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incRNA: Integration of High-throughput Data 

Zhi John Lu 

China Tsinghua University-Yale University, China 

urluzhi@gmail.com 

I will present an integrative, machine-learning method, incRNA, for whole-

genome identification of non-coding RNAs (ncRNAs) in C. elegans. It 

combines a large amount of expression data from the modENCODE 

consortium, RNA secondary-structure stability, and evolutionary 

conservation at the protein and nucleic-acid level. Using this model, we were 

able to separate known ncRNAs from coding sequences and other genomic 

elements with high accuracy (97% AUC on an independent validation set), 

and find more than 7,000 novel ncRNA candidates, among which more than 

1,000 are located in intergenic regions. We estimate based on the validation 

set that 91% of the ~7K predicted ncRNAs are true positives. We then 

analyzed fifteen of them by RT-PCR and detected the expression of fourteen. 

In addition, we characterized the novel ncRNA candidates and found that 

they have distinct expression patterns across developmental stages, tend to 

use novel RNA structural families, and are targeted by specific transcription 

factors (~59% of intergenic ncRNAs). Overall, our study identifies many new 

potential ncRNAs in C. elegans.  Furthermore, I also  applied incRNA to 

human using ENCODE data. I added the chromatin features in human ncRNA 

prediction. In addition to ncRNA finding, I will also introduce my other work 

in modENCODE project, such as analysis of transcription factor (TF) binding 

sites and integration of miRNA-TF network. 

Keywords: High-throughput data, noncoding RNA, RNA secondary structure 
prediction,  RNA-seq, ChIP-seq 
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SOME REMARKS ON THE LIMIT CYCLE OF MONOTONE FUNCTIONS

WITH SYMMETRIC CONNECTION GRAPH

YUAN LI1∗ AND JOHN O. ADEYEYE 2∗.

Abstract. In this short notes, we give a low bound to the maximum size of the limit cycle
of a monotone function constructed in [1] by providing an antichain. We conjecture that this
antichain has the maximum size. We provide a conjecture about any infinite walking along a
tree. Based on this conjecture, one can show that the length of the limit cycle of monotone
function with connection graph equal to a tree can not be a multiple of four. These combinatorial
conjectures may be of independent interests.

1. Introduction and notations

Finite dynamical systems, that is, discrete dynamical system with a finite state space, have
been used extensively in systems biology to model a variety of biochemical networks, such as
metabolic networks, gene regulatory networks and signal transduction networks. To determine
the limit cycles or fixed points for different networks is of great importance. Monotone functions
(positive functions) have been well studied for their complexity and application in circuits [4, 5, 6,
7]. In [3], Robert and Tchuente established some relationships between the circuits of connection-
graph and the circuits of the iteration-graph of a monotone discrete dynamical system. Julio
et al considered the discrete networks with multi state monotone functions in [1]. In this short
notes, we give an antichain. By using the results of the integer solutions of a linear equations,
we obtain its length. Hence, a lower bound of the maximum size of the limit cycle of a monotone
function constructed in [1] is obtained. We conjecture our antichains are the only antichains
with the maximum size. We also provide another conjecture about the walking in a tree. This
conjecture will be useful to determine the length of the limit cycle of a monotone system with
symmetric connection graph equal to a tree.

In the following, we will give some definition.
Let S = {(x1, x2, ..., xn)|0 ≤ xi ≤ m− 1, i = 1, 2, ...n}. Where m ≥ 2 and n are given positive

integers. Let F = (f1, f2, ..., fn) : S −→ S denote a function of n variables and m states. F is
Boolean if m = 2.

Let X = (x1, ..., xn) and Y = (y1, ..., yn) ∈ S, we define X ≤ Y iff xi ≤ yi for any i = 1, ...n.
We say F is monotone if F (X) ≤ F (Y ) given X ≤ Y .
Let A ⊂ S, we say A is an antichain of S if for any {X,Y } ⊂ A, we have neither X ≤ Y nor

Y ≤ X.
We call a sequence of vectors [X0, X1, ..., Xp−1, X0] a limit cycle of F of length p if Xj+1 =

F (Xj) for j = 0, ...p− 2 and X0 = F (Xp−1). It can be easily shown that {X0, X1, ..., Xp−1} is
an antichain (see [1]) given that F is monotone.

The Connection graph (dependency graph) of F , denoted by GC(F ) = (VC , EC), is a directed
graph where VC = {v1, ..., vn} is the set of nodes and arc (vi, vj) is in EC iff the function fj
depends on xi. In this notes, we assume EC is symmetric, i.e., (vi, vj) ∈ EC iff (vj , vi) ∈ EC .
Let Γ(Vi) = {vj |(vi, vj) ∈ Ec}.

0∗: Supported by an award from the USA DoD # W911NF-11-10166.
Key words and phrases. Monotone function, Discrete network, Graph, antichain, Systems biology.
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2 YUAN LI AND JOHN O. ADEYEYE.

2. Some Remarks

In Proposition 1 of [1], a monotone function was constructed with limit cycle of maximum
possible length which is equal to the size of an antichain. We have

Remark 2.1. Ak,n,m = {(x1, x2, ..., xn)|x1 + x2 + ... + xn = k} is an antichain of S. Where
0 ≤ xi ≤ m− 1, k = 0, ...., n(m− 1).

The proof of this remark is evident.
Regards to the size, we have

Lemma 2.2. [8] The number of integer solutions of the linear equation x1 + x2 + ... + xn = k,
with the restrictions si ≤ xi ≤ mi, i = 1, 2, ..., n, with s ≤ k ≤ m, s = s1 + s2 + ... + sn,
m = m1 + m2 + ... + mn, and for ui = mi − si ≥ 0,i = 1, 2, ..., n, is given by

Nn,k(u1, u2, ..., un) =

(
n + k − s− 1

n− 1

)
+

n∑
r=1

(−1)r
∑(

n + k − s− ui1 − ui2 − ...− uir − r − 1

n− 1

)
,

where in the inner sum, the summation is extended over all r-combinations {i1, i2, ..., ir} of the
n indices {1, 2, ..., n}.

Let si = 0 and mi = m− 1 for all i in the above sum, then ui = m− 1. Let [n] = {1, 2, ..., n}.
The sum can be simplified as(

n + k − 1

n− 1

)
+

n∑
r=1

(−1)r
∑

{i1,...ir}⊂[n]

(
n + k − r(m− 1)− r − 1

n− 1

)
=

=

(
n + k − 1

n− 1

)
+

n∑
r=1

(−1)r
(
n

r

)(
n + k − 1− rm

n− 1

)
=

n∑
r=0

(−1)r
(
n

r

)(
n + k − 1− rm

n− 1

)
.

Hence, when 0 ≤ xi ≤ m− 1, we get the number of solutions of

x1 + x2 + ... + xn = k (2.1)

is |Ak,n,m| =
∑n

r=0(−1)r
(
n
r

)(
n+k−1−rm

n−1
)
.

We have

Lemma 2.3. |Ak,n,m| = |An(m−1)−k,n,m|.

Proof. Let yi = m−1−xi, i = 1, 2, ..., n, then y1 + y2 + ...+ yn = n(m−1)− (x1 +x2 + ...+xn).
Hence, y1 + y2 + ... + yn = n(m− 1)− k iff (x1 + x2 + ... + xn) = k. �

When m = 2, with a direct evaluation, we know the number of solutions of equation 2.1
should be

(
n
k

)
. Hence we obtain the following combinatorial identity(

n

k

)
=

n∑
r=0

(−1)r
(
n

r

)(
n + k − 1− 2r

n− 1

)
. (2.2)

It is well known that
(

n
k−1
)
≤
(
n
k

)
given k ≤ bn2 c. Hence, we have the following

Conjecture 2.4. |Ak−1,n,m| ≤ |Ak,n,m| given k ≤ bn(m−1)2 c

Because of the famous Sperner’s theorem [9], the greatest size of any antichain of S is
(

n
bn
2
c
)

when m = 2. We naturally have
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SOME REMARKS ON THE LIMIT CYCLE OF MONOTONE FUNCTIONS WITH SYMMETRIC CONNECTION GRAPH3

Conjecture 2.5. The greatest size of all the antichains of S is |Abn(m−1)
2
c,n,m|. An(m−1)

2
,n,m

is

the only antichain attain this cardinality when n(m − 1) is even. When n(m − 1) is odd, only
An(m−1)−1

2
,n,m

and An(m−1)+1
2

,n,m
attain this cardinality.

Numerical results of small values of n and m shows these two conjectures are true.
Hence, we guess the limit cycle of monotone function F over S has the greatest size∑n

r=0(−1)r
(
n
r

)(n+bn(m−1)
2
c−1−rm

n−1
)
.

In [1], the authors proposed the following

Conjecture 2.6. [1] The maximum length of the limit cycles of a monotone function with more
than two states and symmetric connection graph equal to arbitrary tree is at most two.

We guess the following extension of Property 2 in [1] is also true, we have

Conjecture 2.7. Let G = (V,E) be a tree and let V∞ = (vik)k∈N a sequence of nodes of V such
that vik ∈ Γ(vik−1

) for every k ∈ N . Then for any positive even integer 2a, there exist r ∈ N
such that vir = vir+2a.

Julio et al [1] have proved the above conjecture is true for a = 1, 2.
Based on Conjecture 2.7, one can use the same way in [1], to prove that the length of the

limit cycle of monotone functions in conjecture 2.6 can not be multiple of four.
In Conjecture 2.7, without lost the generality, we can assume that every node of v will be

visited infinite times. Otherwise, we delete those nodes which was visited only finite times and
consider V∞ = (vik)k∈N when k is great enough.

Conjecture 2.7 is obviously true when the tree is a simple star. But it seems not easy to prove
this conjecture even if the tree is a chain.

3. Conclusion

We gave some remarks about the limit cycles of monotone functions discussed in [1]. We
proposed some conjectures which may be of independent combinatorial interests.

Acknowledgment:
The authors are supported by an award from the USA DoD # W911NF-11-10166.
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Abstract
Traditionally, drugs were discovered by
testing compounds manufactured in time
consuming multi-step processes against a
battery of in vivo biological screens.
Promising compounds were then further
studied in development, where their
pharmacokinetic properties, metabolism and
potential toxicity were investigated. Here we
present a study on herbal lead compounds and
their potential binding affinity to the effectors
molecules of major disease like Alzheimer’s
disease. Clinical studies demonstrate a
positive correlation between the extent of
Acetyl cholinesterase enzyme and
Alzheimer’s disease. Therefore, identification
of effective, well-tolerated acetyl
cholinesterase represents a rational chemo
preventive strategy. This study has
investigated the effects of naturally occurring
nonprotein compounds polygala and
bulbocapnine that inhibits acetylcholinesterase
enzyme. The results reveal that these
compounds use less energy to bind to
acetylcholinesterase enzyme and inhibit its
activity. Their high ligand binding affinity to
acetylcholinesterase enzyme introduce the
prospect for their use in chemopreventive
applications in addition they are freely
available natural compounds that can be safely
used to prevent Alzheimer’s Disease.

Keywords: Alzheimer’s disease, acetyl
cholinesterase, Docking, ADME, Acetyl
cholinesterase inhibitor.

Introduction
Alzheimer's disease, most common form of
dementia is incurable, degenerative, and
terminal disease mostly diagnosed in people
over 65 years of age. The disease advances
with symptoms include confusion, irritability
and aggression, mood swings, language
breakdown, long-term memory loss, and the
general withdrawal of the sufferer as their
senses decline. Gradually, bodily functions are

lost, ultimately leading to death.

Acetylcholinesterase is also known as AChE.
It degrades the neurotransmitter acetylcholine,
producing choline and acetate group.
Acetylcholinesterase is mainly found
at neuromuscular junctions and cholinergic
synapses in the central nervous system, where
its activity serves to terminate synaptic
transmission.

An acetyl cholinesterase inhibitor (often
abbreviated AChEI) or anti-cholinesterase is a
chemical that inhibits the cholinesterase
enzyme from breaking down acetylcholine,
increasing both the level and duration of
action of the neurotransmitter acetylcholine.

Methodology

Natural compounds displaying anti alzhemiers
activity was collected from various research
articles. The investigation drug Penicillamine
was used as a reference drug  in the
studies.These small molecules were screened
on the basis of the  Lipinski’s Rule of 5.The
screened compounds were put into enzyme –
ligand interactions by docking with Quantum
3.3.0.The Target enzyme Acetylcholinesterase
whose PDBID is 2W9I was taken for further
analysis .The least energy conformers was
obtained from MarvinSketch .Then docking is
done between the protein Acetylcholinesterse
and screened compounds which act as
Acetylcholinesterase inhibitors with
QUANTUM 3.3.0. The best three results
obtained were analysed under HEX. Their
IC50 value was also analysed using
QUANTUM 3.3.0. Then graphs were plotted
by analysing the values.
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Fig.1:Table showing Natural compounds and
Quantum results

S.no Name of compound Gbind Rms
1. Dichlorfop -17.66 69.85
2. Naringenin -20.45 72.55
3. Caffeine -13.02 80.61
4. Cla -20.00 66.34
5. Toluidine red -12.08 69.48
6. Polygala -22.82 73.28
7. Jatrorrhizine -25.95 96.90
8. Sterigmatocystin -22.54 73.39
9. Testosterone -20.03 74.21
10. Vitamin b6 -21.39 72.23

Fig.2: Table showing Drugs and Quantum
results

S.no Name of
drug

Gbind Rms

1. Cinacalcet -15.58 95.83

2. Penicillamine -16.18 90.59

3. Selegeline -21.29 90.18

4. Amantadine -23.79 94.72

Result and Analysis

There are certain natural and synthetic AchE
inhibitors which will prevent the cause of AD
by blocking the Biochemical pathway .Some
number of natural compounds which are
Inhibiting Ache were taken. Docking of these
molecules was performed under QUANTUM
3.3.0.

It was found that the natural compound
Polygala, Sterigmatocystin and Jatrorrhizine
were showing reliable pharmacokinetics and
pharmacodynamics features than the

commercial drugs. Hence they were taken out
for work.
After analysing the graphs, it was found that
Jatrorrhizzine was the best
Acetylcholinesterase Inhibitor.
This molecule is considered as better ligands
for Acetylcholinesterase based on ligand-
receptor interaction,

Jatrorrhizine is a protoberberine alkaloid
isolated from Enantia chlorantha
(Annonaceae) and other species. Synonyms
that may be encountered include jateorrhizine,
neprotin, jatrochizine, jatrorhizine, or
yatrorizine. It has been reported to have anti
inflammatory effect[35] , and to improve
blood flow and mitotic activity in
thioacetamide-traumatized rat livers. It was
found to have antimicrobial and antifungal
activity. It binds and noncompetitively inhibits
monoamine oxidase (IC50 4 micromolar for
MAO-A and 62 for MAO-B).It interferes with
multidrug resistance by cancer cells in vitro
when exposed to a chemotherapeutic agent.
Large doses (50-100 mg/kg) reduced blood
sugar levels in mice by increasing aerobic
glycolysis.

Fig.3: Graph showing QUANTUM Results
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Fig.4: Graph showing Hex results

Significance and Conclusion

Alzheimer's disease (AD) is an irreversible,
progressive disorder in which brain cells
(neurons) deteriorate, resulting in the loss of
cognitive functions, primarily memory,
judgment and reasoning, movement
coordination, and pattern recognition.

There are certain natural and synthetic
AchE inhibitors which will prevent the cause
of AD by blocking the Biochemical pathway
.Some number of natural compounds which
are Inhibiting Ache were taken.Docking of
these molecules was performed under
QUANTUM 3.3.0.

It was found that the natural compound
Polygala, Sterigmatocystin and Jatrorrhizine
were showing reliable pharmacokinetics and
pharmacodynamics features than the
commercial drugs. Hence they were taken out
for work.

.After analysing the graphs,it was found that
Jatrorrhizzine was the best
Acetylcholinesterase Inhibitor.
This molecule is considered as better ligands
for Acetylcholinesterase based on ligand-
receptor interaction,

Further invivo and invitro studies needs to be
done on these compound to concrete evidence
against its inhibitory role for Acetylcholine
esterase enzyme.Further pharmacological
studies needs to be done on the mode of
administration as the drug needs to cross
blood brain barrier to display its efficacy.
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Transcription factor CodY is a global regulator of nutrient limitation and amino 

acid metabolism in Firmicutes studied mostly in B. subtilis. Starting with a set of 42 

experimentally verified binding sites in B. subtilis ([1] and B. Belitsky, personal 

communication), CodY regulon was analysed in Bacillaceae using comparative 

genomics methods. We show that CodY regulon in Bacillaceae consists of at least 

135 clusters of orthologous operons having conserved binding sites. 
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Abstract. Phylogenetic tree is a commonly used model to denote the 
evolutionary process for a set of species. However, some biology events, say 
hybridization event, would lead to some genes deriving from different ancestors. 
In other words, the evolution history same set of species may have different 
phylogenetic tree to represent. This introduces the problem of measuring 
difference between two phylogenetic trees. One of metric describing such 
difference is rooted subtree prune and regraft distance (rSPR distance). In this 
work, we present an algorithm to get a close upper bound for rSPR distance.  

Keywords: Phylogenetic tree, rooted subtree prune and regraft distance, a close 
upper bound 

1   Introduction 

Although rSPR distance is a good metric to measure difference of two rooted binary 
phylogenetic trees, it is not easily to obtain because it is a NP-hard problem. 

Previous study has given some algorithms to obtain exact rSPR distance. Paper [1, 
3, 5] use Fixed-parameter algorithm to convert the optimal problem to decision 
problem to deal with rSPR problem. Paper [4] encodes this problem into the Integer 
Linear problem. Although these algorithms can get exact rSPR distance, these 
algorithms can not handle large-size phylogenetic tree data. We try all these 
algorithms on two phylogenetic trees which have one hundred and twelve leaves and 
none of them can give an exact distance in a reasonable time. Fortunately for us, some 
efficient approximation algorithms are proposed to provide a lower bound of rSPR 
distance. Paper [1, 2, 3] provide a 3-approximations of rSPR distance but with 
different time complexity. This give us an inspiration that if the close upper bound of 
rSPR distance can be calculated efficiently, branch and bound algorithm may be 
designed to obtain the exact rSPR distance quickly even for large-size data. So in this 
study, we propose an efficient greed algorithm to obtain a close upper bound for rSPR 
distance.  
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2   Method 

2.1   BACKGROUND  

A binary phylogenetic tree is such a tree that its leaves compose of a set X and degree 
of its internal node is three except root. The binary phylogenetic tree is also called a 
binary phylogenetic X-tree, if such a tree has n leaves set X which is {1, 2, 3…n} and 
each elements in X represents a leave in the tree. Assuming V is subset of X, T(V) 
denotes the smallest subtree of T that connects all nodes in V. T|V represents a tree 
from T(V) by forced contractions. Forced contraction will replace a two degree node 
A and its two connecting edges (B, A) and (A, C) with a single edge (B, C).  

As described above, rooted Subtree prune and regraft (rSPR) distance is a metric to 
measure two rooted binary phylogenetic X-trees. Given an X-tree T, Subtree prune 
and regraft operation cuts an edge (a, b) in T and separates T into two parts: subtrees 
Ta containing node a and Tb containing node b. Next, it divides an edge of Tb using a 
new vertex b’ and construct an edge connecting node a and node b’ so that two 
subtrees Ta and Tb is in same component again. The remaining node b is eliminated 
by forced contraction. See figure 1. 

                       
Figure 1 the subtree prune and regraft operation 

Maximum agreement forest (MAF) is often used to obtain rSPR distance. Through 
agreement forest, the problem of a series of SPR operation transformed into the 
problem of the set of edges cutting to obtain MAF of two evolutionary trees. For two 
phylogenetic trees Ta, Tb, if we add a virtual root  to each of the tree, then rSPR 
distance equals to the number of trees in MAF minus one [4]. Definition of maximum 
agreement is given below: 

For two rooted phylogenetic X-trees Ta and Tb, collection T1, T2, T3… Tk are a 
series of rooted trees with their leaf sets L1, L2, L3…Lk. We call collection T1, T2 …Tk 
is a agreement forest of Ta and Tb, if  
(i)  The leaf sets L1, L2, L3 … Lk partition X{}, in other words, Li∩Lj= and Li 
=X{}.  
(ii)  For all i equals 1, 2 .... k, Ta|Li =Tb|Li. 
(iii) The trees in each of sets {Ta(Li)|i=,1,2 … k} and {Tb(Li)|i=,1,2 … k} are 
vertex-disjoint rooted trees.  

An MAF is an agreement forest such that k is the minimum, i.e. no other 
agreement of Ta and Tb could be found whose number of trees is less than this k.  

ISBRA 2011  Short Abstracts 

 
12



2.2   PROPOSED ALGORITHM 

Assuming in certain time, collection {T1, T2 …. Tm } is agreement forest (AF) of two 
trees Ta and Tb, we choose two components of this collection, say Ti, Tj, and merge 
them together if after merging, new collection is still AF of Ta and Tb. Repeating this 
process, until there is no two components that can be merged to form a less number 
AF. This is the basic idea of algorithm. There are two key technical for this algorithm. 
Firstly, some rules must be constructed so that it can be efficiently judge whether the 
merging of two components lead to an AF of Ta and Tb. Secondly, how can we 
choose two components in the collection so that when the algorithm stops, the number 
of final AF can be as small as possible? 

