.e. c computes pairs in R) such that a = Tπ1(c)
and b = Tπ2(c). The standard definition of logical relation for the simply typed λ-
calculus (c1, c2) ∈ RTτ ⇐⇒ (c1, c2) ∈ T̃ (Rτ). This construction guarantees that
Basic Lemma always holds provided that every constant is related to itself [2]. A list
of instantiations of the above definition in concrete monads is also given in [2]. For
instance, the logical relation for the non-determinism monad is defined by:

c1 RTτ c2 ⇔ (∀a1 ∈ c1. ∃a2 ∈ c2. a1 Rτ a2) & (∀a2 ∈ c2. ∃a1 ∈ c1. a1 Rτ a2).

Definitions of logical relations for other monads in λPESN
Comp can be found in [4].

We restrict our attention to logical relations (Rτ)τ type such that, for any observa-
tion type o ∈ Obs, RTo is a partial equality. Such relations are called observational in
the rest of the paper.

Theorem 1 (Soundness of logical relations in λComp). If (Rτ)τ type is an observa-
tional logical relation, then Rτ ⊆ ≈τ for every type τ .

3.3 Toward a proof on completeness of logical relations for λComp

Completeness of logical relations for λComp is much subtler than in λ→ due to the
introduction of monadic types. We were expecting to find a general proof following the
general construction defined in [2]. However, this turns out extremely difficult although
it might not be impossible with certain restrictions, on types for example. The difficulty
arises mainly from the different semantics for different forms of computations, which
actually do not ensure that equivalent programs in one monad are necessarily equivalent
in another. Consider two programs in λComp : let x⇐ t1 in let y ⇐ t2 in val(x)
and let y ⇐ t2 in let x⇐ t1 in val(x), where both t1 and t2 are closed term. We
can conclude that they are equivalent in the non-determinism monad — they return the
same set of possible results of t1, no matter what results t2 produces, but this is not the
case in, e.g., the exception monad when t1 and t2 throw different exceptions.

Being with such an obstacle, we shall switch our effort to case studies in Sec-
tion 4 and we explore the completeness of logical relations for a list of common mon-
ads, precisely, all the monads in λPESN

Comp . But, let us sketch out here a general struc-
ture for proving completeness of logical relations in λComp . In particular, our study
is still restricted to first-order types, which, in λComp , are defined by the grammar:
τ1 ::= b | Tτ1 | b → τ1, where b ranges over the set of base types.

We aim at finding an observational logical relation (Rτ)τ type such that if `
t1 : τ and ` t2 : τ are derivable and t1 ≈τ t2, for any type τ up to first order, then
Jt1K Rτ Jt2K. Or briefly,∼τ ⊆ Rτ , where∼τ is the relation defined in Section 2. As in
the proof of Proposition 1, the logical relation (Rτ)τ type will be induced byRb = ∼b,
for any base type b. Then how to prove the completeness for an arbitrary monad T ?

Note that we should also check that the logical relation (Rτ)τ type, induced by
Rb = ∼b, is observational, i.e., a partial equality on To, for any observable type o.

Consider any pair (a, b) ∈ RTo = T̃ (Ro). By definition of the lifted monad T̃ , there
exists a computation c ∈ TRo such that a = Tπ1(c) and b = Tπ2(c). But Ro = ∼o ⊆
idJoK, hence the two projections π1, π2 : Ro → JoK are the same function, π1 = π2, and
consequently a = Tπ1(c) = Tπ2(c) = b. This proves that RTo is a partial equality.

As usual, the proof of completeness would go by induction over τ , to show ∼τ ⊆
Rτ for each first-order type τ . Cases τ = b and τ = b → τ ′ go identically as in λ→.
The only difficult case is τ = Tτ ′, i.e., (?) ∼τ ⊆ Rτ =⇒ ∼Tτ ⊆ RTτ . We did not
find any general way to show (?) for an arbitrary monad. Instead, in the next section we
prove it by cases, for all the monads in λPESN

Comp except the non-determinism monad. The
non-determinism monad is an exceptional case where we do not have completeness for
all first-order types but a subset of them. This will be studied separately in Section 4.3.