For the first one, let’s assume that the collection is L1, L2 … Lx and we select two 
components Li, Lj to see if they can be merged. We first judge whether Ta|LiLj 
equals Tb|LiLj. If this is not true, they can not merge. If this is true, according to 
definition of MAF, we need to check whether Ta (LiLj) and Tb (LiLj) have vertex 
that joins with Ta(Lk) and Tb(Lk) and k does not equal i and j. If such vertex does not 
exist, then these two components can be merged. According to definition, this 
guarantees new collection is AF of Ta and Tb. 

When there is more than one pair of components to choose for merge, which pair 
should be selected? Here a greed strategy is used. Firstly, we get the score for each 
pair. Secondly, the pair that has minimum score is merged. The score is calculated in 
this way: 

For two components Li and Lj, trees Ta(LiLj) and Tb(LiLj) is obtained. For every 
node in Ta(LiLj), we get every children of that node in Ta such that these children do 
not exist in Ta(LiLj). Let’s denote e(Ta(LiLj)) the set that contains all such 
branches in Ta, so does e(Tb(LiLj)). Moreover, x e(Ta(LiLj))  e(Tb(LiLj)),  
we denote s(x) be the number of different components belonging to the collection 
under edge x in tree Ta or Tb. Then score of pair Li and Lj is the sum of all s(x) for 
every x in e(Ta(LiLj))  e(Tb(LiLj)).  

3   EXPERIMENT 

Here we use two different data sets to evaluate greed algorithm. The first data is 
simulated data which has large number of leaves and second data set is coming from 
real data set of EEEB [6]. Experiment results are shown in table 1 and table 2. From 
table 1, it can be seen that all the result of Greed algorithm equals to the exact rSPR 
distance. For table 2, we can see although five greed solutions are different from the 
exact rSPR distance, the difference between greed solution and rSPR distance is small 
(not more than 2).  

From the experiment result, it can be concluded that this greed algorithm gives a 
close upper bound of rSPR distance. For the future work, the performance is still 
needed to be improved and furthermore, we would design an efficient branch and 
bound algorithm based on the greed algorithm in this paper to handle large 
phylogenetic tree. 
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Table 1 experiment result of simulate data 

 rSPR distance Greed solution 
G1_100_10 10 10 
G2_100_10 10 10 
G3_100_10 9 9 
G4_100_10 9 9 
G5_100_10 10 10 
G6_100_10 9 9 
G7_100_10 10 10 
G8_100_10 10 10 
G9_100_10 10 10 
G10_100_10 10 10 

Table 2 experiment result of EEEB data 

 rSPR distance Greed solution 
Ndhf phyB 12 12 
ndhF rbcL 10 10 
ndhF rpoC2 11 11 
ndhF waxy 7 9 
ndhF ITS 19 20 
phyB rbcL 4 4 
phyB rpoC2 6 6 
phyB waxy 3 3 
phyB ITS 8 9 
rbcL rpoC2 11 12 
rbcL waxy 6 6 
rbcL ITS 13 13 
rpoC2 waxy 1 1 
rpoC2 ITS 14 15 
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Abstract. Existing information criteria for model selection emphasize accuracy and 

prediction value, but neglect ‘well-posed’-ness and economy in terms of the number 

of model parameters.  Because systems biology models generally involve a large 

number of parameters that often must be estimated, ‘well-posed’-ness and economy 

are important factors for model selection.  To address this problem, we propose two 

scoring methods to quantify these factors, and compare them analytically to existing 

well-known criteria.  Results indicate that the proposed criteria are useful to illustrate 

potential costs of parameter estimation, i.e., inherent model uncertainty, in terms of 

the proportion of free parameters with respect to the total number of parameters.  This 

is an initial step to develop an information criterion for model selection that is 

targeted for the systems biology community, so as to complement efforts to 

standardize model annotation and facilitate model sharing. 

Keywords: model selection, systems biology, meta-data 

1   Introduction 

Model selection is difficult because different models may describe the same system, 

sometimes without definitive difference in terms of model results, e.g., accuracy and 

prediction value.  From literature, some recurring themes for developing information 

criteria for model selection may be identified.  These include (a) accuracy, (b) 

prediction value, (c) ‘well-posed’-ness, and (d) economy of parameters [1, 2].  Some 

criteria, in terms of accuracy and prediction, are relatively well-defined, e.g., using 

statistical tests [3], and experimental validation [4], while others, in terms of ‘well-

posed’-ness and economy, are more ambiguous.  In particular, systems biology 

models generally involve a large number of parameters that need to be estimated, 

increasing model uncertainty in the process, so ‘well-posed’-ness and economy are 

important for model selection.  Furthermore, and especially for the systems biology 

community, the lack of clear information criteria for model selection may hinder 

efforts to standardize model annotation, e.g., using MIRIAM [5], and to facilitate 

model sharing, e.g., using SBML [6].   

 

Here, we propose alternative scoring methods to quantify models in terms of ‘well-

posed’-ness and economy, and compare these analytically to existing information 
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criteria that focus on model accuracy.  This effort is a continuation of previous work 

[7, 8], which did not include an analytical treatment. 

2   Methods 

We propose two potential criteria to quantify ‘well-posed’-ness, i.e., in terms of the 

number of free parameters (k) and economy of parameters, i.e., in terms of the total 

number of parameters (r).  These methods are then compared analytically to existing 

information criteria that focus on accuracy, i.e., Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC). 

2.1   Proposed criteria for ‘well-posed’-ness and economy  

Both the p-score and s-score are designed to emphasize the disparity between the total 

number of parameters (r) and the number of free parameters (k).  These criteria aim to 

illustrate the amount of uncertainty involved in parameter estimation during model 

development.  Less uncertainty is preferred.  

 

The p-score is defined as: 
 

r
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p
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=  

 

where k is the number of free parameters, and r is the total number of parameters.  A 

model with lower p-score indicates that the proportion of free parameters with respect 

to the total number of parameters, effectively degrees-of-freedom, is smaller than that 

of a model with higher p-score.  

 

The s-score is defined as: 
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where k is the number of free parameters, and r is the total number of parameters.  A 

model with higher s-score indicates that the proportion of free parameters with respect 

to the total number of parameters is smaller than that of a model with lower s-score.   

2.2   Akaike and Bayesian Information Criteria  

Both the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) are measures of the goodness-of-fit, i.e., accuracy, of a statistical model.  

Models with minimum AIC and BIC values are preferred.  
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The AIC is defined as: 
 

)ln(22 LkAIC −=  

 

where k is the number of free parameters, and L is the maximized value of the 

likelihood function for the estimated model.   

 

The BIC is defined as: 
 

)ln(2)ln( LnkBIC −=  

 

where k is the number of free parameters, n is the number of observations, and L is the 

maximized value of the likelihood function for the estimated model.   

3   Results and Discussion 

 
 

Fig 1: Akaike (dashed line) and Bayesian (solid lines) information criteria, as a function of the 

number of free parameters (k) with fixed maximized value of likelihood function (L=1).  

 

For a given k, differences in BIC reflect changes in the number of observations (n) 

(Fig. 1), but the fraction of parameters which are unknown is not considered in either.  

On the other hand, differences in p- and s-score reflect changes in the total number of 

parameters (r) (Fig. 2).  Thus, the potential cost of parameter estimation is apparent 

when for the same number of free parameters, a model with more total parameters is 

selected over another with fewer total parameters.  In addition, the s-score, when 

plotted over higher numbers of free parameters (not shown), provides an opportunity 

to consider how potential users, who with preference for particular models, may use it 

to choose from publicly available models, e.g., on the BioModels database [9].  
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Fig 2: The p-score (left), and s-score (right), as a function of the number of free parameters (k) 

with varying total number of parameters (r = {10, 20, 50, 100}).  

 

These scoring methods are only an initial step to developing information criteria for 

model selection, in particular systems biology models, in terms of ‘well-posed’-ness 

and economy.  The proposed criteria illustrate potential costs of parameter estimation 

when the proportion of free parameters increases with respect to the total number of 

parameters.  These scoring methods are currently being tested using public models.   
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Abstract—Eukaryotic secretory proteins that traverse classical 
ER-Golgi pathway are usually characterized by short N-
terminal signal peptides. However, several secretory proteins 
lacking the signal peptides are found to be exported by a non-
classical secretion pathway. Therefore, predicting non-
classical secretory proteins regardless of the N-terminal signal 
peptides is necessary for developing a critical computational 
approach. Several prediction methods have been proposed by 
using various types of features to predict secretory proteins. 
However, prediction performance seems not acceptable. This 
study proposes an SVM-based prediction method, namely 
ProSec-iGOX, which uses a major set of informative Gene 
Ontology (GO) terms and a minor set of assistance features. 
Physicochemical properties as the assistance features are 
useful when a query protein sequence without homologous 
protein with annotated GO terms. Two data sets, S25and S40, 
having the identity 25% and 40%, respectively, are adopted 
for performance comparisons. The ProSec-iGOX yields test 
accuracies of 95.1% and 96.8% when adopting on the data sets 
S25 and S40 respectively. The latter accuracy (96.8%) is 
significantly higher than that of SPRED (82.2%), which uses 
frequency of tri-peptides and short peptides, secondary 
structure, physicochemical properties as input features to a 
random forest classifier. The experimental results show that 
GO terms are effective features for predicting non-classical 
secretory proteins. 

Keywords-Gene Ontology; secretory; physicochemical 
properties; non-classical secretion; signal peptides 

I.  INTRODUCTION  

Eukaryotic protein secretion normally routes through the 
endoplasmatic reticulum (ER) and Golgi, ending up in a 
secretory vesicle fusing to the cell membrane (Fig. 1) [1]. 
This pathway that traverses the endoplasmic reticulum (ER) 
and Golgi apparatus is classical secretory pathway [2]. The 
secretory proteins are usually characterized by short N-
terminal signal peptides with intrinsic signals for their 
transport and localization in the cell [3]. However, several 
secretory proteins lacking a signal peptide such as fibroblast 
growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-
1 beta) galectins, thioredoxin, viral proteins and parasitic 
surface proteins have been found to be exported by a non-
classical secretion pathway (Fig. 1) [1, 4]. Additionally, the 
molecular mechanisms of non-classical secretion in 
eukaryotes are still unknown even though the phenomenon 
of non-classical secretion was discovered more than a 
decade ago [5]. Therefore, an automated approach regardless 
of the N-terminal signal peptides is necessary to predict non-
classical secretory proteins. 

Several methods without using N-terminal signal 
peptides have been proposed for the identification of 
secretory proteins via the classical [6] and non-classical 
secretory pathways [2, 5]. For example, SecretomeP uses the 
number of atoms, positively charged residues, propeptide 
cleavage sites, protein sorting, low complexity regions, and 
transmembrane helices as an input for a neural network [2]. 
The SRTPRED utilizes amino acid composition (AAC), 
their order and similarity search to predicts secretory 
proteins irrespectively of N-terminal signal peptides [7]. The 
SPRED uses frequency of tri-peptides and short peptides, 
secondary structure, physicochemical properties with a 
random forest classifier [5]. These prediction methods use 
many types of sequence-based features but it is difficult to 
assess which feature type is the most informative except 
IBCGA-SVM [8] extracting a small set of physicochemical 
properties with SVM classifier. However, physicochemical 
properties seem not to be discriminative features for 
sequence-based prediction projects [9, 10].  

Figure 1 Potential export routes of non-classical protein secretion 
Contrarily, Gene-Ontology (GO) based methods perform 

well, compared with some sequence-based and structure-
based methods to predict subcellular localization [9-11], 
where GO is a controlled vocabulary of terms split into three 
related ontology consisting of molecular function, biological 
processes and cellular components [12]. The growth of GO 
databases in size has increased accuracies of GO-based 
prediction methods [13, 14]. Additionally, few sequences 
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without homologous protein can be annotated by GO so that 
assistance features (e.g. physicochemical properties) are 
useful. Therefore, this study utilizing GO terms and 
physicochemical property composition (PCC) features 
proposes an SVM-based prediction method ProSec-GOX for 
discriminating classical and non-classical secretions of 
eukaryotic proteins. Compared with SPRED[5], ProSec-
GOX without further using feature selection have high 
performance in predicting non-classical secretory proteins. 

II. MATERIALS 

A. Data sets 

A data set S40 with 40% sequence identity obtained 
from another work [5] has 780 non-classical (positive data 
set) and 1980 classical (negative data set) secretory protein 
sequences. The protein sequences are taken from the 
SWISS-PROT [15] protein sequence database according to 
the annotation information in the CC (comment or notes) 
and ID (identification) fields. The proteins in the data set 
were screened strictly using the following criteria: 1) only 
the sequences annotated with “mammalian” in the ID field 
are collected; 2) sequences with uncertain annotation labels 
such as ‘probable’, ‘potential’ and ‘by similarity’ are 
removed; 3) sequences annotated with keywords 
“extracellular” are collected as a positive data set; 4) signal 
peptides are removed from the positive data set; and 5) 
sequences annotated in cytoplasm and/or nucleus subcellular 
locations are taken as a negative data set; and 6) sequences 
with 40% identity were operated by a culling program [16].  

Additionally, we established another data set S25 of 372 
non-classical and 1011 classical secretory proteins with 25% 
sequence identity using a culling program [16] to evaluate 
the proposed method. All of the proteins in the data set S25 
are divided randomly into two separated sets with sizes in 
the ratio 1:1, for training and independent testing, 
respectively. However, for comparison, the numbers of 
sequences for training and independent testing in the data set 
S40 are the same as those of SPRED [5]. Table I presents 
the numbers of proteins within non-classical and classical 
classes in the data sets S25 and S40. 

TABLE I.  NUMBERS OF PROTEINS IN THE DATA SETS S40 AND S25 

B. Gene Ontology annotation 

The newest version of the GO database [17] (released on 
Jan. 14, 2011) contains 58,932 terms in the three branches of 
biological process, molecular function and cellular 
component. This study utilized the GOA database including 
GO annotations for non-redundant proteins from many 
species in the GOA/UniProt database [18]. The GOA 
database was downloaded directly from GOA [19] (released 
on August 24, 2010) [19]. 

Protein accession numbers are necessary when querying 
the GOA database to obtain their annotated GO terms. For 
novel proteins, BLAST [20, 21] was used to obtain 
homologies with known accession numbers from the query 
protein to retrieve GO terms. The parameter e-value e and 
the number h of homologies in BLAST are critical to the 
quality of the homologies and the retrieval of GO terms. We 
tested the following e{100, 10-1, 10-2, ..., 10-10} and found 
that e=10-9 is a good trade-off value [22]. Even with this 
threshold value, BLAST with the different values of the 
parameter h could retrieve different numbers of hits. 
Sequentially, the best value of h was determined from h{1, 
2, ..., 5} and e=10-9 using a step-wise method with the k-
nearest-neighbor (k-NN) classifier, where k=1 [23]. Figure 2 
shows the best accuracies obtained by using (h, e) = (1, 10-9) 
for the data sets S40 and S25 
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Figure 2 Results obtained by using various numbers of homologies 

III. METHODS 

The prediction method ProSec-GOX consists of two 
parts, model training and prediction of query sequences. The 
model training comprises two classifiers, SVM-iGO and 
SVM-PCC, due to that ProSec-GOX uses a major set of GO 
terms and a minor set of assistance features to predict non-
classical secretory proteins, where PCC features as the 
assistance features for query sequences without 
corresponding to GO terms. 

A. Model training 

TABLE II.  TEN TOP-RANK FREQUENCY DESCRIPTORS OF GO TERMS 

Rank S25L No. of Rank S40L No. of 
 Go term sequences  Go term sequences
1 GO:0005576 164 1 GO:0005576 568 
2 GO:0005615 73 2 GO:0005634 421 
3 GO:0005515 34 3 GO:0005515 415 
4 GO:0005125 26 4 GO:0005737 363 
5 GO:0005179 24 5 GO:0005615 258 
6 GO:0006810 24 6 GO:0045449 181 
7 GO:0006955 22 7 GO:0003677 176 
8 GO:0042742 20 8 GO:0006350 173 
9 GO:0006952 19 9 GO:0046872 155 

10 GO:0016787 18 10 GO:0016787 142 

Let n be the total number of GO terms that have ever 
appeared for all training proteins. From the n GO terms, 
determine the 500 top-rank frequency descriptors of GO 
terms. The occurrence frequency fk is the number of the 
sequences annotated by the kth GO term where k = 1, 2, …, n. 

Class S40L S40T S25L S25T 

classical 600 180 186 186 

Non-classical 600 1380 506 505 

Total 1200 1560 692 691 
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Table II shows the 10 top-rank frequency descriptors of GO 
terms; for example, GO:0005576 (Extracellular region) 
annotated by 164 and 568 sequences in the data set S25L 
and S40L, respectively. 

With regard to the PCC features, they are as the 
assistance features for query sequences without 
corresponding to GO terms. Protein sequence is represented 
as a 531-dimensional feature vector. The 531 features are 
derived from the 531 physicochemical properties of 
AAindex [24] by averaging over the protein sequence.  

Consequently, the 500 top-rank GO terms and 531 PCC 
features are in conjunction with a series of binary classifiers 
of LIBSVM to design two SVM-based classifiers, SVM-
iGO and SVM-PCC, respectively. A radial basis kernel 
function exp ( ||xi  xj||2) is adopted, where xi and xj are 
training samples, and  is a kernel parameter. There are two 
parameters  and a cost parameter C to be tuned in using the 
SVM. In this study, the best values of parameters C and 
determined using a step-wise approach were employed to 
the two SVM-based methods, SVM-GO and SVM-PCC, 
where  {27, 26, …, 28} and C{27, 26, …, 28}. 

The leave-one-out cross-validation (LOOCV) is 
considered to be the most rigorous and objective test that can 
always yield a unique result for a given data set [23]. 
Although bias-free, this test is very computationally 
demanding and is often impractical for large data sets. The 
N-fold cross-validation not only provides a bias-free 
estimation of the accuracy at a much reduced computational 
cost, but is also considered as an acceptable test for 
evaluating prediction performance of an algorithm [25]. 
Additionally, for comparison to SPRED, SVM-iGO and 
SVM-PCC use the prediction accuracy of 5-fold cross-
validation (5-CV) as the fitness function on the whole 
training sets of proteins under consideration of computation 
cost. 

B. Prediction method ProSec-GOX 
Protein P 

in the training data set 

BLAST/GOA 

1  2  3 …         m 

1  0  …           1   

Protein represented using
 PCC features  

1  2  3 …      m 


GO terms 

1 1  …        1  1  0  0  1  0  0  1  1

SVM-iGO

Parameters of SVM
          C 

C=2-4 

1  2  3 …     531 532             n+531 

0.8 0.72 0.9 …       1 0 …             1 

 
=22 

GO-PCC representation 

1  2  3 …      531 


PCC representation 

1  1  …        1  1  0  0  1  0  0  1  1 

 
C=2-4 

 
=22 

Parameters of SVM 
          C 

1  2  3 …         531 

1  0  …           1   SVM-PCC 

Figure 3 Protein representation and the training model of ProSec-GOX 

Figure 3 illustrates the prediction flowchart of ProSec-
GOX using SVM classifiers for predicting non-classical 
secretory proteins. For a query sequence, the BLAST with (h, 
e)=(1, 10-9) is first performed on the Swiss-Prot database to 
obtain its homologies with known accession numbers. 
Subsequently, the obtained accession numbers were used to 
retrieve the corresponding k GO terms, GO:1, GO:2, …, 
GO:k. The query protein is represented as an m-dimensional 

GO feature vector [p1, p2, …, pm] as an input to the SVM-
iGO classifier, where m=500. The GO terms as the input to 
the SVM-iGO classifier and the output is ‘classical’ or ‘on-
classical’ label. If k=0 means the query sequence not 
annotated by the m GO terms, the query sequence is 
represented as a 531-dimensional PCC feature vector and 
input to the SVM-PCC classifier to predict non-classical 
secretory proteins. 

IV.  RESULTS AND DISCUSSION 

A. Effective GO term features 

To evaluate effectiveness of the GO term features used 
in ProSec-GO, SVM with three additional feature sets: 1) 20 
AAC features, 2) 531 PCC feature, 3) n GO terms , and 4) 
500 GO terms (named SVM-AAC, SVM-PCC, SVM-GO, 
and SVM-iGO, respectively) were individually evaluated in 
terms of prediction accuracy of 5-fold cross-validation (5-
CV) using S25L and S40L. The best values of parameters  
and C in the SVM-based classifiers were determined using a 
step-wise approach from  {27, 26, …, 28} and C{27, 
26, …, 28}. The best classifier is ProSec-GO, yielding 
training accuracies of 94.1% and 98.9% on S25L and S40L, 
respectively (Table III). For the training data set S25L, 
SVM-iGO performs better than that of SVM-ACC (82.5%) 
and SVM-PCC (84.8%) features. So does for the training 
data set S40L. Additionally, the method SVM-GO using all 
GO terms as features obtains the same accuracy as that of 
SVM-iGO, which reveals this feature selection mechanism 
can not effectively extract the best feature subset to enhance 
prediction performance. Therefore, further work aims to find 
the best feature subset for designing prediction method. 

TABLE III.  PERFORMANCE COMPARISON USES PREDICTION 
ACCURACY (%) OF 5-CV 

B. Performance of ProSec-GOX 

TABLE IV.  ACCURACIES (%) AND MCC PREFORMED ON S25 AND S40 

Class 5-CV 
S25L 

Independen
t test S25T 

5-CV 
S40L 

Independent 
test S40T 

Non-classical 88.1 (0.919) 90.3 (0.933) 99.8 (0.983) 98.3 (0.867)

Classical 100 (0.919) 100 (0.933) 98.0 (0.983) 97.6 (0.867)
Overall accuracy 
% (MCC) 

94.1 (0.919) 95.1 (0.933) 98.9 (0.983) 96.8 (0.867)

The Matthew correlation coefficient (MCC) [26] is 
typically employed to evaluate the performance on 
unbalanced data sets. Table IV shows detailed results for 
individual classes that consist of MCC and the accuracies 
when applied to S25 and S40. The MCC performances of 
ProSec-GO are 0.919 and 0.933 for S25L and S25T, 

Method No. Of features S25L  
Accuracy (C, ) 

S40L  
Accuracy (C, ) 

SVM-AAC AAC (20) 82.5 (21, 2-2) 83.2 (21, 2-5) 

SVM-PCC PCC (531) 84.8 (2-7, 2-7) 86.1 (2-5, 2-5) 

SVM-GO GO terms (all) 94.1 (22, 2-7) 98.9 (20, 2-5) 

SVM-iGO GO terms (500) 94.0 (21, 2-7) 98.9 (23, 2-5) 

ProSec-GOX GO terms (500) 
PCC (531) 

94.1 (21, 2-7) 
(2-7, 2-7) 

98.9 (23, 2-5) 
(2-5, 2-5) 
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respectively, and the corresponding overall accuracies are 
94.1% and 95.1%. Additionally, the training and test 
accuracies for classical secretory proteins are all true 
predictions.  

TABLE V.  PERFORMANCE COMPARISON TO OTHER EXISTING 
METHODS ON THE DATA SET S40 

The ProSec-GO is applied to the whole data set S40 to 
compare it with existing prediction methods. Table V 
presents the results of the performance comparison in terms 
of MCC and the independent test accuracy. The Naïve 
Bayes classifier [27] and IBK algorithm [28] using the same 
features as those of SPRED [5] only have accuracies 79.8% 
(MCC=0.264) and 80.9% (MCC=0.234), respectively. 
ProSec-GOX has the highest accuracy of 96.8% and 
MCC=0.867, which is better than 77.8% of Na Bayes, 
80.9% of IBK and 82.2% of SPRED, using the top 50 of the 
frequency of tri-peptides and peptides, secondary structure, 
physicochemical properties features [5]. The results reveal 
that the GO terms are effective features for predicting non-
classical secretory proteins. 

V. CONCLUSIONS 

Several of eukaryotic secretory proteins lacking the 
signal peptides are found to be traversed by a non-classical 
secretion pathway. Therefore, predicting non-classical 
secretory proteins regardless of signal peptides is necessary 
for developing a critical computational approach. The 
ProSec-iGOX yields test accuracies of 95.1% and 96.8% 
when adopting on the data sets S25 and S40 respectively. 
However, the method SVM-GO using all GO terms as 
features obtains the same accuracies as those of SVM-iGO 
using 500 top-rank frequency descriptors of GO terms, 
indicating this feature selection mechanism can not 
effectively extract the best feature subset to improve 
prediction performance. Therefore, further work is to find 
the best feature subset for designing prediction method. 
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The recent outbreaks of H1N1 influenza have shown that the demand for 
intensive care unit resources and ventilators can overtake the hospital’s 
capacities. Indeed, during a pandemic, the drastic surge in patient volume 
will cause hospitals to operate beyond their capacities in many other 
resources. Thus, managing available resources efficiently becomes critical. 
In the literature of healthcare capacity management, most assume that 
patients will go to their assigned hospitals. However, we consider that during 

a pandemic, patients will go to their choice of hospitals (e.g., nearest 
hospitals) on their own. Consequently, the surge of patient volume will be 
greater in hospitals of some (e.g., populated) areas than in those of other 

(e.g. remote) areas. This project proposes an incentive-based approach to 
help direct patients to alternative hospitals so that capacity shortages across 
all hospitals are balanced. In other words, under this approach the hospital 
resources for the community as a whole are utilized most efficiently. 
Examples of incentives include offering financial discount for services and 
offering on-site pharmacy within a hospital. 

Two optimization models are used in the study. One is an equilibrium model 

for describing the patients’ behavior that everyone maximizes their utility 

when selecting a hospital. The other is a nonlinear optimization model for 

the health authority to maximize the total utility of all patients as a whole. 

Usually, the optimal solutions to the two models are different, because of 
patients’ non-cooperative “selfish” decisions. However, in the presence of 

incentive programs at certain hospitals, patients change their choice of 

hospitals. The goal is to select appropriate hospitals to offer the incentive 
programs, so that the patients’ “new” choice of hospital matches the one 

desired by the health authority, which utilizes the system resources most 
efficiently.  

Keywords: Hospital Capacity Management, Pandemic Emergency, Network 

Optimization 
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Severe acute respiratory syndrome (SARS) is the first emerging infectious 
disease of the 21st century which has not only caused rapid infection and 
death, but also triggered a dramatic social crisis. Its 3C-like protease plays a 
vital role in processing two viral polyproteins and thus represents a top 
target for drug design. Intriguingly, the SARS protease evolutionarily 
acquired a C-terminal extra domain in addition to the chymotrypsin fold 
sufficient to host the complete catalytic machinery of the 3C protease such 
as from picorovirus [1]. The functional role of this extra domain had been 
previously unknown but shortly after the SARS outbreak, we revealed that it 
plays a key role in mediating the dimerization essential for catalysis [2]. By 

determining the high-resolution structure of an inactive and monomeric 
R298A mutant, we further established the mechanism how the extra domain 
controls the dimerization which can be eventually coupled to the catalytic 

machinery [3]. On the other hand, we also identified several other mutants 
on the extra domain which have no significant alteration of the dimerization 
properties but their activities are either significantly attenuated (N214A) or 
enhanced (STI/A and STIF/A). Surprisingly their crystal structures we just 

determined are almost identical to that of the wild-type, thus strongly 

implying that the enzyme dynamics are extremely critical to the catalysis. 
Therefore, we launched Molecular Dynamics (MD) simulations for WT, R298, 

N214, STI and STIF mutants, as well as several artificial monomers. The 

results show that different proteases display distinctive dynamical behaviors. 

While in WT, the catalytic machinery stably retains in the activated state, in 

R298A it remains largely collapsed in the inactivated state, implying that two 
states are not only structurally very distinguishable [4], but also dynamically 

well separated. Unbelievably, in N214A the catalytic dyad becomes 

dynamically unstable and many residues constituting the catalytic machinery 
jump to sample the conformations highly resembling those of R298A. 

Therefore, the N214A mutation appears to trigger the dramatic change of 

the enzyme dynamics in the context of the dimeric form which ultimately 
inactivates the catalytic machinery [4]. Our MD simulations represent the 
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longest reported so far for the SARS-CoV 3CLpro, unveiling that its catalysis 

is critically dependent on the dynamics, which can be amazingly modulated 

by the extra domain. Consequently, mediating the dynamics may offer a 
potential avenue to inhibit the SARS-CoV 3CLpro.  

Keywords: SARS, 3C-like protease, X-ray crystallography, Molecular dynamics 

simulation 
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Abstract. We propose an analytic strategy to interpret GWAS data with a single parent-child 

design. The proposed analytic strategy has several advantages, including replicating the GWAS 

findings in the same population by investigating both the within and between family components 

of linkage and association, avoiding the confounding effects of population admixture and 

dissecting parent-of-origin allelic effects of genes on complex traits.   With the strategy we 

propose, more meaningful interpretations of genotype data from a mother/father-child paired 

study would be expected.   Genome-wide association studies with a mother/father-child paired 

design may hold the key to dissecting the aetiology of complex traits.   

 

A recent publication in Science [1]uncovered parent-of-origin allelic effects of many loci in 

murine brain tissue.  In contrast to fewer than 100 imprinted genes hitherto identified, this study 

suggested that gene imprinting was a common phenomenon underlying the mechanism of 

physiological function of many genes.  Developments in bioinformatics and technological 

advances in genome-wide analyses have facilitated the analysis of large volumes of data 

generated by genotyping large sets of single nucleotide polymorphisms (SNPs).  It is timely to 

investigate the parent-of-origin effects of imprinted genes on human disease using the genome-

wide association study (GWAS) data.   

 

GWASs are gaining popularity in genetic analyses of complex traits with a commonly used case-

control design which recruits unrelated individuals.  Although many promising results are being 

reported there remain many challenges in interpreting the findings of GWA studies [2-3].  The 

massive multiple testing inherent with GWAS is resulting in these studies having progressively 

larger sample sizes to try and restrict the false positive rates.  However, in studies with a large 

sample size the modest genetic effects are vulnerable to subtle differences in ancestry between 

cases and controls [4].  Attempting replication by using still larger sample sizes may replicate 

imperfect matching of cases and controls and duplicate the false positive finding [4].  A family 

based study design is robust to population stratification and has been employed for GWA studies 

with corresponding analytical statistical methods [5].  A family based design allows both linkage 

and association analyses, investigates inter-familial as well as intra-familial information and has 

the potential of investigating parent-of-origin allelic effects.  However, most published family 

based studies with GWAS data were limited to replicating or screening genetic variants based on 

an individual variant or haplotype [6].  Although they tried to maximally utilize the within and 

between information for the analysis  the available statistical analytic programs have not 

sufficiently utilised the information derived from millions of SNP genotyped in family members 

[7-9] except a recent attempt in which a isolated population (Icelanders) was investigated for the 

allele parental origin using GWA data [10].  We believe that implementation of this strategy in 

GWA studies to determine the allele parental origin would facilitate better understanding of 

genotype-phenotype relationships.                  

 

In a paired single parent-child design with millions of SNPs genotyped it should be possible to 

ascertain the parental allele origin of a child using a mathematical algorithm, similar to the above 

[10]. The ability to directly allocate the parent of origin allele becomes easier as the individual 
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chromosome data become denser and more detailed through linkage maps.  With GWAS data, 

mathematical approaches have been described to inferring membership [11] and to accurately and 

robustly determining whether individuals are in a complex genomic DNA mixture [12].  An 

ethical concern has arisen in revealing individual-level information in GWAS [13].   Using a 

Bayesian inference method, a flexible statistical model has been established to infer missing 

genotype and haplotype phase for large scale population genotype data [14].  If we infer the 

haplotypes in parents and their children separately using the information on millions of genotype 

data, compare the genotypes and haplotype structure between the parent and his/her child, and 

also incorporate the information on physical distance and recombination rates between SNPs, it is 

expected we can determine the allele origin of the child for most alleles of GWA data with a 

mother/father-child paired design.  For example, if a mother-child pair has the genotype of AA 

and Aa for the mother and child, respectively, we know that the child’s ‘A’ allele is from mother. 

We can also infer the haplotype including the maternal ‘A’ allele in the child is from mother.  As 

shown in Figure 1, based on the genotype information we know that the CAG haplotype is from 

the father and GGC from the mother, thus resolving the parental origin of alleles linked with 

these haplotypes.  A mathematical algorithm should be developed to infer the haplotype in a 

sliding window manner, compare the haplotypes and genotypes between the mother/father-child 

pair, and then to discern the parental origins of the child’s alleles.  In most situations the 

probability of the parental origin of the child’s alleles would be determined with a likelihood 

close to one for mother/father-child paired GWA data.        

 

 

 
Figure 1:  The haplotype 

transmission between the 

father and his child.  In the 

three loci, the father has the 

genotypes of CC, AA and 

GG.  His child has the 

genotypes of CG, AG and 

GC.  Therefore we know the 

CAG haplotype of the child is 

from her/his father and the 

GGC haplotype, from her/his 

mother.      

 

With the parental origin of the child’s alleles resolved for mother/father-child paired GWA data, 

the imprinting effect of genes or alleles can be investigated in the relation to complex traits [15-

16].  A traditional, straightforward, analysis strategy: Transmission Disequilibrium Test (TDT) 

can also be used for linkage and association analyses with a complex trait of interest.   In the 

family based genetic study, the TDT is the basis to examine linkage and association between a 

marker locus and disease-susceptibility locus [17].  The test compares the transmission pattern of 

alleles from heterozygous parents to their affected offspring.  When the allele origin of the child 

is known, using a similar concept to the TDT, we can simply test linkage and association with 

complex traits for an allele from either parent.  To explain this concept we have selected mother-

child paired data as an example.  In Figure 2 A, the mother has a genotype of Aa and if the 

affected child has the genotype A|A (letter in italics denotes the allele from father) or A|a, the 

maternal ‘A’, and not ‘a’, allele has been transmitted to the affected child.  If the affected child 

has the genotype of a|A or a|a, the maternal ‘a’, and not the ‘A’, allele has been transmitted to the 

affected child.  The number of ‘A’ or ‘a’ alleles transmitted to the affected child can be counted 

and tested to measure which maternal allele is over-transmitted.  This would also be used for the 

mother/father paired with an unaffected child to compare the parental allele transmission patterns 
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in unaffected children (controls).  In this manner, the within-family component can be examined 

by using a similar method to TDT which is inherently robust in considering population 

stratification.  Analysis of the information from family B and C in Figure 2 can contribute to 

between family and total association tests for mother/father-child paired GWA data.  In this 

example we do not know the paternal genotypes; however, based on the genotype frequencies in 

the general population, we can also test the linkage and association for the paternal allele with a 

complex trait of interest. Mathematically the maternal and paternal effects can be combined 

together with the overall effects of the allele reported.  Although this example is for a binary 

outcome for a single SNP, the described method could easily be extended to quantitative traits 

and other genetic variants [9, 17-18].        

 

  
 

 

 

 

 

 

 

Figure 2:  Allele transmission patterns in 

three mother-child pairs.  In Pair A with the 

mother's genotype of Aa, her child has the 

possibility of having A|A (letter in italics 

denotes the allele from father), A|a, a|A and 

a|a.  In Pair B with the mother's genotype of AA, 

her child has the possibility of having A|A and 

A|a.   In Pair C with the mother's genotype of aa, 

her child has the possibility of having a|A and 

a|a.

In summary, we propose an analytic strategy to interpret GWAS data with a single parent-child 

design.  A major obstacle is to accurately clarify the parent-of-origin of the child’s alleles. An 

attempt has been published for GWA data in an isolated population with family relationships 

between individuals and the parental origin of most alleles can be determined.     Therefore, we 

propose a mathematical strategy could be developed to resolve this for mother/father-child paired 

data with millions of SNPs genotyped.  This analytic strategy has several advantages, including 

replicating the GWAS findings in the same population by investigating both the within and 

between family components of linkage and association, avoiding the confounding effects of 

population admixture and dissecting parent-of-origin allelic effects of genes on complex traits.  

Compared to recruiting cohorts of unrelated subjects, it may be more difficult to recruit family 

members for these epidemiological studies.  However, an increasing number of genetic studies 

are using mother-child designs [19-20].  With the strategy we propose, more meaningful 

interpretations of genotype data from a mother/father-child paired study would be expected.   

Genome-wide association studies with a mother/father-child paired design may hold the key to 

dissecting the aetiology of complex traits.       
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1 Methods

Recent investigations, both experimental [3] and computational [4], show that
physical interaction seems an important hint for co-localization of proteins. This
discovery provides us new opportunities to reveal protein subcellular locations
in the context of PPI network. Unfortunately, so far, no systematic efforts have
been made in this regard except for a few investigations focused on the ”mono-
location” case only. Actually, proteins may often simultaneously exist at, or move
between two or more different subcellular compartments.

These motivate us to design a comparative study for associating proteins with
multiple locations based on PPI network. Two local methods, Majority [3] and
χ
2-score [1], and two global methods, GenMultiCut(GMC) [8] and FunFlow [2],

originally proposed for protein function prediction, are exploited since these two
topics belong to the same type of problem, i.e., classifying nodes in a partially
labeled network. We compiled a Saccharomyces cerevisiae PPI network, consist-
ing of 3179 proteins with 12413 interactions, from BioGRID database (version
3.1.73, released 25-Jan-2011)[5], and extracted the 22 experimentally observed lo-
cations for each proteins from Yeast Gtp Fusion Localization Database[9]. With
these sources, we systematically analyze the four algorithms by performing a
large-scale cross validation on this PPI network and comparing their predictions.
Furthermore, we build an ensemble classifier based on these four approaches and
give assignments to 529 unlabeled and 137 ambiguous annotated proteins with
multiplex subcellular locations. Among these predictions, most of them have
been previously characterized in UniPort [7] database.

2 Results and discussions

2.1 5-fold cross validation

We test the performance of these four algorithms using 5-fold cross validation
on the obtained PPI network. To deal with the partially correct problem, for
the first time, we adopt Average Precision (AP)[6] to evaluate and compare the
approaches on each subcellular location. The mean average precision (MAP)
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2 J.Q. Jiang

is the overall evaluation, which for these approaches are summarized in Table
1. From the table, we see clearly that the global methods, GMC and FunFlow
significantly outperform the local counterparts, Majority and χ

2-score.

Table 1. MAP of four algorithms for 5-fold cross validation.

Algorithms MAP (%) Algorithms MAP (%) Algorithms MAP (%) Algorithms MAP (%)

Majority 42.13 Common 24.36 χ2
− 2 19.77 GMC 53.43

Merged1 32.53 χ2
− 12 33.07 χ2

− 3 14.59 FunFlow 62.07
1 Merged and Common, two variants of Majority were proposed in [4]. We also list them
here for comparison.

2 χ2
− k denotes the χ2-score method with radius k.
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Fig. 1. AP for each subcellular location.

We further check the AP for each subcellular location (Figure 1). All these
methods achieve a competitive performance for two subcellular locations ”cy-
toplasm” and ”nucleus” which there are a large number of proteins experimen-
tally annotated with. For another 11 locations, i.e., ”Bud neck”, ”cell periph-
ery”, ”Early Golgi”, ”Late Golgi”, ”Microtubule”, ”Mitochondrion”, ”Nuclear
periphery”, ”Punctate composite”, ”Spindle pole”, ”Vacuolar membrane” and
”Vacuole”, two global methods always, sometimes significantly, outperform two
local approaches. The superior performance of global methods is expected since
the GMC algorithm takes the full structure of the PPI network into account, and
FunFlow considers both the global and local effects. Moreover, we are surprised
to find that two local methods as well as their variants achieved better perfor-
mance for two locations, ”ER to Golgi” and ”lipid particle” which are involved
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in protein transport and secretion. Finally, it is astonishing that almost all the
methods cannot successfully recover the ”Bud” location for proteins except for
the χ2

−2 algorithm with a very low AP value. We design case studies to further
analyze these two unexpected phenomena in the following section.

2.2 Case studies
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Fig. 2. Case studies: (A) The subnetwork consists of the interactions among proteins
annotated with locations ”ER to Golgi” and ”Lipid particle” and their immediate
neighbors. (B) The subnetwork contains the proteins labeled with ”Bud” location and
its immediate neighbors as well as their interactions.

We extracted the proteins annotated with locations ”ER to Golgi” and ”Lipid
particle” as well as their immediate neighbors and the physical interactions
among them from our PPI network. The subnetwork, containing 72 unique
proteins and 204 unique interactions, is illustrated in Figure 2A. Clearly, the
6 proteins experimentally annotated with ”ER to Golgi” location scatter in
the subnetwork to bridge the gap between two protein cliques that localized
in ”endoplasmic reticulum” and ”Nuclear periphery”. For example, the protein
YLR208W, 4 ”Nuclear periphery” proteins and 2 ”Unknown” proteins are joined
together with it in a tightly-knit fashion (the lower left corner of Figure 2A).
Obviously, it is misclassified into ”Nuclear periphery” group if the global meth-
ods are applied. By contrast, if we adopt the local method, the ”ER to Golgi”
location is one of the two subcellular locations that are common among its neigh-
bors. Similar phenomenon can be found for locations ”Lipid particle” and ”Bud”
(Figure 2B). From the above analysis, we assert that the superiority of the local
algorithms for these two locations is totally due to the neighborhood topology
of these proteins annotated with corresponding locations.

2.3 Assign subcellular locations to uncharacterzied proteins

Considering that the local methods and global methods have respective advan-
tages and disadvantages, we build an ensemble classifier to assign subcellular
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locations to 527 unlabeled and 139 ambiguous annotated proteins in our PPI
network. Most of them were previously validated in Uniprot database. Only the
first 20 predictions are listed in Table 2 due to the page limits.