At the heart of the difficulty of showing (?) we find an issue of definability at
monadic types in the set-theoretical model. We write defτ for the subset of definable el-
ements in JτK, and we eventually show that the relation between defTτ and defτ can be
shortly spelled-out (??): defTτ ⊆ Tdefτ , for all the monads we consider in this paper.
This is a crucial argument for proving completeness of logical relations for monadic
types, but to show (??), we need different proofs for different monads. This is detailed
in Section 4.1.

4 Completeness of logical relations for monadic types

4.1 Definability in the set-theoretical model of λPESN
Comp

As we have seen in λ→, definability is involved largely in the proof of completeness of
logical relations (for first-order types). This is also the case in λComp and it apparently
needs more concern due to the introduction of monadic types.

Despite we did not find a general proof for (??) it does hold for all the concrete
monads in λPESN

Comp . To state it formally, let us first define a predicate Pτ on elements of
JτK, by induction on types: Pb = defb, for every base type b; PTτ = T (defτ ∩ Pτ);
Pτ→τ ′ = {f ∈ Pτ→τ ′ | ∀a ∈ defτ , f(a) ∈ Pτ ′}. We say that a constant c (of type
τ) is logical if and only if τ is a base type or JcK ∈ Pτ . We then require that λPESCN

Comp

contains only logical constants. Note that this restriction is valid because the predicates
PTτ and Pτ→τ ′ depend only on definability at type τ . Some typical logical constants
for monads in λPESN

Comp are as follows:

– Partial computation: a constant Ωτ of type Tτ , for every τ . Ωτ denotes the non-
termination, so JΩτ K = ⊥.

– Exception: a constant raisee
τ of type Tτ for every type τ and every exception

e ∈ E. raisee
τ does nothing but raises the exception e, so Jraisee

τ K = e.
– State transformer: a constant updates of type Tunit for every state s ∈ St , where

unit is the base type which contains only a dummy value ∗. updates simply changes
the current state to s, so for any s′ ∈ St , JupdatesK(s

′) = (∗, s).
– Non-determinism: a constant +τ of type τ → τ → Tτ for every non-monadic type

τ . +τ takes two arguments and returns randomly one of them — it introduces the
non-determinism, so for any a1, a2 ∈ JτK, J+τ K(a1, a2) = {a1, a2}.

We assume in the rest of this paper that the above constants are present in λPESN
Comp . It is

clear that each of these constants is related to itself.
Note that Pτ being a predicate on elements of JτK is equivalent to say that Pτ can

be seen as subset of JτK, but in the case of monadic types, PTτ (i.e., T (defτ ∩ Pτ)) is
not necessary a subset of JTτK (i.e., T JτK). Fortunately, we prove that all the monads in
λPESN
Comp preserves inclusions, which ensures that the predicate P is well-defined:

Proposition 2. All the monads in λPESN
Comp preserve inclusions: A ⊆ B ⇒ TA ⊆ TB.

Introducing such a constraint on constants is mainly for proving (??). In fact, we
can prove that the denotation of every closed βc-normal-η-long computation term t (of
type Tτ), in λPESN

Comp with logical constants, is an element of Tdefτ , i.e., JtK ⊆ Tdefτ

(see [4] for details).

Proposition 3. defTτ ⊆ Tdefτ holds in the set-theoretical model of λPESN
Comp with logi-

cal constants.

4.2 Completeness of logical relations in λPES
Comp for first-order types

We prove (?) in this section for the partial computation monad, the exception monad,
the state monad and the continuation monad. We write λPES

Comp for λComp where the
monad is restricted to one of these four monads.

Proofs depend typically on the particular semantics of every form of computation,
but a common technique is used frequently: given two definable but non-related ele-
ments of JTτK, one can find a context to distinguish the programs (of type Tτ) that
define the two given elements, and such a context is usually built based on another
context that can distinguish programs of type τ .