Table 2. Predictions of subcellular locations for 666 uncharacterzied proteins in our
PPI network.

Protein (ORF) Prediction UniProt

Q0045 mitochondrion Mitochondrion inner membrane; Multi-pass membrane protein.
Q0080 mitochondrion Mitochondrion membrane; Single-pass membrane protein.
Q0085 mitochondrion Mitochondrion inner membrane; Multi-pass membrane protein.
Q0105 mitochondrion Mitochondrion inner membrane; Multi-pass membrane protein.
Q0120 Mitochondrion.
Q0130 mitochondrion Mitochondrion membrane; Multi-pass membrane protein.(Potential)
Q0250 mitochondrion Mitochondrion inner membrane; Multi-pass membrane protein.
Q0275 mitochondrion Mitochondrion inner membrane; Multi-pass membrane protein.(By similarity)

YAL003W cytoplasm
YAL013W nucleus Cytoplasm. Nucleus.
YAL013W nucleus Cytoplasm. Nucleus.
YAL020C cytoplasm
YAL028W cytoplasm;nucleus Endoplasmic reticulum membrane.
YAL029C bud Bud.
YAL030W lipid particle Endomembrane system.
YAL034C nucleus
YAL040C cytoplasm
YAL042W ER Endoplasmic reticulum membrane. Golgi apparatus membrane.
YAL062W actin;cytoplasm
YAR018C spindle pole
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Abstract. Human longevity is a complex phenotype that has a signif-
icant genetic predisposition. Intensive research has been carried out to
elucidate the role of DNA repair systems in the ageing process. Decision
trees and naive Bayesian algorithm are two data-mining based classifica-
tion methods for systematically analyzing data about human DNA repair
genes. In this paper we develop a linearly combined kernel with Support
Vector Machine (SVM) to analyze the ageing related data. The popu-
lar supervised learning algorithm enables better discrimination between
ageing-related and non-ageing-related DNA repair genes. Through train-
ing on the whole data set, we can identify the same important genes that
target essential pathways as well. What’s more, novel genes are detected
which may reveal possible insights for biologists in ageing research.

Key words: SVM; Kernel Combination; Classification

1 Introduction

Ageing research has benefited a lot from the application of genetics in the past
decades. It has been argued that regulatory genes which affect multiple pathways
and processes are most likely to have significant effects on longevity [1]. DNA
repair genes could be designated as a major type of genes associating with ageing
process [2, 3]. To date, over 150 DNA repair genes have been identified [4, 5].

However, conceptual approaches have not quite caught up with the technol-
ogy. This creates an opportunity for the application of bioinformatics approaches
in ageing research. Decision tree learning and naive Bayesian algorithms stand
as the first application of data-mining based methods for the analysis of DNA
repair genes [6]. Two types of ageing related datasets are used to testify the
robustness of the above two algorithms. One type of datasets includes only gene
expression attributes. The other type of dataset involves multiple types of at-
tributes rather than gene expression attributes. Results show that for the former
type of dataset, two algorithms tend to exhibit weak performance in classifica-
tion, achieving 51.1% and 52.1% AUC values respectively. More robust methods
can be introduced to improve the classification accuracy for the data set.

Support Vector Machine (SVM) has successfully applied to many different ar-
eas [13]. For example, in [7], physico-chemically weighted kernel was constructed
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in conjunction with SVMs for the classification of protein datasets and glycan
data set [8]. Recent development of kernel methods emphasized on the need to
consider a combination of multiple kernels in real-world applications. An evolu-
tionary approach was proposed for finding the optimal weights of a combined
kernel used by SVMs [9]. In this paper, we apply SVM in the classification of the
gene expression based ageing data. Using the linear combination of linear ker-

nel and polynomial kernel of degree 3, better discrimination performance
can be achieved. Moreover, not only the significant genes identified can target the
well-known pathway involved in ageing, but also, novel genes are detected. This
gives potential clues for biologists for the investigation of the specific function
of the selected genes.

2 Methods

2.1 Combination of Kernels

One of the most important steps in SVM classification systems is the construc-
tion of appropriate kernel functions. In the case of linearly separable data, linear
kernel is the most straightforward choice. Polynomial Kernel is suitable for prob-
lems where all the training data are in normalized form [14]. As RBF kernels
use the Euclidean distance, they are not robust to outliers.

Real world applications have posed a need for emphasis on the combination
of kernels. Here we propose to consider a combination of linear kernel and
polynomial kernel of degree 3 in fulfilling the task of classification of the
normalized ageing data. In this context, the hyperplane can be presented in the
following form:

f(x) = (

m∑

i=1

αiyi[< x, xi > + < x, xi >3] + b).

Here xi, i = 1, 2, . . . , m are the support vectors obtained from training and
αi, i = 1, 2, . . . , m are the corresponding coefficients for the support vectors,
yi, i = 1, 2, . . . , m are the corresponding classes they belong to, with b being the
bias part and m being the number of the training data.

2.2 Selection of Important Genes

Important genes are selected through the procedure of training the whole data
set and according to the ranking of the decision function value. The selected
genes are then compared with the current biological results to see if they can
target some essential pathways associated with ageing process.

3 Results and Discussions

3.1 Classification Results

The effectiveness of our proposed method was evaluated in comparison with
J48 and naive Bayesian algorithm in terms of classification accuracy. A set of
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DNA repair genes was obtained from [6] with 148 instances in total. We have
33 positive data instances and the remaining are negative. The number of at-
tributes is 108 and 10-fold cross-validation was utilized for training and testing
of the data set. Table 1 presents the performance of the SVM classifier for the
combined kernel for 10 times of 10-fold cross-validation. The values in the table
represent the averaged AUC value. It is clearly that for the ten time 10-fold cross-

Table 1. 10-time AUC values by Combination of Kernels

10-time AUC Values

0.643 0.6422 0.6678 0.6379 0.6555 0.6424 0.6477 0.6643 0.6552 0.6486

validation, the AUC values can reach 65% most of the times. This is a significant
improvement when compared to the previous two data-mining approaches: J48
and naive Bayesian algorithm. For the two methods, with the same standard of
10-fold cross-validation, they can only get 51.1% and 52.1% respectively.

3.2 Selection of Important Genes

Five Important genes are selected according to their scores ranking and they are
: PCNA, PARP1, APEX1, MLH1, XRCC6. Compared to the genes selected by
J48 and Naive Bayesian Algorithm, in the significant pathway identified, we have
targeted APEX1, XRCC6 as well. Moreover, PCNA is not included by J48 and
Naive Bayes Algorithm but is detected by our method. This further validates
the robustness of our proposed kernel.

The novel genes not associated in the pathway are PARP1 and MLH1.
PARP1 and WRN interact physically and co-operate functionally in preventing
carcinogenesis in vivo [10] when the WRN protein is associated with Werner’s
syndrome that is the one of most representative characteristics of accelerated
ageing [11]. PARP1 has also been shown to link with DNA double-strand break
pathway, exhibiting various symptoms of accelerated ageing [12].

As for MLH1, it was identified as a locus frequently mutated in hereditary
nonpolyposis colon cancer (HNPCC). Alternative splicing results in multiple
transcript variants encoding distinct isoforms. Additional transcript variants
have been described, but their natures have not been fully determined. This fact
would provide some potential clues for the biologists in further investigation of
the specific role MLH1 played in ageing process.

4 Conclusions

We proposed a linearly combined kernel in SVM classification for DNA repair
genes data set. Compared to J48 and naive Bayesian algorithm, not only the
AUC value for the classification has been improved to 10-15%, but still, the ro-
bust kernel can identify the same genes associated with the important pathways
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targeted by the two algorithms. In a further perspective, our method detects
other genes like PCNA that plays critical role in the same pathway while the
two methods failed to identify. The promising perspective lies in that, we have
also detected novel genes associated with ageing while the full natures of which
are expecting to be explored. This would give a clue for the biologists in further
investigation of the specific roles they played in ageing.
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Here we present a novel phylogenomic method of genome-tree construction 
on the basis of gene lengths of orthologous genes presented in completely 
sequenced genomes of prokaryotic organisms using Clusters of Orthologous 
Groups (COGs). Every single element of our input data is a median protein 

length related to a pair (COG, genome). In principle, the method is so fast 
that input data may consist of median protein lengths related to thousands 
of COGs and hundreds of genomes. Clustering is performed using an 
application of the information bottleneck method for unsupervised clustering.  

Two main strategies in the field of a species tree phylogenomic 
reconstruction were developed to this end: the supertree and the 
supermatrix. One group of the supermatrix methods is associated with a 

Boolean matrix based on the presence and absence of gene families in 
genomes. Even though the method we present here is closely related to a 

group of methods based on the presence and absence of genes, it uses the 

information related to the lengths of genes, and this addition makes a 
significant difference. 

In introducing a novel supermatrix phylogenomic method, we have had 
several primary goals:  

• First, to propose a fast method that allows the use of whole proteome 

characters for reliable construction of genome trees. We show that the 
method is fast and reliable, indeed. 
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• Second, to show the robustness of the proposed algorithm. For 

robustness evaluation, we applied jackknife technique to input data. The aim 

of this approach is to show that tree structure based on different subsets of 

COGs is sufficiently stable. We have conducted extensive experiments to 

validate the performance of bootstrapping and jackknifing in order to 

estimate how robust the phylogenies produced by the proposed 

methodology are. These experiments show that randomization as part of the 

bootstrap procedure substantially decreases stability of the obtained trees 

and that jackknifing is very useful to determine the confidence level of a 
phylogeny.  

• Thirdly, to reveal the phylogenetic nature of these trees on the basis of 

a few empirical case studies. We demonstrate that a selected small group of 

genomes is distributed reasonably along a produced phylogenetic tree. 

Although our comprehensive genome clustering is independent of 
phylogenies based on the level of homology of individual genes, it correlates 
well with the standard “tree of life" based on sequence similarity of 16s 
rRNA. This, together with successful jackknifing for the determination of 
confidence levels signifies that the method may be truly classified as 
phylogenomic. We have also examined several of the methodological issues 
involved in going from a large sequence database to a useable phylogeny. In 
particular, we integrate (semi) automated solutions to rogue taxon 
identifications and jackknifing measurements of tree stability in a single 
study to examine the phylogenetic signal contained in large sparse 
supermatrices.  

• On the basis of a few empirical case studies, we intended to fix the 
parameters of the method. We considered three parameters to choose the 
most appropriate values of the parameters. (1) A bootstrapping parameter 
that designates a fraction of randomly resampling columns (COGs) of the 

input dataset. (2) A jackknifing parameter that designates a fraction of 
randomly deleted columns. (3) A preprocessing parameter (threshold) to 

consider only those columns of the supermatrix containing more elements 
than a certain threshold. 

To summarize, we are confident in our proposal to construct prokaryotic 

phylogenetic trees using the fast and reliable method described in this 

manuscript with parameter values equal to 15% of the maximal COG size for 
the preprocessing parameter and equal to 80% for the jackknifing 
parameter.  

Keywords: species tree, information bottleneck approach, phylogenetic signal, 

robustness of clustering, clusters of orthologous genes 
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Abstract. An important application of distance geometry to biochem-
istry studies the embeddings of the vertices of a weighted graph in the
three-dimensional Euclidean space such that the edge weights are equal
to the Euclidean distances between corresponding point pairs. When the
graph represents the backbone of a protein, one can exploit the natural
vertex order to show that the search space for feasible embeddings is dis-
crete. The corresponding decision problem can be solved using a binary
tree based search procedure which is exponential in the worst case. We
discuss assumptions that bound the search tree width to a polynomial
size, and show empirically that they apply to proteins.
Keywords: Branch-and-Prune, symmetry, distance geometry.

1 Introduction

The Molecular Distance Geometry Problem, which asks to find the em-
bedding in R3 of a given weighted undirected graph, is a good model for de-
termining the structure of proteins given a set of inter-atomic distances [2]. Its
generalization to RK is called Distance Geometry Problem (DGP). In gen-
eral, the MDGP and DGP implicitly require a search in a continuous Euclidean
space. Proteins, however, have further structural properties that can be exploited
to define subclasses of instances of the MDGP and DGP whose solution set is
finite [1]. These instances can be solved with an algorithmic framework called
Branch-and-Prune (BP) [1]: this is an iterative algorithm where the i-th atom
of the protein can be embedded in R3 using distances to at least three preced-
ing atoms. Since the intersection of three 3D spheres contains in general two
points, the BP gives rise to a binary search tree. In the worst case, the BP is an
exponential time algorithm, which is fitting because the MDGP and DGP are
NP-hard [Saxe, 1979]. Compared to continuous search algorithms, the perfor-
mance of the BP algorithm is impressive from the point of view of both efficiency
and reliability. In this paper we show that the BP has a polynomial worst-case
under assumptions found in proteins.
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2 Discretizable instances and the BP algorithm

Notation
For all integers n > 0, we let [n] = {1, . . . , n}. Given an undirected graph G = (V,E)

with |V | = n, for all v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} be the set of vertices

adjacent to v. Given a positive integer K, an embedding of G in RK is a function

x : V → RK . If d : E → R+ is a given edge weight function on G = (V,E, d), an

embedding is valid forG if ∀{u, v} ∈ E ‖xu−xv‖ = duv. For any U ⊆ V , an embedding

of G[U ] (i.e. the subgraph of G induced by U) is a partial embedding of G. If x is a

partial embedding of G and y is an embedding of G such that ∀u ∈ U (xu = yu)

then y is an extension of x. For a total order < on V and for each v ∈ V , let

ρ(v) = |{u ∈ V | u ≤ v}| be the rank of v in V with respect to <. The rank is a

bijection between V and [n], so we can identify v with its rank and extend arithmetic

notation to V so that for i ∈ Z, v + i denotes the vertex u ∈ V with ρ(u) = ρ(v) + i.

For all v ∈ V and ℓ < ρ(v) we denote by γℓ(v) the set of ℓ immediate predecessors of v.

If U ⊆ V with |U | = h such that G[U ] is a clique, let D′(U) be the symmetric matrix

whose (u, v)-th component is d2uv for u, v ∈ U , and let D(U) be D′(U) bordered by

a left (0, 1, . . . , 1)⊤ column and a top (0, 1 . . . , 1) row (both of size h + 1). Then the

Cayley-Menger formula states that the volume in Rh−1 of the h-simplex defined by

G[U ] is given by ∆h−1(U) =
√

(−1)h

2h−1((h−1)!)2
|D(U)|.

GeneralizedDiscretizable Molecular Distance Geometry Prob-

lem (KDMDGP). Given an integer K > 0, a weighted undirected graph
G = (V,E, d) with d : E → Q+, a total order < on V and an embedding
x′ : [K] → RK such that:
1. x′ is a valid partial embedding of G[[K]] (Start)
2. G contains all (K + 1)-cliques of <-consecutive vertices as induced

subgraphs (Discretization)
3. ∀v ∈ V with v > K, ∆K−1(γK(v)) > 0 (Strict Simplex Inequal-

ities),
is there a valid embedding x of G in RK extending x′?

We denote by X the set of embeddings solving a KDMDGP instance; X is a
finite set [1]. The KDMDGP is NP-hard by reduction from the DMDGP [1]. For
a partial embedding x of G and {u, v} ∈ E let Sx

uv be the sphere centered at
xu with radius duv. The BP algorithm, used for solving the KDMDGP and its

Algorithm 1 BP(v, x̄, X)

Require: A vtx. v ∈ V r [K], a partial emb. x̄ = (x1, . . . , xv−1), a set X.
1: P =

⋂

u∈N(v)
u<v

Sx̄

uv;

2: ∀p ∈ P ( (x← (x̄, p)); if (ρ(v) = n) X ← X ∪ {x} else BP(v + 1, x, X) ).

restrictions, is BP(K+1, x′, ∅) (see Alg. 1). By Strict Simplex Inequalities,
|P | ≤ 2. At termination, X contains all embeddings extending x′ [1].
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3 BP tree geometry

Since the definition of the KDMDGP requires G to have at least those edges
used to satisfy the Discretization axiom, we partition E into the sets ED =
{{u, v} | |ρ(v)− ρ(u)| ≤ K} and EP = E rED. With a slight abuse of notation
we call ED the discretization distances (guaranteeing that a DGP instance is in
KDMDGP) and EP the pruning distances (used to reduce the search space by
pruning the BP tree). Pruning distances might make the set P in Alg. 1 empty
or a singleton.

Let G be a YES instance of the KDMDGP, GD = (V,ED, d) and let XD

be the set of embeddings of GD; since GD has no pruning distances, the BP
search tree for GD is a full binary tree and |XD| = 2n−K . The discretization
distances arrange the embeddings so that, at level ℓ, there are 2ℓ−K possible
embeddings xv for the vertex v with rank ℓ. Furthermore, when P = {xv, x

′

v}
and the discretization distances to v only involve the K immediate predecessors
of v, we have that x′

v = Rv
x(xv) [3], the reflection of xv w.r.t. the hyperplane

through xv−K , . . . , xv−1. This also implies that the partial embeddings encoded
in two BP subtrees rooted at reflected nodes ν, ν′ are reflections of each other.
This situation is shown in the picture below.

ν1

ν2

1

2

5
3 4

ν3 ν4

ν5

ν6 ν7

ν8

ν9

ν10

ν11

ν12

ν13
ν14

ν15

ν16

More precisely, with probability 1 we have ∀v > K, u < v − K ∃ Huv ⊆ R

s.t. |Huv| = 2v−u−K and ∀x ∈ X ‖xv − xu‖ ∈ Huv; also ∀x ∈ X ‖xv − xu‖ =
‖Ru+K

x (xv)−xu‖ and ∀x′ ∈ X (x′

v 6∈ {xv, R
u+K
x (xv)} → ‖xv−xu‖ 6= ‖x′

v−xu‖).

4 BP search trees with bounded width

Consider the BP tree for GD and assume that there is a pruning distance {u, v} ∈
EP ; at level u there are max(2u−K , 1) nodes, each of which is the root of a subtree
with 2v−max(u,K) nodes at level v. By the above remarks, for each such subtree
only two nodes will encode a valid embedding for v (we call such nodes valid).
Thus the number of valid nodes at level v > K is 2max(u−K+1,1).

Consider the following Directed Acyclic Graph (DAG) Duv, used to compute
the number of BP nodes in function of pruning distances {u, v} with u < v−K.
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Nodes, arranged vertically, show the number of BP nodes in function of the rank
of v w.r.t. u (first line). An arc is labelled with i1, . . . , ih if one of {u + ij , v}
(for j ≤ h) is a pruning distance, and is unlabelled if no such pruning distance
exists. A path p in this DAG represents the set of pruning distances between
u and v: each node pℓ in this path shows the number of valid nodes in the BP
search tree at level ℓ. For example, following unlabelled arcs corresponds to no
pruning distance between u and v and leads to a full binary BP search tree
with 2v−K nodes at level v. Each set of pruning distances EP corresponds to a
longest path in D1n. BP trees have bounded width when these paths are below
a diagonal with constant node labels. For example, if ∃v0 ∈ V r [K] s.t. ∀v > v0
∃!u < v − K with {u, v} ∈ EP then the BP search tree width is bounded by
2v0−K . This situation is pictured below (left). Another polynomial class of cases
is shown on the right.
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Out of a set of 16 protein instances from the Protein Data Bank (PDB), all
yield BP trees of bounded width (with v0 = 4). This empirically illustrates the
polynomiality of BP on real proteins.

References

1. C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecular
distance geometry problem. Comp. Opt. Appl., to appear.

2. L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance geometry
methods: from continuous to discrete. Int. Trans. Op. Res., 18:33–51, 2010.

3. L. Liberti, B. Masson, C. Lavor, J. Lee, and A. Mucherino. Technical Report
1010.1834v1[cs.DM], arXiv, 2010.

ISBRA 2011  Short Abstracts 

 
43



*Corresponding author 

A Conditional Random Fields Method for RNA 
Sequence-Structure Relationship Modeling and 

Conformation Sampling 

Zhiyong Wang1  and Jinbo Xu1,* 

      E-mail: zywang@ttic.edu     jinbo.xu@gmail.com 
1Toyota Technological Institute at Chicago 

6045 S Kenwood, Chicago, IL, 60637, USA 

Introduction 
Accurate tertiary structures are very important for the functional study of non-coding RNA 
molecules. However, predicting RNA tertiary structures is extremely challenging because of a 
large conformation space to be explored and lack of an accurate scoring function differentiating 
the native structure from decoys. The fragment-based conformation sampling method (e.g., 
FARNA [1]) bears shortcomings that the limited size of a fragment library makes it infeasible 
to represent all possible conformations well. A recent dynamic Bayesian network method 
BARNACLE [2] overcomes the issue of fragment assembly. In addition, neither of these 
methods makes use of sequence information in sampling conformations. MC-Sym [3] is a motif 
assembly method for RNA 3D structure prediction, which uses a library of nucleotides cyclic 
motifs (NCM) to construct an RNA structure. Its high time complexity (respect to RNA length) 
prevents it being used to predict tertiary structure for a large RNA. 

Here, we present a new probabilistic graphical model, Conditional Random Fields (CRFs) 
[4], to model RNA sequence-structure relationship, which enables us to accurately estimate the 
probability of a RNA conformation from sequence. Coupled with a novel tree-guided sampling 
scheme, our CRF model is then applied to RNA conformation sampling. Experimental results 
show that our CRF method can model RNA sequence-structure relationship well and sequence 
information is important for conformation sampling. Our method, named as TreeFolder, 
generates a much higher percentage of native-like decoys than FARNA and BARNACLE, 
although we use the same simple energy function as BARNACLE [2]. An extended version 
will appear in Bioinformatics published by Oxford University Press. 

Method 
Structure representation. We represent an RNA 3D 
structure using a sequence of torsion angles, as shown 
in Fig. 1. Every nucleotide has seven bonds that rotate 
freely. Six of them lie on the backbone: P-O5', O5'-
C5', C5'-C4', C4'-C3', C3'-O3' and O3'-P. The seventh 
bond connects a base to atom C1'. We use a simplified 
representation to reduce the number of torsion angles 
needed for the local conformation of a nucleotide [5-
8]. In particular, we use the torsions τ1 and τ2 on 
pseudo-bonds P-C4' and C4'-P (see pink lines in 
Fig.1). However, to determine coordinates of the six backbone atoms of a nucleotide, we also 
need two planar angles θ, ψ and another torsion α on bond P-O5'. Overall, we use a five-tuple 
(τ1, τ2, θ, ψ, α) to represent the local conformation of a nucleotide, similar as previous works [5-
8].  

Conformation state. We use a Gaussian distribution to describe the local conformation 
preference of one nucleotide. First, we cluster all the angles collected from the experimental 

Fig. 1. Conformation of a nucleotide is 
represented by angles. 
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structures into dozens of groups (20~100). Then we fit a Gaussian distribution to each group. 
Each group (or cluster) and its Gaussian distribution are identified by an index, which is also 
denoted as a conformation state. Given the conformation state of a nucleotide, we can sample 
its real-valued angles from the corresponding distribution.  

Conditional Random Fields Model. Our CRF method can estimate the probability of RNA 
conformation states from the primary sequence and secondary structure. A CRF model consists 
of two major components: input 
features (nucleotide types, base pairing 
states) and output labels (conformation 
states), as in Fig.2. In contrast to 
BARNACLE [2] estimating the 
generative probability of an RNA 
structure, our CRF model estimates the 
conditional probability of an RNA 
structure, represented as a conformation 
state vector y, from the input feature 
vector x as Equation (1). Z(x) is the 
partition function; xi is the feature 
vector at position i; yi is the label at 
position i; wi,j is the weight for 
transition from state i to j; vi is the 
weight factor for predicting state i from 
input feature x; L is the length of RNA. The function ψ describes dependency between a 
conformation state and the input features and thus, called a label feature function. The function 
Ф describes dependency between two adjacent states and thus, called an edge feature function. 
We extend the 1st-order CRF model to the 2nd-order model so that we can capture dependency 
among three adjacent nucleotides. As in Fig.2, two adjacent positions are combined to a single 
super-node.  

Conformation sampling with a guide tree. A guide tree represents the base pairing 
information in an RNA and determine the order of conformation sampling. Given the base 
pairing information, we build the guide tree as follows. The root node in the tree corresponds to 
the whole RNA. Given a base pair (i, j), we have one node in the tree corresponding to the 
segment between i and j. One node A is the child of the other node B if and only if the segment 
corresponding to B is the minimal segment containing the segment corresponding to A. We 
always can add some intermediate nodes to make each node have at most two children. 
Pseudoknots are removed by eliminating minimal base parings in a guide tree.   

To sample conformations of an RNA, we first mark all the nodes in the guide tree as 
“undone” at beginning. The torsion angles of the RNA are sampled using a bottom-up method 
along the tree as follows. We randomly pick up an “undone” node A in the tree which is either 
a leaf node or a node with all the child nodes being marked as “done”. (1) If A is a leaf node, 
we sample the angles for the segment corresponding to A using the segment conformation 
sampling algorithm. (2) If A has one or two child nodes, by cutting out the segments 
corresponding to the child nodes, we have at most three separate segments left in A, for which 
we use the segment conformation sampling algorithm to generate angles separately.  

This segment conformation sampling algorithm consists of two steps: sampling a label for 
each nucleotide in the segment by the probability calculated from the CRF model and sampling 
real-valued angles from the Gaussian distribution corresponding to a label. We use a forward-
backward algorithm [9] to sample the label sequence of a segment.  

The new conformation is accepted if its energy is lower. Otherwise it is accepted by a 
probability )/exp( TE∆  where E∆  is the energy difference between current and the new 
conformations and T is the annealing temperature. This sampling procedure is repeated 3000 

1iii y,y1iiyiL1

1-L

1
1ii

L

1i
i

)y,(y   ,)x,(y     ),...y(yy
                   

 ] )y,(y)x,(y exp[
)(

1)xX|yP(Y

+
=Φ==

Φ+===

+

=
+

=
∑∑

WxV

xZ
T

i

rrr

r
r

rr

ψ

ψ
(1)

 
Fig. 2. The 2nd-order CRF model describes RNA sequence-structure 
relationship. A super- node in this model contains the conformation 
states in two adjacent positions. 
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times and then node A is marked as “done”. The folding simulation process ends when the root 
node is marked as “done”. 

Energy function. Different from the complex energy 
function in FARNA, we adopt a simple energy function used by 
BARNACLE [2] as right. Where H is the number of hydrogen 
bonds formed in the secondary structure, 

kd̂  is the distance 

between the donor and the acceptor of the thk  hydrogen bond, and 
kd  is the average length of 

hydrogen bonds of the same type. The smaller this value is, the more the decoy is consistent 
with its secondary structure. 

Result 
We build our training dataset from 
the RNA structure classification 
database DARTS [10]. Then we use 
11 RNAs tested by both 
BARNACLE and FARNA to 
benchmark our method TreeFolder. 
These RNAs contain 12~46 
nucleotides and are not homologous 
to any structures in our training 
dataset. In case that an RNA has 
multiple NMR structures, we use the 
first structure in the PDB file as its 
native structure.  

It is not very reliable to compare 
two methods simply using the decoys with the lowest RMSD since they may be generated by 
chance and also depend on the number of decoys to be generated. The more decoys are 
generated, the more likely the lowest-RMSD decoy has lower RMSD from the native. 
Therefore, a better strategy is to compare the RMSD distributions of decoys. 

Our TreeFolder generates better decoys than FARNA. We compare FARNA and 
TreeFolder in terms of the quality of the decoy clustering centroids. Similar to FARNA 
clustering only on the top 1% decoys with the lowest energy, we run MaxCluster to cluster the 
top 1% of our decoys with the lowest energy into 5 clusters. As shown in Table 1, TreeFolder 
can generate decoys with better cluster centroids for 9 RNAs: 1a4d, 1esy, 1kka, 1q9a, 1xjr, 
1zih, 28sp, 2a43, and 2f88. By the way, even if a significantly smaller number of decoys are 
generated by us, the lowest RMSD decoys by our TreeFolder for 1a4d, 1zih and 28sp still have 
smaller RMSD than those by FARNA. 

Our TreeFolder generates better decoys than BARNACLE. Table 2 displays the 5% and 
25% quantiles of the RMSD 
distributions for decoys generated 
by BARNACLE and TreeFolder. 
The quantiles by BARNACLE are 
taken from Table S4 in [2]. 
BARNACLE considers only decoys 
with energy less than 1 since this 
kind of decoys are likely to have 
more correct base pairings. We use 
exactly the same energy function as 
BARNACLE, so we also consider 
only decoys with energy less than 1 

Table 1. Comparison between FARNA and our method TreeFolder. 
The results of FARNA are taken from Table 1 in [1]. Column “Best 
cluster centroid” lists the RMSD of the best cluster centroid of the top 
1% decoys with the lowest energy. Column “#decoys” is the number of 
decoys generated by the methods. Bold fonts indicate better results. 
   FARNA TreeFolder 
PDB 
ID 

MethodLen Best 
cluster 

centroid 

Lowest 
RMSD 
decoy 

#decoys Best 
cluster 

centroid 

Lowest 
RMSD 
decoy 

#decoys 

1a4d NMR 41 6.48 3.43 28949 3.65 2.69 7168 
1esy NMR 19 3.98 1.44 69103 2.00 1.52 22529 
1kka NMR 17 4.14 2.08 81492 3.71 2.40 24934 
1l2x X-ray 27 3.88 3.11 47958 8.07 3.97 15360 
1q9a X-ray 27 6.11 2.65 48817 4.76 3.50 15415 
1qwa NMR 21 3.71 2.01 65977 3.77 2.49 18838 
1xjr X-ray 46 9.82 6.25 24646 9.26 7.05 7168 
1zih NMR 12 1.71 1.03 117104 1.19 0.73 40960 
28sp NMR 28 3.20 2.31 46034 2.96 1.91 17117 
2a43 X-ray 26 4.93 2.79 49972 4.52 3.47 18432 
2f88 NMR 34 3.63 2.41 36664 3.33 2.70 12230 

 

Table 2. The 5% and 25% quantiles of the RMSD distributions for decoys 
generated by our method TreeFolder and BARNACLE. Bold numbers 
indicate better distributions. Columns “#energy<1” and “#energy<2” list 
the number of decoys with energy less than 1 and 2, respectively. “Bps” is 
the number of base pairings. 

   BARNACLE TreeFolder 
PDB 
ID Len Bps 5% 25% 5% 25% #energy 

<1 5% 25% #energy 
<2 

1esy 19 6 2.99 3.28 2.19 2.60 577 2.25 2.78 1102 
1kka 17 6 4.40 5.02 3.75 4.30 349 3.8 4.39 776 
1l2x 27 8 5.43 6.88 - - 0 5.44 8.08 5 
1q9a 27 6 4.80 5.42 4.55 5.05 486 4.61 5.07 1025 
1qwa 21 8 4.06 4.64 3.65 4.26 407 3.9 4.51 884 
1xjr 46 15 10.41 11.01 8.50 9.43 22 8.84 9.79 540 
1zih 12 4 1.72 2.16 1.32 1.84 1721 1.36 1.88 1931 
28sp 28 8 3.23 3.76 2.88 3.43 152 2.93 3.58 563 
2a43 26 7 4.72 6.08 - - 0 4.64 5.48 26 
2f88 34 13 3.82 4.41 3.73 3.73 1 3.85 4.57 130 
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to ensure a fair comparison. We did not generate as many decoys as BARNACLE and thus, for 
some test RNAs we do not have many decoys with energy less than 1. In this case we use 
decoys with energy less than 2. On the 10 RNAs shown in Table 2, TreeFolder yields better 
RMSD distributions for 8 of them: 1esy, 1kka, 1q9a, 1qwa, 1xjr, 1zih, 28sp, 2a43 and 2f88.  

Conclusions 
We have presented a new method TreeFolder for modeling RNA sequence-structure 
relationship and conformation sampling using conditional random fields (CRFs) and a tree-
guided sampling scheme. Our CRF method not only captures the relationship between sequence 
and angles, but also models the interdependency among the angles of three adjacent 
nucleotides. Our conformation sampling method distinguishes from FARNA in that we do not 
use fragments to build RNA conformations so that we do not need to worry about if there are a 
sufficient number of structure fragments to cover all the possible local conformations. Our 
TreeFolder also differs from both FARNA and BARNACLE in that we use primary sequence 
to estimate the probability of backbone angles while the latter two do not. In addition, we also 
use a tree, built from (predicted) 2nd structure, to guide conformation sampling so that at one 
moment we can simultaneously sample conformations for two segments far away from each 
other along the RNA sequence. By contrast, both FARNA and BARNACLE can only sample 
conformations for a single short segment at any time. The results indicate that our TreeFolder 
indeed models sequence-structure relationship well and compares favorably to both FARNA 
and BARNACLE, even if we use only the same simple energy function as BARNACLE.   
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Abstract. We develop a method capable to identify important amino
acids for histogram-based methods predicting DNA-binding propensity.
This method can be used both for prediction from sequence information
(Tube Histograms) and prediction from structural information (Ball His-
tograms). We validate our method in prediction experiments using only
proteins’ primary structure, achieving favourable accuracies. Moreover,
the histogram-based methods equipped with this new searching method
also provide interpretable features involving distributions of amino acids.

Keywords: Feature construction, Proteomics, DNA-binding proteins

1 Introduction

The process of protein-DNA interaction has been an important subject of recent
bioinformatics research, however, it has not been completely understood yet.
DNA-binding proteins have a vital role in the biological processing of genetic
information like DNA transcription, replication, maintenance and the regulation
of gene expression. Several computational approaches have been proposed for the
prediction of DNA-binding function from protein structure.

In this paper we will be concerned with prediction of DNA-binding propen-
sity from sequence information. Previously developed methods for DNA-binding-
propensity prediction can be divided into two main groups: alignment-based
approaches [5] and physicochemical-property-based approaches [8, 10]. Gao and
Skolnick [5] developed a threading-based method for the prediction of DNA-
binding domains and associated DNA-binding protein residues. Ofran et al. [8]
used only protein sequence information, without requiring any additional exper-
imental or structural information. Their method relies on sequence environment,
evolutionary profiles and predicted structural features (secondary structure, sol-
vent accessibility and globularity). Patel et al. [10] used artificial neural net-
work for prediction from amino acid sequences. Yan et al. [4] started with a
Naive Bayes classifier trained to predict whether a given amino acid residue is a
DNA-binding residue based on its identity and the identities of its four sequence
neighbours on each side of the target residue.
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Recently, we have introduced histogram-based methods which are able to
predict DNA-binding propensity either from sequence information (Tube His-
tograms) or from structural information (Ball Histograms [11]). In this paper we
develop a method capable to identify important amino acids for histogram-based
methods predicting DNA-binding propensity.

2 Method

We propose the following approach to predict DNA-binding propensity. It con-
sists of four main parts. First, so-called templates are found, which determine
amino acids whose distributions should be captured by tube histograms. In the
second step tube histograms are constructed for all proteins in a training set.
Third, a transformation method is used to convert these histograms to a form
usable by standard machine learning algorithms. Finally, a random forest classi-
fier [3] is learned on this transformed dataset and then it is used for classification.

A template is a list of names of some Boolean amino acid properties. Given
a template and a location in the primary structure of a protein, we infer a list
of binary values indicating the truth values of the respective properties in the
template for the amino acid at the position. For example, the template (Arg,
Lys, Positive, Negative, Neutral) acquires the value (1, 0, 1, 0, 0) if the amino
acid at the inquired position is an Arginine. A tube of size s represents a part of
an amino-acid sequence containing s consecutive amino acids (see Fig. 1).

Fig. 1. Illustration of the Tube Histogram Method - Amino acids are shown as small
balls in sequence forming an amino acid chain. They have different colors according to
their type.

Given a protein, a template τ = (f1, . . . , fk) and a sampling-tube size s, a
tube histogram is a k-dimensional histogram constructed as follows. Starting by
placing the sampling tube on the first s amino acids we get the first sample for
the histogram. When a sample is collected the numbers of amino acids complying
with the particular properties listed in the given template are extracted from it
and stored. In further steps the tube is moved by one amino acid at time along
the protein sequence and the samples are continuously stored for subsequent
histogram construction. This process ends when the last amino acid is reached.
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Finally, the histogram constructed from the collected samples is normalized.
Intuitively, tube histograms capture the joint probability that a randomly picked
sampling tube (Fig. 1) will contain exactly t1 amino acids complying with f1, t2
amino acids complying with f2 etc.

In our previous study [11] we used pre-fixed templates with charged amino
acids selected according to [9, 7, 6]. Here, we introduce a method for automatic
selection of templates which are sufficiently discriminative to distinguish DNA-
binding proteins from non-DNA-binding proteins. The basic idea of the method
is to find templates which maximize distance between average histograms from
the two classes (DNA-binding and non-DNA-binding proteins). Intuitively, such
templates should allow us to construct classifiers with good discriminative ability.

We construct the templates in a heuristic way using best-first search algo-
rithm to maximize Bhattacharyya distance [2] between the average histograms
from the two classes. In order to avoid repeated construction of histograms from
the whole datasets, we construct a histogram corresponding to the biggest pos-
sible template (containing all amino acid properties), then, during the search,
we construct histograms for the other templates by marginalising this biggest
histogram.

3 Results

In this section we present experiments performed on real-life data (PD138 [12]/
NB110 [1]). We decided to study distribution of amino acids (represented by tube
histograms). We constructed histograms with automatically discovered templates
(with maximum length 5) and three different sampling-tube sizes: 5, 10 and 15.
We trained random forest classifiers selecting optimal sampling-tube size and an
optimal number of trees for each fold by internal cross-validation. The estimated
accuracy and area under ROC is shown in Table 1. As we can see, the accuracy
of our method exceeds the accuracy obtained by the method used in [12].

Method Accuracy AUC

Szilágyi et al. 81.4 0.92
Tube Histogram 86.3 0.94

Table 1.Accuracies and AUCs estimated by 10-fold cross-validation on PD138/NB110.

The four most informative automatically selected templates are: (Arg, Cys,
Lys, Gly, Ala), (Arg, Cys, Lys, Gly, Asp), (Arg, Cys, Lys, Gly, Glu), (Arg, Cys,
Lys, Gly, Leu). It is noteworthy that each charged amino acids (under normal
circumstances Arg and Lys are positively charged, whereas Glu and Asp are
charged negatively) is contained at least one of these templates.
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4 Conclusions

We developed a method capable to identify important amino acids for histogram-
based methods predicting DNA-binding propensity. We validated our method in
prediction experiments using only proteins’ primary structure, achieving favourable
accuracies. In future work we plan to validate this method in prediction experi-
ments using proteins’ structural information (Ball Histograms).
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project ME10047 granted by the Czech Ministry of Education. Andrea Szabóová
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Abstract. While there is great interest in structural variants (SV),
it is very challenging to identify them using noisy low coverage next-
generation sequencing short reads. Methods of analysing discordant in-
sert sizes and split-reads mapping have been used but are not completely
satisfying due to the low quality of data. We present a two-stages ap-
proach combining the two methods, which tolerates the low quality data
to find the exact break points of deletions. Experiments suggest that our
approach is more accurate and efficient than an alternative approach.

Keywords: Structural variant, Next-generation sequencing, Burrows-
Wheeler transform

1 Introduction

High throughput sequencing technologies have generated huge amount of se-
quence data. One application is using these sequence data to discover SVs. A
major challenge in this application is developing efficient and accurate algo-
rithms to find SVs from the large amount of sequence data. Refer to [2, 4, 6,
8] for surveys on the latest methods. While many current methods work well
with high quality data (high coverage and low errors), in practice most existing
sequence data has low quality. For example, the 1000 genomes project [1] uses
low-coverage sequencing to sequence hundreds of individuals from several human
populations. Sequence errors, substitutions and small indels may cause problems
in mapping these sequence reads onto the reference genome. In this paper, we
develop a two-stage approach for discovering deletions using noisy low coverage
data. The first step is applying an enhanced split-reads mapping approach to
identify candidate deletion sites from population sequence reads. The second
step is finding mapped paired-end reads which span candidate deletion sites and
have insert length matching the candidate deletions. Our approach exploits more
information in the sequence data than existing approaches by using both insert
length information of mapped paired-end reads and break points information
from mapped split-reads.
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2 Method

Candidate deletions with exact break points were discovered by utilizing the
paired-end reads that with only one end mapped. The mapped end is an anchor,
and the other end is the split-read. Like several well known reads mapping tools,
such as Bowtie [3] and BWA [5], our method uses Burrows-Wheeler transform as
basic utilities to achieve higher efficiency and tolerates certain errors. Searching
locally (near the anchor) can even speed up the aligning process and give more
accurate results. To call deletions from the candidates, insert size changes of
paired-end reads that are mapped spanning the candidate deletion are examined
to find supports.

3 Results

To evaluate the accuracy of our method when applied to low coverage data
with noise, we test our method using 1000 genomes project pilot one data, and
compared our results with those of Pindel [6] viewing the releases [7, 9] of 1000
genomes project as benchmarks. The experiment suggests that our approach is
more accurate and efficient.
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Abstract. Chlamydiae represents a unique group of obligate intracellular 
bacteria that are the causative agents of a variety of human and animal 
infectious diseases, including the most common sexually transmitted disease. In 
this study, we investigated the genome plasticity of 14 evolutionarily closely 
related Chlamydiae strains and identified the components whose functions 
range from fundamental biological processes to complex networks specific to 
intracellular parasitism. 