Theorem 2. In λPES
Comp , if all constants are logical and in particular, if the constant

updates is present for the state transformer monad, then logical relations are complete
up to first-order types, in the strong sense that there exists an observational logical
relation (Rτ)τ type such that for any closed terms t1, t2 of any type τ1 up to first order,
if t1 ≈τ1 t2, then Jt1K Rτ1 Jt2K.

4.3 Completeness of logical relations for the non-determinism monad

The non-determinism monad is an interesting case: the completeness of logical relations
for this monad does not hold for all first-order types! To state it, consider the following
two programs of a first-order type that break the completeness of logical relations:

` val(λx.(true +bool false)) : T(bool → Tbool),
` λx.val(true) +bool→Tbool λx.(true +bool false) : T(bool → Tbool).

Recall the logical constant +τ of type τ → τ → Tτ : J+τ K(a1, a2) = {a1, a2} for
every a1, a2 ∈ JτK. The two programs are contextually equivalent: what contexts can
do is to apply the functions to some arguments and observe the results. But no matter
how many time we apply these two functions, we always get the same set of possi-
ble values ({true, false}), so there is no way to distinguish them with a context.

Recall the logical relation for non-determinism monad in Section 3.2. Clearly the deno-
tations of the above two programs are not related by that relation because the function
Jλx.val(true)K from the second program is not related to the function in the first.

However, if we assume that for every non-observable base type b, there is an equality
test constant testb : b → b → bool (clearly, P(testb) holds), logical relations for the
non-determinism monad are then complete for a set of weak first-order types: τ1

w ::=
b | Tb | b → τ1

w. Compared to all types up to first order, weak first-order types do not
contain monadic types of functions, so it immediately excludes the two programs in the
above counterexample.

Theorem 3. Logical relations for the non-determinism monad are complete up to weak
first-order types. in the strong sense that there exists an observational logical relation
(Rτ)τ type such that for any closed terms t1, t2 of a weak first-order type τ1

w, if t1 ≈τ1
w

t2, then Jt1K Rτ1
w

Jt2K.

References

1. P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from a logical
perspective. J. Functional Programming, 8(2):177–193, 1998.

2. J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. In
Proceedings of CSL’2002, volume 2471 of LNCS, pages 553–568. Springer, 2002.

3. J. Goubault-Larrecq, S. Lasota, D. Nowak, and Y. Zhang. Complete lax logical relations for
cryptographic lambda-calculi. In Proceedings of CSL’2004, volume 3210 of LNCS, pages
400–414. Springer, 2004.

4. S. Lasota, D. Nowak, and Y. Zhang. On completeness of logical relations for monadic types.
Research Report cs.LO/0612106, arXiv, 2006.

5. R. Lazić and D. Nowak. A unifying approach to data-independence. In Proceedings of
CONCUR’2000, volume 1877 of LNCS, pages 581–595. Springer, 2000.

6. J. C. Mitchell. Foundations of Programming Languages. MIT Press, 1996.
7. J. C. Mitchell and A. Scedrov. Notes on sconing and relators. In Proceedings of CSL’1992,

volume 702 of LNCS, pages 352–378. Springer, 1993.
8. E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,

1991.
9. P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658–709,

1995.
10. A. Pitts and I. Stark. Operational reasoning for functions with local state. In Higher Order

Operational Techniques in Semantics, pages 227–273. Cambridge University Press, 1998.
11. G. D. Plotkin. Lambda-definability in the full type hierarchy. In To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, pages 363–373. Academic Press,
1980.

12. K. Sieber. Full abstraction for the second order subset of an algol-like language. Theoretical
Computer Science, 168(1):155–212, 1996.

13. E. Sumii and B. C. Pierce. Logical relations for encryption. J. Computer Security, 11(4):521–
554, 2003.

14. Y. Zhang. Cryptographic logical relations. Ph. d. dissertation, ENS Cachan, France, 2005.