Keywords: Chlamydiae, genomics, evolution 

1   Introduction 

Chlamydiae is a phylum of gram-negative obligate intracellular bacteria, which 
encompasses two genera of human and animal pathogens: (1) the genus Chlamydia 
includes three species: C. trachomatis is the causative agent for the most common 
bacterial sexually transmitted infections in humans and the leading cause of infectious 
blindness globally [1-5]; C. muridarum infects mice and hamsters, causing 
pharyngitis, bronchitis, and pneumonitis [6]; C. suis infects swine, causing 
pneumonia, enteritis, conjunctivitis, pericarditis, perinatal mortality, and reproductive 
disorders; (2) the genus Chlamydophila includes six species: C. abortus is a common 
cause of infectious abortion in sheep, goats, cattle and pigs, and represents a 
significant risk to pregnant women [7]; C. caviae is the causative agent for guinea pig 
conjunctivitis [8]; C. felis causes pneumonia and conjunctivitis in cats [9]; C. 
pecorum infects cattle, sheep and goats, koalas, and swine, and is associated with 
abortion, conjunctivitis, pneumonia, and polyarthritis; C. pneumoniae infects humans. 
It is a major cause of pneumonia and is associated with atherosclerosis [5, 6, 10, 11]; 
C. psittaci is the causative agent of psittacosis in birds and humans [8].  

Despite sharing a common developmental cycle that alternates between an 
extracellular, infectious elementary body (BD) stage and an intracellular, 
noninfectious reticulate body (RB) stage, the bacteria in the Chlamydiae phylum 
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exhibit striking difference in their host specificity and disease outcome. In this study, 
we report a comprehensive survey of the complete genomes of 14 Chlamydiae strains.  

Table 1.  Genomic sequences used in the comparative analysis of Chlamydiae. The inter-
genomic search yielded a core genome comprised of 764 orthologous proteins.  

Strains 
Accession 

ID 

No. 
Genes 

in 
genome 

No. 
Protein 
coding 
genes 

% 
core in 
genome 

Chlamydia muridarum Nigg NC_002620 955 904 84.62  

Chlamydia trachomatis 434/Bu NC_010287 934 874 87.53  

Chlamydia trachomatis A/HAR-13 NC_007429 955 911 84.08  

Chlamydia trachomatis B/Jali20/OT NC_012686 936 875 87.43  

Chlamydia trachomatis  
B/TZ1A828/OT 

NC_012687 937 880 86.93  

Chlamydia trachomatis D/UW-3/CX NC_000117 940 895 85.47  

Chlamydia trachomatis L2b/UCH-
1/proctitis 

NC_010280 934 874 87.53  

Chlamydophila abortus S26/3 NC_004552 1003 932 82.30  

Chlamydophila caviae GPIC NC_003361 1053 998 76.95  

Chlamydophila felis Fe/C-56 NC_007899 1046 1005 76.82  

Chlamydophila pneumoniae AR39 NC_002179 1167 1112 69.33  

Chlamydophila pneumoniae 
CWL029 

NC_000922 1122 1052 73.19  

Chlamydophila pneumoniae J138 NC_002491 1110 1069 72.12  

Chlamydophila pneumoniae TW-183 NC_005043 1155 1113 69.27  
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2   Data and Methods 

2.1  Data  

We collected the complete genomes of 14 Chlamydiaceae strains (Table 1). The 
Genbank RefSeq annotation was integrated with genome information collected from 
the J. Craig Venter institute’s (JCVI) Comprehensive Microbial Resources Genomics 
database (http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi) and NCBI.   

2.2 Cluster of gene families and functional classification analysis 

To identify the presence of orthologous and paralogous genes, we merged all proteins 
of 14 Chlamydiaceae genomes and conducted an exhaustive all-against-all BLASTP 
search; genes were defined as orthologous or paralogous if (1) they had a E-score < e-
10; (2) their similarity I was ≥30% if the length of the alignable region L ≥150 amino 
acid residues, or I = 0.01n + 4.8L(-0.32(1+exp(-L/1000))), if L <150 aa, where n = the 
number of sequences; (3) the length of the alignable region between the two 
sequences was >50% of the longer protein [12]. A Markov cluster algorithm, 
OrthoMCL, was used to cluster genes into gene clusters [13]. Multiple alignments of 
each clusters were obtained by the program ClustalX [14] and T-coffee [15], followed 
by manual inspection and editing. Phylogenetic trees were inferred by the neighbor-
joining method, using MEGA5 (http://www.megasoftware.net/). A hierarchical 
functional classification was performed for each Chlamydiaceae sequence by 
searching against the Clusters of Orthologous Groups (COG) database [16]. The 
classification of specific supergene families including transporters, kinases, and 
proteases was based on the standard nomenclature defined in the Transporter 
Classification (TC) system, the Kinase Classification System, and Merops. 

3  Results and Discussion 

The OrthoMCL analysis revealed that the core genome of the 14 Chlamydiae strains 
we examined is comprised of 764 orthologous genes, accounting for about 69-87% of 
the genome complements (Table 1). The proportions of core genome components in 
the Chlamydia genus are very similar (84-87%). Chlamydophila has a slightly lower 
proportion of the core genome (69-82%).  

617 (81%) of the 764 orthologous clusters in the core genome were predicted to 
fall into a COG, while the remaining 147 (19%) appear to have no identifiable 
functions. The core genome contains the components for fundamental biology such as 
genetic information processing (replication, transcription and translation), and 
metabolism. It also includes abundant components that have been implicated in 
pathogenesis such as Type III secretion system. A better understanding of the genome 
plasticity and evolution in Chlamydiae can bring new insights into the mechanism 
underlying pathogenesis, tissue tropism, and niche adaptation. 
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Abstract. Metagenomic studies employing high-throughput, next-generation 
sequencing technologies have brought a new era of microbial ecology and 
evolution. Metagenomics provides access to great taxonomic diversity and 
enable characterization of part of the biosphere currently hidden from 
polymerase chain reaction (PCR) based surveys. In this study, we developed a 
novel workflow to accurately reconstruct the phylogenetic profile of microbial 
communities from metagenomic shotgun-sequencing data. We assess those 
profiles by phylogenetic analysis and cross-comparison with PCR generated 
sequences. We utilized replicate samples with shared microbial populations to 
generated nearly full-length SSU-rRNA sequences containing sufficient 
information for accurate phylogenetic analysis. Using this workflow, we 
identified high level of primer bias in a set of human twin-gut data, which lead 
to unreliable conclusions. We also indicated different levels of bias for three 
primer sets in samples with various community compositions. 

Keywords: metagenomics; microbial community; primer bias; high-throughput 
sequencing 

 

1   Introduction 

As about 99% of the microorganisms in the environment are currently unculturable 
in laboratory. Direct amplification and sequencing of marker genes, often the small 
subunit ribosomal RNA genes (SSU-rRNA), from the environmental DNA samples 
has become a popular and powerful approach to assess the microbial diversity. 
However, as the “universal” primers used in PCR are designed based of groups of 
already known species, a skewed picture of community composition is potentially 
obtained for environmental samples containing divergent bacterial lineages [1]. 
Metagenomic approaches directly sequence randomly sheared (i.e. shotgun) DNA 
from environmental samples and hence provide a direct assess to the microbial 
community on a genomic level without the PCR primer bias problem.  

Here we developed a novel workflow to accurately reconstruct the microbial 
communities composition down to species level using the SSU-rRNA sequences from 
replicated metagenomic samples. This workflow employs a stringent sequence 
assembly of samples with shared microbial populations to generate nearly full-length 
SSU sequences for accurate phylogenetic assignment. Through phylogenetic distance 
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based OTU clustering we also performed a comparison of our approach with PCR-
based community assessments. In a test analysis of 18 metagenomic samples for a 
previous human twin-gut study [2], we observed a bias of the V2 PCR primer 
approach, which led to misinterpretation for the role of the human gut fauna in the 
original publication. 

2   The Workflow 

2.1   Unique Sequence Generation and Coverage Calculation 

Metagenomic sequences produced by Sanger sequencing or 454 platforms (FLX or 
Titanium) are suitable for this workflow. Metagenomic reads were searched against 
the SILVA SSU databases [3] and hits with the E-value lower than 1e-10 and with 
alignment length > 45 bp were retrieved. SSU-rRNA sequences from replicate 
samples were pooled and assembled by Newbler using the “cDNA” option (99% 
overlapping similarity and 43 bp minimal overlapping length). The generated contigs 
and unassembled singletons are defined as Overall Unique Sequences (OUSs) across 
samples. Reads from each sample were then mapped backed against the OUSs to 
determine the relative abundance in each sample. 

2.2   Phylogenetic Distance-Based Operational Taxonomic Unit (OTU) 

OUSs and sequences from PCR-based SSU-rRNA clone libraries or 454-tag 
sequencing data were clustered by CD-Hit (98% identity). Representatives of all 
unique clusters were aligned against the SILVA SSU seed alignment using Mothur 
[5]. Pairwise distances were calculated and sequences  were clustered by Mothur 
(furthest neighbor algorithm and distance cutoff of 0.03). Representatives were then 
inserted into the SILVA SSURef tree in ARB. The pairwise phylogenetic distances of 
the representatives were calculated and clustered by Mothur (average linkage and 
distance cutoff of 0.03). Representatives of these clusters were then defined as the 
final operational taxonomic units (OTUs) and their abundance in each sample was 
calculated. 

3 Analysis of the Human Twin-Gut Samples 

3.1   OTU Generation 

The 18 metagenomic data sets generated from pyrosequencing of the gut 
microbiome of human twins were downloaded from the NCBI Trace database [2]. 
Their corresponding 16S rRNA gene sequences were amplified by primers 8F/1391R 
targeting the full-length gene, by primers 8F/338R targeting the V2 region, and by a 
pool of 5 forward and 4 reverse primers targeting the V6 region and were retrieved. 
SSU-rRNA sequences from the metagenomic data sets were processed according to 
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our workflow and assembled into unique sequences. OTUs were generated from the 
pool of the metagenomic SSU unique sequences and all the 16S rRNA gene 
amplicons. 

 
Fig. 1. Distribution of the 120 most abundant OTUs across samples. Proportion for the most 
abundant OTUs in each sample and the sum remaining low abundant OTUs were presented 
with the relative size of bubbles. Black bubbles, GS samples processed with the novel 
workflow; red, full-length gene; blue, V6 and green, V2 regions. The phylogenetic tree of the 
OTUs was extracted from the SILVA SSURef database and clades were taxonomic annotated 
according to their position in the SSURef tree. Host individuals are clustered according to their 
GS samples by Unifrac distance [4]. Hosts from the same family are labeled with the same 
shape.  

3.2   Metagenomic Versus PCR-Based Community Profiles 

We clustered the metagenomic samples and plotted the distribution of the most 
abundant OTUs according to this cluster (Fig. 1). Microbial communities of gut 
samples are generally diverse across all the 18 samples. Bacteria from the 
Bacteroidetes and Firmicutes groups comprise the majority of the lineages in most of 
the samples. One-factor analysis using PERMANOVA in PRIMER-E shows that 
metagenomic samples’ community structure are significantly different among 
families (P = 0.002) for the novel workflow analysis, but not among different body 
mass index (lean, overweight and obese) and between twins and mothers. 

The three sets of primers targeting different regions of the 16S rRNA gene 
displayed different levels of bias (Fig. 1). Primers targeting the full length and the V6 
region recovered most of the OTUs found in metagenomic shotgun sequencing data, 
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but varied in the relative abundance of certain OTUs. The V2 primers exhibited a 
substantial bias and shared few OTUs with the other three approaches. For the V2 
primer only two species (belonging to phyla Bacteroidetes and Firmicutes) were 
presented in high abundance across samples. While the overall proportion of 
sequences assigned to the phyla Bacteroidetes and Firmicutes is relatively consistent 
between the four approaches used, our analysis shows that assignment to lower 
taxonomic ranks (e.g. species or genera) varies a lot and can not be considered 
reliable.  

4   Conclusion 

Our novel workflow is easily implemented into current metagenomic pipelines and 
gives reliable assessment of microbial community structure. Our re-analysis of the 
human twin gut microbiome study [2] showed a significant correlation between 
microbial community composition and family, which was not previously noted. Our 
analysis also reveals substantial bias in community profiling employing commonly 
used PCR primers (in particular the V2 primer set), highlighting the need to either 
develop better primers system or for direct assessment of community structure by 
metagenomics. 
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Abstract: Cluster analysis has played an important role in analyzing gene expression 
data. Many distance/correlation- and static model-based clustering techniques have 
been applied to time-course expression data. However, these techniques did not account 
for the dynamics of such data and thus may not be effective for time-course gene 
expression data, especially those periodically expressed gene data. In this paper, we 
propose a nonlinear model-based clustering method for periodically expressed gene 
profiles. As periodically expressed genes are associated with periodic biological 
processes, in the proposed method it is naturally assumed that a periodically expressed 
gene dataset is generated by a number of periodical processes. Each process is modeled 
by a linear combination of trigonometric sine and cosine functions in time plus a 
Gaussian noise term. A two stage method is proposed to estimate the model parameter 
and a relocation-iteration algorithm is employed to assign to assign each gene to an 
appropriate cluster. A bootstrapping method and an average adjusted Rand index 
(AARI) are employed to measure the quality of clustering. The results of preliminary 
study show that our method allows the better quality clustering than other clustering 
methods (e.g. k-means) for periodically expressed gene data, and thus it is an effective 
cluster analysis method for periodically expressed gene data.  

 
Keywords: clustering, periodically expressed gene, nonlinear parameter 
estimation, average adjusted rand index  

I. INTRODUCTION 

Many biological processes such as cell-cycle division exhibit periodic behaviors. 
Gene expression profiles associated with these periodic biological processes exhibits 
periodic. Cluster analysis on periodically expressed gene could help understand the 
molecular mechanism of periodic biological processes.  In past decades, a number of 
clustering methods gave been proposed for cluster analysis on gene expression data. 
These include distance/correlation-based clustering methods (e.g., hierarchical 
clustering,1 k-means clustering,2 and self-organizing maps3) and static model-based 
clustering methods.4,5 In these methods, gene expression profiles are viewed as multi-
dimensional vectors. Distance/correlation-based clustering methods cluster genes 
based on the distance/correlation among their expression profiles. Static model-based 
clustering methods assign genes to one of clusters if their expression profiles may be 
generated by a multivariate normal distribution. These methods do not take the 
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dynamic of time-course gene expression data and thus are not efficient for 
periodically expressed gene data. 
    Recently, some dynamic model-based clustering methods have been proposed to 
analyze time-course gene expression data6,7. These methods employ autoregressive 
models to describe the dynamics of time-course gene expression data. As periodically 
expressed genes are associated with periodic biological processes, it is natural to 
model a periodically expressed gene data by periodic (nonlinear) function. This paper 
proposes a nonlinear model based method for clustering periodically expressed genes 
from their time-course expression profiles. 

II. METHODS 

2.1 Model for periodically expressed gene profiles  

Let )(tx  (t=1,2,…, m) be a time-course gene expression profile generated from a 
periodical biological process, where m is the number of time points at which gene 
expression is measured.  After shifting the mean of gene expression profiles to 0, the 
periodicity of this time-course gene expression profile can be model by a linear 
combination of trigonometric sine and cosine functions in time plus a Gaussian noise 
term as follows [8] 

)()sin()cos()( ttbtatx εωω ++=                                         (1) 

 
Where a and b are the coefficients of sine and cosine function, respectively; ω  is the 
frequency of periodic expression data; and )(tε  represent random errors. This study 
assumes that the errors have a normal distribution independent of time with the mean 
of 0 and the variance of 2σ . This model is equivalent to sinusoidal function model 
[9-14] 

                              )()sin()( ttAtx εω +Φ+=                                               (2) 

which are widely used to generate the synthetic periodic gene expression profiles [9] 
and to detect the periodically expressed genes[10-15].  In model (2), 22 baA +=  
is called magnitude and )/arctan( ba=Φ is called the phase.    

Given a time-course gene expression profile )(tx  (t=1, 2,…, m), estimating 
parameters a, b and ω in model (1) is a nonlinear estimation problem as ω is 
nonlinear in the model. In general, all nonlinear optimization programs can be used to 
estimate parameters in model (1), for example, Gauss-Newton iteration method and 
its variants such as Box-Kanemasu interpolation method, Levenberg damped least 
squares methods, and Marquardt’s method [16]. However, these iteration methods are 
sensitive to initial values. Another main shortcoming is that these methods may 
converge to the local minimum of the least squares cost function, and thus cannot find 
the real values of the parameters.   

Our observation is that noise free model (1) 
                               )sin()cos()( tbtatx ωω +=                                              (3) 
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can be viewed as the general solution of a following second order ordinary 
differential equation   

                                       0)()( 2 =+ txtx ω&&                                                     (4) 

and that ω2 is linear in equation (4) which is independent of a and b. Therefore, we 
propose the following two-step parameter estimation methods to estimate parameters 
a, b and ω in model (2): 

Step1: numerically calculate the second derivative of x(t). Then based on equation 
(4), use linear least squares method to estimate parameter ω2. In details, let  

)](),...,1([2 lxxX &&&&=    and   )](),...,1([1 lxxX =  
then by the least squares method  ω2 is estimated as  

        11/21ˆ 2 XXXX TT=ω   and 2ˆˆ ωω =                                               (5) 
as time-course gene expression data are discrete, the second derivative )(tx&&  is 
estimated by the central finite difference formula as follows 

   
2

)(2)1()1()(
Δ

−−++
=

txtxtxtx&&   for t =2,…, m-1        (6) 

where Δ is time difference between two consecutive gene expression data points.   
From equation (7), the length of vectors X2 and X1 is m-2.  

Step2: Substitute the estimated value of ω into equation (2). Apply the maximum 
likelihood method to model (1) to estimate parameters a and b.  In detail, let 

)](),...,1([ mxxX =   and ⎥
⎦

⎤
⎢
⎣

⎡
ΔΔ
ΔΔ

=
)ˆsin(),...,ˆsin(
)ˆcos(),...,ˆcos(

ωω
ωω

m
m

A  

by the least squares method,  a and b are estimated as 

   )()(ˆ
ˆ

1 TT AXAA
b

a
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
                                              (7) 

2.2 Nonlinear model-based clustering 

The mixture model: In this study, it is assumed that a time-course gene express dataset 
is a collection of periodically expressed gene profiles which belongs to several 
clusters and profiles in each cluster can be described by model (1) or (2) with 
different parameters. Let ],,,[ 2

kkkkk ba σωθ =  be parameters of model (1) for the kth 
cluster. Then the task of nonlinear model-based clustering is: for a given number of 
cluster K, divide a time-course gene expression dataset into a partition 

},,,,{ 1 Kk CCCC LL=  using model (1) with parameters ],,,[ 2
kkkkk ba σωθ =  

),,1( Kk L=  which minimize 
2

1 1
)]sin()cos()([)|( kkkk

K

k Cx

m

i
ibiaixCf

k

ωω Δ−Δ−=Θ ∑ ∑∑
= ∈ =

          (8) 

where the parameters Θ  consists of },,1  ,{ Kkk L=θ .   
Estimation of model parameters: According to the parameter estimation method 

proposed in previous section for a single time-course expression profiles, for the kth 
cluster parameters ],,,[ 2

kkkkk ba σωθ = can be estimated as: 
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2

1

2 )]ˆsin()ˆcos(ˆ)([1ˆ
kkkk

Cx

m

i
k

k ibiaix
Cm k

ωωσ Δ−Δ−= ∑∑
∈ =

              (11) 

where kC  represents the number of time series in cluster kC , NC
K

k
k =∑

=1
.   

Algorithm: This study employs a relocation-iteration algorithm as shown in Figure 1 
to estimate the parameters such that the cost function (8) is minimized. In 2(a) of 
Figure 1, tΘ  represents the estimated parameters in cost function (8) at iteration t  
while in 2(b), parameters ,,ˆ t

k
t
k ba and t

kω̂ represent the parameters of model k  at 
iteration t . 
 
1. Select an initial partition for given the number of clusters, K ; 
2. Iteration ( L,,t 21= ): 
(a) Estimate the parameter tΘ  based on the present partition by using Eqs. (9) –(11);  
(b) Generate a new partition by assigning each sequence x  to cluster k  for which the 

value of 2

1

2 )]ˆsin()ˆcos(ˆ)([ t
k

t
k

t
k

t
k

m

i
ibiaixs ωω Δ−Δ−= ∑

=
 is minimum; 

3. Stop if the improvement of the cost function (8) is below a given threshold, the 
cluster memberships of time series do not change. 

 Figure 1. Algorithm for nonlinear model-based clustering 

III. EXPERIMENT RESULTS AND CONCLUSION 

Bothe one synthetic dataset and one biological dataset are employed to investigate 
the performance of the proposed method.  The results of preliminary study show that 
our method allows the better quality clustering than other clustering methods (e.g. k-
means) for periodically expressed gene data in terms of average adjusted rand index. 
Therefore the proposed method is an effective cluster analysis method for 
periodically expressed gene data. 
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Abstract. Xylose isomerase plays an important role in species which can utilize 
xylose as the carbon source. In this study, we identified xylose isomerase gene 
and its TIM barrel components in the genome of Clostridium beijerinckii 
NCIMB 8052. A phylogenetic tree constructed by using the xylose isomerase 
genes from C. beijerinckii and several other species showed certain interesting 
findings. The origination of the TIM barrels domain proteins in C. beijerinckii 
remains mystery, which we would like to explore further.  

Keywords: xylose isomerase, phylogenetic tree, TIM barrel, evolution. 

1   Introduction 

As a member of pentose family, xylose is commonly existed in the world. A lot of the 
agricultural and forestry products contain polysaccharides which can be degraded into 
xylose. Therefore, using xylose as the major carbon source for industrial fermentation 
to produce chemical products such as fuels can be both cost-saving and 
environmental-friendly. Another reason xylose is desirable is that it is a good 
complement to the glucose-based fermentation, since co-metabolism of pentose and 
hexose, can raise the utilization efficiency for both in the industrial production 
process[1].  

Clostridium beijerinckii NCIMB 8052 is one of the microbial species which has 
the ability to utilize xylose degraded from ‘waste’ biomass to produce useful products 
such as ABE (acetone, butanol and ethanol). It has been shown that the complete 
xylose metabolism pathway existed in the genome of Clostridium beijerinckii 
NCIMB 8052[2]. This is also confirmed by our previous studies. In reality, not many 
species have been found to be able to use xylose as the sole carbon source. To 
elucidate how Clostridium beijerinckii NCIMB 8052 gained its ability to ferment 
xylose, we carry out an evolutionary study.  
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2   Results 

We first annotated the genome of Clostridium beijerinckii NCIMB 8052, and 
identified xylose isomerase or its components. The result is shown in the Table 1.  

Table 1.  The Xylose Isomerase Genes Components Identified in the Clostridium beijerinckii 
NCIMB 8052 Genome.  

Cbei No. start end Strand Length product 

0450 547974 548810 + 278 xylose isomerase domain 

protein TIM barrel 

2383 2749301 2750626 + 441 xylose isomerase 

4546 5263986 5264882 - 298 xylose isomerase domain 

protein TIM barrel 

4649 5385101 5385874 - 257 xylose isomerase domain 

protein TIM barrel 

4842 5663859 5664830 - 323 xylose isomerase domain 

protein TIM barrel 

 
 

Then, we use xylose isomerase genes from some representing species, and 
construct a phylogenetic tree (Fig. 1) using the neighbor-join method[3]. While this 
part is similar to a work published by other researchers two years ago[4], we believe 
that our result makes better biological sense. In contrast to the reference, the xylose 
isomerase genes from Xanthomonas compestris, Saccharophagus degradans and 
Clostridium (C. phytofermantans and C. beijerinckii) are in the same cluster. We 
know Xanthomonas compestris is a plant pathogen. And similar to C. 
phytofermantans and C. beijerinckii, Saccharophagus degradans can degrade 
lignocellulose and use xylose to ferment ethanol. So it is sound that they are grouped 
together. This is further confirmed by the fact that our tree has higher bootstrap values 
at the several key branch points which lead to the major differences from the two 
studies.  

It also makes sense that the xylose isomerase gene from C. beijerinckii is 
evolutionarily close to C. phytofermantans and Bacillus licheniformis, since they are 
all firmicutes. The reason that Bacillus licheniformis is closer to C. beijerinckii 
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probably is another evidence that C. beijerinckii gained large number of outside genes 
through horizon gene transfer, as we suggested in earlier report[5]. 
 

 

Fig. 1. The Phylogenetic Tree Constructed using the xylose isomerase sequences from more 
than a dozen tested species. 

 
Based on the figure 1, we add the sequences of the xylose isomerase TIM barrel 

domain proteins in C. beijerinckii and C. phytofermantans, coincidently, 4 each, to 
construct a new phylogenetic tree. We found that these TIM barrel proteins all have 
very low homology to any of the 3 clusters of the xylose isomerase family. A lot of 
works are still needed to be done to solve the mystery of the origination of the TIM 
barrels.  
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Fig. 2. New Phylogenetic Tree with the TIM Barrel sequences from Clostridium beijerinckii 
NCIMB 8052 and C. phytofermentans ISDg. 
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1 Introduction

The genomic diversity of RNA viruses (such as Hepatitis C virus (HCV), Human im-
munodeficiency virus (HIV), SARS and influenza) is a subject of the great interest since
it is a plausible cause of vaccines failures and virus resistance to existing therapies. RNA
lacks ability to detect and repair mistakes during replication, many mutations are well
tolerated and passed down to descendants producing a family of co-existing related
variants of the original viral genome referred to as quasispecies [4, 14, 11]. Knowing
the sequences of the most virulent variants can help in the design of effective drugs
[3, 13] and vaccines [7, 5] by targeting particular viral genome in vivo. This paper is
devoted to the following problem.
Quasispecies Spectrum Reconstruction (QSR) Problem. Given a collection of 454
pyrosequencing reads taken from a sample quasispecies population, reconstruct the
quasispecies spectrum, i.e., the set of sequences and the relative frequency of each se-
quence in the sample population.

The QSR problem has been first addressed directly in [6, 15]. Eriksson et al. [6]
proposed a multi-step approach consisting of genotyping error correction via clustering,
haplotype reconstruction via chain decomposition, and haplotype frequency estimation
via EM method with validation on HIV data. In Westbrooks et al. [15], the focus is
on haplotype reconstruction via transitive reduction, overlap probability estimation and
network flows with application to simulated HCV data. Recently the results of applica-
tions of the software tool ShoRAH [16] to HIV virus have been published in [17]. A
novel combinatorial method have been also applied to HIV and HBV data with simi-
lar to ShorAH results [12]. Finally, in [10] we have proposed a novel algorithm Viral
Spectrum Assembler (ViSpA).

Our contributions include (1) a novel Haplotype Discovery algorithm HapDis which
adds to set of candidate strings a virtual string which emits all reads that do not fit well
to candidate strings, (2) combining ViSpA with HapDis allowing ViSpA preferably as-
semble reads attributed by HapDis to the virtual string.

ISBRA 2011  Short Abstracts 

 
71



2 Haplotype Discovery

2.1 Maximum Likelihood Model

Maximum likelihood model includes a panel and an instance of sequencing machine
run consisting of read spectrum i.e. the set of reads and the relative frequency of each
read.

Let us define panel to be consisting of (1) a set of candidate strings (e.g. obtained
from existing databases or assembled from reads) that are believed to emit the reads
and (2) a weighted match between reads and strings, where weight is calculated based
on the mapping of the reads to the strings.

The possible gaps in the maximum likelihood model include (a) erroneous reads
(caused by genotyping errors), (b) an incorrect list of candidate strings (absence of
candidates caused by gaps in current databases and presence of chimeric candidates),
(c) an inaccurate read-to-string match and, finally, (d) a non-uniform emitting of reads
by strings. Since the genotyping quality is improving we focus on the incompleteness
of the panel, i.e. list of candidate strings.

Haplotype Discovery Problem. Given read spectrum and a panel, i.e. set of candidate
strings, weighted match between reads and strings, find strings missing from the panel.

We measure the model quality by the deviation between expected and observed read
frequencies as follows:

D =

∑
j |oj − ej |
|R|

,

where oj is observed read frequencies, ei - expected read frequencies and R is num-
ber of reads.

Expected read frequencies are calculated based on maximum likelihood frequencies
estimations of strings and weighted match between reads and strings as follows:

ej =
∑
i

hi,j∑
l hi,l

fML
j ,

where hi,j is weighted match based on mapping of read rj to string si, fML
j -

maximum-likelihood frequency of candidate string.

2.2 ML estimates of string frequencies

Maximum-likelihood estimates of string frequencies are calculated by the Expectation
Maximization algorithm.

First, we create a bipartite graph G = {S
⋃
R,E} such that each candidate string

is represented as a vertex s ∈ Q, and each read is represented as a vertex r ∈ R. With
each vertex s ∈ Q, we associate unknown frequency fs of the candidate string. And
with each vertex r ∈ R, we associate observed read frequency or. Then for each pair
si, rj , we add an edge (si, rj) weighted by probability of string si to emit read rj with
m genotyping errors:
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hsi,rj =

(
l

m

)
(1− ε)l−m εm,

where l is length of read sequence, and ε is the genotyping error rate.
EM algorithm starts with the set of N strings. For each string we denote by fs

its(unknown) frequency. After initializing frequencies fsq∈Q at random, the algorithm
repeatedly performs the next two steps until convergence:

– E-step: Compute the expected number n(j) of reads that come from string i under
the assumption that string frequencies f(j) are correct, based on weights hi,j

– M-step: For each i, set the new value of fs to to the portion of reads being originated
by string s among all observed reads in the sample

2.3 HapDis Algorithm

The main idea of the algorithm is to add to set of candidate strings a virtual string which
virtually emits reads that do not fit well to assembled sequences.

Initially all reads are connected to the virtual string with weight hi,j = 0. The
first iteration finds the ML frequency estimations of candidates strings, ML frequency
estimations of virtual string will be equal to 0, since all edges between virtual string
and reads hvs,j = 0. Then these estimation are used to compute expected frequency
of the reads according to formula Section 2.1. If the expected read frequency is less
than the observed one (under-estimated), then the lack of the read expression is added
to the weight of the read connection to the virtual string. For over-estimated reads, the
excess of read expression is subtracted from the corresponding weight (but keeping it
non-negative). The iterations are continued while the deviation between expected and
observed read frequencies is decreasing by more than ε.

Algorithm 1 HapDis algorithm
hi,j =

(
l
m

)
(1− ε)l−m εm,

add virtual string vs to the set of candidate strings
initialize weights hvs,j = 0
while D change ¿ ε do

calculate fML
j by EM algorithm

ej =
∑

i

hi,j∑
l hi,l

fML
j

D =
∑

j |oj−ej |
|R|

δ = oj − ej
if δ > 0 then
hvs,j+ = δ

else
hvs,j = max{0, hvs,j + δ}

end if
end while
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Based on weight between virtual string and all reads it is possible to find set of
reads that were not emitted by candidate strings. From this set of reads become possible
to reconstruct set of strings missing from the panel. Based on the frequency of virtual
string it is possible to decide if the panel is likely to be incomplete, i.e. if the virtual
string frequency is larger then certain threshold then it is likely that some strings are
missing from the panel. The total frequency of missing strings is estimated by frequency
of virtual string.

3 HapDis Enhancement of VISPA

Below is the flowchart for the proposed enhancement of ViSpA. The weights on read-
to-virtual-string connection obtained by HAPDIS estimate the probability of a read to
be emitted by an unassembled sequence. These probabilities are fed back to ViSpA and
reads with low probability (to belong to an unassembled sequence) will be assigned
high weight so that s-t-paths will try to avoid using them unless s-t-connection is cut.
So ViSpA will be modiofied accordingly. Newly assembled quasispecies (Qsps) are
added to the original library of candidates and HapDis will estimate the frequency of
unassembled sequences as well as estimate new read weights. The iterations of the big
loop will be repeated until certain stopping condition is satisfied, e.g., there are no new
quasispecies sequences or the virtual string has too small estimated frequency. Then
final EM will estimate ML frequencies and output the resulted viral spectrum.

Fig. 1. Enhancement of ViSpA
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ABSTRACT 

A set of genes in the same tissue might have similar expression profiles and participate in similar functions during 
different plant developmental stages. These tissue-specific genes are believed to be regulated by a similar set of 
transcription factors, and supposed that they contain similar regulatory patterns in their promoters. Consequently, we 
combined computational methods with experimental data to comprehensively analyze promoter features related to 
tissue-specific genes in rice. Firstly, microarray data from different rice developmental stages are used to identify 
tissue-specific expression genes. As expression data we used the microarray expression data of GSE19024 from 
NCBI, which includes data for 39 tissues of the rice plant from two varieties, Zhenshan 97 and Minghui 63. 
According to transcriptome analysis by Wang et al., we group organs into 10 clusters.  We defined genes as 
‘tissue-specific’ when the Z-score exceeded the threshold value of 2.5. Then, several motif search methods are 
employed to discover tissue-specific structures in those gene promoters. Based on our results, several 
tissue(organ)-specific motif were identified in each tissues. Many of the structural patterns are corresponding to 
important transcription factors. Furthermore, numerous unknown motifs could be found in the promoters of 
tissue(organ)-specific genes. These tissue-specific motifs might be a novel transcription factor binding sites and 
play critical roles during rice development. 
 
Keywords: tissue-specific promoters, gene regulation, transcription factors 

INTRODUCTION 

The regulation of gene expression is dynamic under different developmental stages in plants. Some genes are 
expressed in a special time, specific tissue, and particular condition. Therefore, identifying a suit of genes expressed 
with temporal and spatial is an important issue for understanding the specification of morphology and physiology in 
the tissue or organ systems. DNA microarray high-throughput technology has been widely used to study 
transcriptional expression pattern at whole-genome scale in the past decade. Several studies used this approach to 
investigate dynamic gene expression profile in various developmental processes in plants [1-3]. Those provide 
valuable information about which gene group play critical rules in which developmental stages or tissues. For 
example, Wang et al identify that 2667 probe sets differentially expressed among four stages of panicle 
development and indicate RFL and LAX play an essential role for determining of rice inflorescence architecture [3]. 
Furthermore, it is well known that investigation into transcription factors (TFs) and their corresponding cis-acting 
elements in promoters have attracted much attention from researchers of gene regulation. Therefore, understanding 
of transcription factors (TFs) and their binding sites in promoters is a key point to study the regulation of 
transcription. In order to response to different physiological environments during developmental phases, the 
induction or repression of particular genes is primarily controlled by recognition and binding of TFs to 
cis-regulatory elements in the gene promoter regions [4]. A number of studies also indicate a group of co-expressed 
genes under specific status are regulated by particular transcription factors [5-7]. As Skirycz et al demonstrate DOF 
transcription factor OBP1 controlling numerous genes in cell cycle during Arabidopsis development [7]. Although a 
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large number of studies have been made on identification of co-occurrence regulatory motifs in co-expressed gene 
promoters, little is known about the tissue-specific structure patterns in plant promoters. Furthermore, researchers 
have focused primarily on Arabidopsis, very little attention is given to other plants. Rice is one of the most 
important food crops worldwide and also a model for genomic research in cereals. Surprisingly, discussion of this 
kind of issue has never been examined in rice. Therefore, the purpose of this paper is to discover the tissue-specific 
structure patterns in rice promoters. 

IMPLEMENTATION 

Figure 1 shows the system flow of this research. We combined computational methods with experimental data 
to comprehensively analyze promoter features related to tissue-specific genes in rice. Firstly, microarray data from 
different rice developmental stages are used to identify tissue-specific expression genes. As expression data we used 
the microarray expression data of GSE19024 from NCBI (http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi? 
acc=GSE19024), which includes data for 39 tissues of the rice plant from two varieties, Zhenshan 97 and Minghui 
63. According to transcriptome analysis by Wang et al. [3], we group organs into 10 clusters, it contains 
callus/germination seed, panicle, stamen, endosperm, plumule, stem, flower, root, leaf and seedling.  For each 
gene we processed raw expression data to Z-scores, using the mean and the standard deviation of gene expression 
values over all tissues. We defined genes as ‘tissue-specific’ when the Z-score exceeded the threshold value of 2.5. 
Then, promoter regions from -2000 to +200 were extracted from TIGR V.5 database [8]. TRANSFAC version 11.0 
was used to identify known transcription factor binding sites [9]. MEME [10] was employed to discover conserve 
sequences among tissue-specific promoters. Consequently, removing redundant position weight matrix (PWMs) by 
TOMTOM [11]. The tissue-specific structural patterns were then being determined. 

 

 
Figure 1. The system flow of this research. 

RESULTS AND DISCUSSION 

The number of tissue-specific genes in callus & germination seeds, endosperm, flower, leaf, panicle, plumule, root, 
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seedling, stamen, and stem are 109, 264, 42, 140, 138, 18, 129, 44, 1212, and 26, respectively. Table 1 shows 
several tissue-specific motifs identified in various tissues. It indicates numerous unknown motifs could be found in 
endosperm, leaf, panicle, and stamen, separately. Compare to mammalian cell, less plant specific motifs are 
recognized. Base on our results, those unknown motif might be candidates of transcription factor binding sites and 
play important roles in gene regulation. 
 
Table 1 The motif logos of the tissue-specific structure present in different tissues 

Tissue Motif logo Consensus sequence Comment 
(E-value) 

endosperm 

 

CG[CT][CG]G[CG][CG][GTA]C[GC]C[ACG][GC][CG][GC] 
CDC5, 

(2.80E-11) 

endosperm 

 

CTTTTCCA[TC]CACATC 
Unknown, 
(2.20E-09) 

endosperm 

 

GC[GCA]GC[GC]A[CT]G[GA][CT][GA][CAG][GC][GC] 
Unknown, 
(4.60E-09) 

endosperm 

 

[AG][AG][AG]A[CT]GGAGG[GT]AGTA 
Unknown, 
(1.10E-04) 

leaf 

 

[CT]TCTCT[CG][TC]C[TCA][CA][TA]C[TA]C 
Unknown, 
(5.40E-11) 

leaf 

 

[AT][GA][CA][GA][TG][CG]A[AG]C[GA][GA]C[GA][AG]C 
Unknown, 
(1.40E-02) 

panicle 

 

[CG]G[GCA][CA]G[AG][CG]G[AG][CAG]G[AC][CG][GC][AG] 
Unknown, 
(6.00E-16) 

panicle 

 

C[GA]AAT[GA]TTTG[GA]ACAC 
Unknown, 
(4.90E-04) 

panicle 

 

GTTTG[GA][AG]AA[GA]C[GA]TGC 
BZR1, 

(5.60E-04) 

stamen 

 

[TC][CT][CT][TC][CT][CT][TC][CT][CT][TC][CT]CTCC 
Alfin1, 

(1.3E-323) 

stamen 

 

[CG]C[TGA]CC[TA]CC[TAG]CC 
Unknown, 
(1.30E-83) 

stamen 

 

ATGTTTACTGTAGCA 
Unknown, 
(2.20E-70) 

stamen 

 

[CG]GATCGAT[CG]GA 
Unknown, 
(3.70E-62) 

stamen 

 

AAA[CG][AT]TT[TC]GATGTGA 
Unknown, 
(8.70E-62) 
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Abstract. Genome annotation is one of the most important issues in the 
genomic era. The exponential grow rate of newly sequenced genomes and 
proteomes urges the development of fast and reliable annotation methods, 
suited to exploit all the information available in curated data bases of protein 
sequences and structures. To this aim we developed BAR+, the Bologna 
Annotation Resource (available at http://bar.biocomp.unibo.it/bar2.0). The 
basic notion is that sequences with high identity value to a counterpart can 
inherit the same function/s and structure, if available. As a case study we 
describe how the ATP-binding domain of the ABC transporters can be found 
and modeled in over 30,000 new sequences not annotated before. 

Keywords: protein functional annotation; protein structural annotation; cross 
genome comparison; distantly related homolog; profile HMMs; ATP-binding 
domain; ABC transporters. 

1   Introduction 

As a result of large sequencing projects, data banks of protein sequences and 
structures are growing rapidly. The number of sequences is however orders of 
magnitude larger than the number of structures known at atomic level and this is so in 
spite of the efforts in accelerating processes aiming at the resolution of protein 
structure. Tools have been developed in order to bridge the gap between sequence and 
protein 3D structure, based on the notion that information is to be retrieved from the 
data bases and that knowledge-based methods can help in approaching a solution of 
the protein folding problem [1]. The problem of computing the protein 3D structure 
starting from sequence is presently classified as easy to be solved, difficult albeit with 
a putative solution, “ab initio” and therefore very difficult. It depends on the level of 
sequence identity that the target sequence has with proteins already solved with 
atomic details in the Protein Data Bank (PDB). When a template with a high level of 
sequence identity to the target at hand exists, then the protein folding problem can be 
routinely solved by assigning with different optimization procedures the atomic 
coordinates of the template to the target. However when sequence identity falls in the 
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twilight region (≤30% of sequence identity), then different heuristic procedures may 
help in finding putative folds for the target. The process may or may not lead to a 
successful solution, depending on different assumptions and strategies, including 
alignments among predicted features [2]. Finally, “ab initio methods” (based on first 
principles) are still under developments and far from being useful when searching for 
a putative model [1]. 

This work describes a recent non-hierarchical clustering procedure that was 
implemented with the specific purpose of fully exploiting the present knowledge in 
the data bases of sequences, structures and functions. This procedure largely increases 
the number of sequences that can be annotated by annotation transfer in a set of 988 
genomes [3]. When in a given cluster distantly related sequences from different 
genomes coexist, the procedure allows a safe transfer of annotation both for structure 
and function, independently of the level of sequence identity. As a case study we 
analyze the cluster that includes the largest number of sequences (87,893) mainly 
from Prokaryotes. Some 30,000 sequences without annotation inherit validated 
functional and structural annotation from the cluster. The cluster includes the ATP-
binding domain of the ABC transporters. 

2   The Bologna Annotation Resource 

A previous version of our method was already described and validated [3] and here 
we use a complementary and independent annotation resource recently developed 
(BAR+). Similarly to BAR, BAR+ is also a non hierarchical clustering method 
relying on a comparative large-scale genome analysis. The method is based on a non 
hierarchical clustering procedure characterized by a stringent metric that ensures a 
reliable transfer of features within clusters. The basic notion is that sequences with 
high identity value to a counterpart can inherit the same function/s and structure, if 
available. What is totally new in our analysis is to cluster sequences with the 
constraint that sequence identity should be equal or higher than 40% on at least 90% 
of the pair wise alignment length. By this sequences are clustered in sets that can be 
annotated in terms of function and structure depending on the annotation type of the 
sequences within the cluster. Our method starts with on all-against-all BLAST 
alignment [4] of all the sequences in a GRID environment (within Comput-Er; 
http://www.comput-er.it/). The alignments are then regarded as an undirected graph; 
after the clustering procedure that constrains both the sequence identity value and the 
alignment length, all the connected nodes (proteins) collapse into a single group 
(cluster). A cluster that incorporates a UniProt entry inherits its annotations (GO 
terms, PDB structures, SCOP classifications, Pfam families, when available). GO and 
Pfam features in the clusters are validated by computing a P-value. Clusters can 
contain distantly related proteins that by this can be annotated with high confidence, 
after the statistical validation procedure of GO and Pfam terms (P-value <0.01, [3]). 
Ultimately the method analyses a total of over 13 million protein sequences including 
988 genomes and UniProt release 2010_05.  
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3   Cluster analysis 

70% of the whole data set of sequences falls into 913,962 clusters. The remaining 
30% originate singletons (containing just one sequence). Well annotated sequences 
are characterized by all the functional and structural annotations derived from UniProt 
entries. Ligands are also listed when present in their PDB file/s. When a well 
annotated sequence falls into a cluster, their annotation characterizes the cluster given 
our stringent criteria of cluster generation. With this procedure, when hypothetical 
and or putative proteins fall into an annotated and validated cluster, they can safely 
inherit GO terms and Pfam domain/s even in the case of very low sequence identity 
with the well annotated proteins. By this they can be labeled as distantly related 
homologs and inherit function and structure in a validated manner. We previously 
discussed that this procedure can increase the level of annotation when compared to 
that of UniProt [3]. When PDB templates are present within a cluster (with or without 
their SCOP classification), profile HMMs are computed on the basis of sequence to 
structure alignment [5] and are cluster-associated (Cluster-HMM). Our system is 
endowed with a library of 10,858 HMMs for aligning even distantly related sequences 
to a given PDB template/s. BAR+ allows three main categories of annotation: PDB 
[with or without SCOP (*)] and GO+/Pfam; PDB (*) without GO+/Pfam; GO+/Pfam 
without PDB (*) and no annotation. Each category can further comprise clusters 
where GO and Pfam  functional annotations are or are not validated.  

Our BAR+ contains 207,371 clusters that allow transfer of validated annotation 
terms by aligning new target sequences. Inheritance is possible provided that the 
target is 40% identical on at least 90% of the pair wise alignment length to any of the 
sequences in the validated clusters. 

3   A case study: the ATP-binding domain of ABC transporters 

The most populated cluster of BAR contains 87,893 protein sequences with only 69 
sequences from Eukaryotes (average protein length (281± 16%) residues). The cluster 
contains 22 PDB structures from Prokaryotes (the Root Mean Square Deviation 
(RSMD) of the backbone of all structures is 0.189 nm with 0.039 nm Standard 
Deviation (SD)). Some 56,448 sequences, including only 44 from Eukaryotes (Plantae 
and algae) are endowed with 292 GO terms and 11 Pfam. After statistical validation 
the systems lists 73 GO terms (55 Molecular Function; 14 Biological Processes; and 6 
Pfam terms) (P value<0.01). The most frequent and validated Pfam term (carried 
along by the largest number of sequences) is ABC_tran (PF00005), corresponding to 
the ATP binding domain of the ABC transporters. ABC transporters belong to the 
ATP-Binding Cassette superfamily, involved in the export and import of a wide 
variety of substrates ranging from small ions to macromolecules. With our procedure 
the remaining 31,445 sequences of the cluster inherit by transfer all the validated GO 
and Pfam terms. These comprise 25 sequences from Eukaryotes not annotated before, 
including 22 from Xenopus tropicalis, the only animal in the cluster. The cluster-
HMM is a model based on the structural [6] and multi-alignment of sequences with 
40% sequence identity to the templates. This can be adopted to align distantly related 
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sequences to the templates for structural model building. Within the cluster, some 
50,000 sequences are less than 30% identical to the templates and with this procedure 
they can be endowed with a structural model. Cluster annotation details are shown in 
Fig.1. 
 

 
 

Fig. 1. Annotation by inheritance of the ATP binding domain of the ABC transporters. The 
cluster, containing 87,893 protein sequences is endowed with 22 PDB templates, 6 Pfam and 73 
GO validated terms. The percentage of sequences with a direct UniProt annotation is shown 
together with that inheriting the validated annotation within the cluster. Over 50,000 sequences 
with low homology (≤30%) to the templates can be modeled with the Cluster HMM (see text 
for details). The inset lists PDB codes of the templates, ligands and SCOP classification. 
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Akshaye Dhawan and Alison L. Nolan

Ursinus College, Department of Computer Science, PA 19426
{adhawan, alnolan}@ursinus.edu

Abstract. This paper examines the problem of generating effective,
reusable web interfaces for searching and browsing neuroscience data
represented in the Web Ontology Language (OWL). We briefly explain
our design of a collection of ontolgies on the nervous systems of different
mollusk. We then motivate our goal to design interfaces that are reusable
across these different ontologies. In order to achieve this re-usability, we
view the underlying semantic data in the ontology as a graph and are
currently exploring the use of different graph properties to infer the struc-
ture of the class hierarchy in the ontology. The interface allows a user to
query the underlying ontology without the use of a query language like
SPARQL.

1 Introduction

In this paper we examine techniques for designing reusable user-interfaces for
browsing and searching a collection of ontologies representing information on
neurons, neural networks and their properties for different mollusks. These on-
tologies represent the data collected as part of the NeuronBank Project [1, 2].
We have represented this information using the Web Ontology Language (OWL)
[3].

In order to make these ontologies accessible to the end users, the information
represented in them must be readily available through intuitive web interfaces
for browsing and searching this data. However, since these ontologies all differ
slightly, it would be much more efficient to design these interfaces in a reusable
manner such that the interface is generated dynamically from the underlying
data-model.

The remainder of this paper is as follows. In Section 2 we briefly explain the
design and structure of our collection of ontologies. In Section 3 we motivate the
need for reusable interfaces that can query an ontology and explain our approach
to developing these interfaces. Finally, we conclude in Section 4.

2 Ontology Design

Across all species, neurons are described by sets of attributes (e.g. neurotrans-
mitter, spike shape etc.) and identified by delineating the subset of attributes
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necessary and sufficient to reliably identify that neuron across different speci-
mens. There is variation, however, in the attributes used to describe neurons
in different species. We create ontologies for data on two different species of
mollusks: Tritonia diomedea and Melibe leonina. We include information on 45
identified types of neurons and their interconnections for Tritonia and 4 differ-
ent neurons for Melibe in our ontologies. The data used for this was taken from
NeuronBank [4] and represented in OWL (NeuronBank uses Protege-Frames [5]
to represent its data). We reuse a number of classes from other upper ontolo-
gies including the Basic Formal Ontology [6] and ontologies includes as part of
the Open Biomedical Ontologies Project [7] including the Common Anatomy
Reference Ontology (CARO) [8] .

Due to space constraints, we do not explain our ontologies in detail. How-
ever, we create classes derived and organized under the aforementioned upper
ontologies for the major components of the nervous system. Hence, some of our
classes include Neurite (with Axon and Dendrite as subclasses), Synapse and
Neuron. The Neuron class is further subclasses into types of neurons. For ex-
ample, for Tritonia, some subclasses under Neuron include Pleural Neuron (for
all the neurons below the Pleural Ganglion of Tritionia), Cerebral Neuron (neu-
ron in the cerebral ganglion), Pedal Neuron (neurons in the pedal ganglion) etc.
Notice that the classification for this species is based on brain region.

3 User-Interface Design

3.1 Motivation

While much research effort has gone into developing standards (like RDF and
OWL) for representing information on the Semantic Web and for developing
languages to query this information (SPARQL), little has been done to make
this information accessible to an end-user not familiar with query languages. For
our application, we developed a number of ontologies on closely related mollusk
nervous systems. The intended end-users of these ontologies are neuroscientists
working on these species and they do not have the training to write queries in
SPARQL.

Additionally, despite having a number of concepts in common, each of these
ontologies differed in species specific ways. Also, it is envisioned that as new lab
techniques to identify this neurons are introduced, the underlying ontologies may
evolve over time. This led us to our goal of developing a simple web interface
to access the ontology that is capable of generating SPARQL queries for an
end-user and presenting the results to these queries. Additionally, the interface
should be dynamically generated from the underlying ontology, thereby requiring
no changes when the ontology is modified and allowing reuse across different
ontologies. The work presented in this paper extends our previous work presented
as a poster [9].
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3.2 Approach

Our approach to generating an interface is based on presenting the user with
an upper-level menu that list the most relevant classes. As explained shortly, we
infer the most relevant classes based on some properties of the data model graph.
Once the user selects a class, the next menu is populated based on retrieving the
properties of the class the user selected. As the user interacts with the ontology
and makes selections, we build behind the scenes a SPARQL query representing
the users choices as filters on the ontology. An example of our method and the
generated query is shown for a much simpler ontology - that of all Nobel Prize
winners.

Fig. 1. The query interface for the Nobel Prize Ontology

Generating an interface from an underlying ontology is a challenging problem
because ontologies are viewed as graphs with no explicit hierarchies. However,
most users perceive the ontology as a hierarchical data representation containing
some upper-level classes that represent a natural entry point for a user searching
or browsing this ontology. For example, for the ontologies of the different nervous
systems of the mollusks that we are working with, a logical starting point to
begin browsing the ontology could be a neuron, a connection, or even a reference.
Our goal in this research was to design a means of inferring this hierarchy that
underlies most ontology. This would allow for the design of interfaces that are
completely reusable since no class structure needs to tie the interface to a given
ontology.
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The basis of our approach consists of examining the graph of all the data
triples in the ontology. A triple relates a subject to an object using a predicate.
We build from this graph a data-model graph that consists of a node for every
class in the ontology. We associate with every class a count of how many instances
of that class exist in the ontology. We then join two nodes, representing two
different classes by an edge if they are related in the original ontology by a given
predicate. For each edge, we compute a weight that denotes the number of times
this predicate links the given subject class to the given object class. We are
currently examining a variety of heuristics that take into account the degree of
the class in the data-model graph to infer if it is an upper-level class.

4 Conclusion

In this paper we motivate an application driven need for designing reusable user
interfaces that can query a collection of neuroscience ontologies. The interface
is capable of generating SPARQL queries based on the users selections and is
dynamic in that it adjusts to changes in the class hierarchy of the underlying
ontology. The interface also infers relevant entry point classes to the ontology
based on properties of the data model for the given ontology. As part of our
future work, we are exploring other algorithms to infer the class hierarchy and
designing experiments to evaluate the effectiveness of the interface.
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A new approach to the analysis of genome-wide
association study (GWAS) data
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Abstract. This paper presents a new approach to the analysis of genome-
wide association study (GWAS) data. To date, most of the methods used
in the analysis of GWAS data are based on the statistical approaches
which deal with each single nucleotide polymorphisms (SNPs) without
considering their interactions. In situations like this, we designed a new
measurement for quantifying the importance of combinations of SNPs
and developed a methodology for efficiently investigating combinations
of SNPs and identifying significant SNPs and their combinations. On
the GWAS data of the Ansung and Ansan population-based cohorts in
Korea, we performed association studies of height and showed remark-
able results of the proposed approach compared to those of regression
analysis.

Keywords: genome-wide association study, single-nucleotide polymor-
phism, statistical analysis, case-control study, pattern generation, ma-
chine learning

1 Introduction

Recently advances in high-throughput genotyping technology lead to various
genome-wide association studies (GWASs)(e.g. [1]) to identify and explain the
association between the traits of interest and the common genetic variations.
In those studies, most of the researchers applied simple statistical methods,
such as linear regression or logistic regression, to analyze the large-scale GWAS
data. The regression-based analysis methods evaluate the significance of each
SNPs without considering the interactions between the SNPs and hence they
are not suitable for dealing with complex traits influenced by various genetic
and environmental risk factors. In this paper, we present a new measurement
for quantifying the importance of combinations of SNPs and an approach for
efficiently investigating combinations of SNPs and identifying significant SNPs
and their combinations.

? Corresponding author
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2 Materials and Methods

2.1 Data Information

Here is a brief description of the GWAS data studied in this paper. The GWAS
data originally contained 500,568 SNPs genotyped by Affymetrix Genome-Wide
Human SNP array 5.0 in 10,004 genomic DNA samples from the Ansung and
Ansan population-based cohorts in Korea. After quality control steps, we in-
cluded 8842 DNA samples and 334,546 SNP markers in the association analysis
of the height. Detailed informations are described in [2].
For the case-control association study, we defined tall height cases (n=1,426)
as height greater than 1 standard deviation from the mean and small height
controls (n=1,373) as less than 1 standard deviation from the mean.

2.2 Comparison with Statistical Analysis

We performed statistical analyses via SAS program (version 9.2). As stated in the
previous research [3], we assessed height associations by using linear regression
analysis adjusted for sex and age under additive, dominant and recessive models
for all individuals (n=8,842). After selecting 28 SNPs by p-value, we examined
the SNPs in a height case-control study by using logistic regression analysis for
1,426 cases and 1,373 controls.

2.3 Method Development

It is natural that a SNP is considered as a risk factor when the SNP occurs
frequently in the patients while it’s occurrences are rare in the normal. This can
be extended easily from the case of single SNP to the case of combinations of
SNPs. Based on this simple concept, we first scanned all single SNPs for counting
their occurrences in the two groups of case and control data. After selecting 100
SNPs by the differences of occurrences between the two groups, we make all
possible combinations with three SNPs and get their occurrences and differences
as the single case. Finally we selected 30 combinations of SNPs with biggest
difference values and applied them to the regression analysis.

3 Results and Conclusions

In the tables below, we proposed the results of linear regression for association
and logistic regression for case-control. As we mentioned earlier, we selected 28
SNPs reported in [3] by linear regression and applied the SNPs into logistic
regression analysis as a replication study. Without depending on the linear re-
gression, we selected 30 combinations of SNPs via difference measure and applied
them into linear and logistic analyses as replication studies. With these results,
our proposed method showed that it identifies the combinations of SNPs whose
p-values are much smaller than those of single SNPs selected by regression. The
method is meritorious in that it do not need to solve the regression problem and
takes less computational time.
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Table 1. Results obtained by regression analysis

RS ID
Subjects

Ansung cohort Ansan cohort Combined cohorts

Association study Linear Regression p-value
Additive model

rs6918981 1.28E-04 1.23E-04 3.11E-08
rs10513137 4.51E-05 3.90E-04 1.65E-07
rs6440003 4.06E-05 1.52E-03 5.08E-07

Dominant model
rs10513137 3.14E-04 3.44E-04 9.13E-07
rs1520223 8.42E-04 9.38E-04 1.03E-06
rs6918981 1.03E-03 5.86E-04 1.21E-06

Recessive model
rs11989122 3.51E-03 2.06E-05 7.00E-07
rs7032940 1.85E-03 4.58E-04 2.26E-06
rs10816937 2.75E-03 4.69E-04 3.51E-06

Case-control study∗ Logistic Regression p-value
Additive model

rs6918981 1.45E-03 4.51E-03 2.31E-05
rs3791675 2.17E-02 1.15E-03 7.96E-05
rs7313075 1.67E-02 8.34E-03 2.34E-04

Dominant model
rs6918981 2.68E-03 9.75E-03 1.04E-04
rs12426318 2.42E-02 4.43E-03 1.20E-04
rs7313075 1.22E-02 1.34E-02 1.85E-04

Recessive model
rs4811971 1.47E-04 9.64E-03 7.27E-06
rs7032940 2.49E-02 7.67E-04 4.64E-05
rs7036157 4.25E-02 7.67E-04 9.20E-05

∗: replication study with the SNPs selected by the association study

Table 2. Results obtained by proposed method

RS ID
Subjects

Ansung cohort Ansan cohort Combined cohorts

Association study Linear Regression p-value
rs11880550, rs2820072, rs12507269 8.43E-08 8.02E-08 3.79E-14
rs11880550, rs1151808, rs4922981 7.29E-09 1.03E-05 7.56E-13
rs6869605, rs10766922, rs6026584 2.91E-10 2.48E-04 1.13E-12

Case-control study Logistic Regression p-value
rs1338638, rs5915065, rs2043183 7.13E-07 2.39E-07 6.04E-13
rs1338638, rs5915065, rs2786152 1.25E-06 2.93E-07 1.37E-12
rs1338638, rs1415757, rs2043183 8.88E-07 4.96E-07 1.75E-12
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Abstract. Taverna Workbench eases integration of software tools for life sci-
ence research in experiments expressed as workflows. The Taverna services for
Systems Biology (Tav4SB) project provides a set of new Web service opera-
tions which extend the functionality of Taverna Workbench in the systems bi-
ology domain. Tav4SB operations allow to perform numerical simulations or
model checking of, respectively, deterministic or stochastic semantics of biologi-
cal models. To visualize the results of model analysis a flexible plotting operation
is provided as well. Tav4SB operations are executed in a grid environment, inte-
grating heterogeneous software such as Mathematica, PRISM and SBML ODE
Solver. User guide, contact information and full documentation of available Web
service operations, exemplary workflows and other, additional resources can be
found at the Tav4SB project’s Web page: http://bioputer.mimuw.edu.pl/tav4sb/.

Introduction. The Taverna Workbench [11] is a tool which facilitates the design and
execution of the in silico experiments. Experiments are constructed as workflows which
can be stored and executed when needed. The building blocks of a workflow are ser-
vices, called processors. Technically, workflow is a set of processors, together with con-
nections between their inputs and outputs. The remote processors are implemented as
Web service (WS) operations. Scattered physically throughout computational resources
of numerous scientific facilities, combined WSs allow to perform highly complex anal-
yses, surpassing power of a standard workstation.

Taverna services come from a diverse set of life sciences domains. In the field of
computational biology, Taverna mainly provides services related to sequence annotation
and analysis. Here, we present remote processors that extend Taverna’s functionality in
the systems biology domain, specifically, in the analysis of kinetic models of biolog-
ical systems. Our hardware base offers computational resources sufficient for compu-
tationally demanding experiments, such as multiple invocations of the model-checking
procedure. Essentially, Taverna Workbench provides a convenient user interface for our
WS operations. Analysis of the behavior of cellular systems under various conditions
can be conducted without the need of programming own WS client.

Main features of Tav4SB. Mathematical framework determines the structure of the
kinetic formulation for a given biochemical network model. The most common repre-
? This work was partially supported by the Polish government grant N N206 356036 and by the

Biocentrum Ochota project (POIG.02.03.00-00-003/09). The first author is a scholar within the
Human Capital Operational Programme financed by European Social Fund and state budget.
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sentations are ordinary differential equations (ODEs) for the deterministic framework
and continuous–time Markov chain (CTMC) for the stochastic framework [1,14].

Operations provided by our Web server allow to perform: (1) numerical simulations
for the deterministic formulation of the network model with use of the SBML ODE
Solver library[13], (2) probabilistic model checking of Continuous Stochastic Logic
(CSL) [2] formula over a CTMC with use of the PRISM tool[9], and (3) visualization
of data series such as ODEs trajectories, or values of parametrized CSL properties, with
use of the Mathematica tool (Wolfram Research, Inc., 2008,Version 7.0).

The SBML ODE Solver library enables numerical analysis of models encoded di-
rectly in the Systems Biology Markup Language (SBML) [10], the standard of our
choice. The library employs libSBML [4] to automatically derive ODEs plus their Ja-
cobian and higher derivatives as well as CVODES package — state of the art numerical
integration library from SUNDIALS [8].

PRISM is one of the leading tools implementing probabilistic model checking,
a technique of formal verification of systems that exhibit a stochastic behavior. A system
to be analyzed is modeled as a Markov chain, and a correctness property is expressed
in a suitable probabilistic temporal logic. Some recent works, see e.g. [7,12], demon-
strate applicability of PRISM to analysis of models of biological systems. Case studies
include models of cell cycle control, fibroblast growth factor signaling, and MAPK cas-
cade. For biological applications, a CTMC (continuous-time Markov chain) is typically
chosen as an underlying model, and the properties are specified in a continuous time
logic, for instance in CSL. The approach seems promising as it often can yield a better
understanding of the dynamics of systems to be analyzed.

Wolfram’s Mathematica has one of the most advanced graphics capabilities among
computer mathematics tools. Tav4SB provides Mathematica’s two– and three–dimen-
sional list plots together with a versatile set of options for customizing their display.

Fig. 1. The “Simulate SBML–derived ODEs” workflow and resulting trajectories plot
for the enzymatic reaction model of [5]. The red boxes represent nested workflows,
corresponding to Tav4SB WS operation wrappers and a helper. See text for more details.
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Fig. 2. The computational part of the “Probabilistic model checking of the SBML
stochastic model” workflow and the resulting plot for the stochastic version of the en-
zymatic reaction model. The red boxes represent nested workflows, corresponding to
Tav4SB WS operation wrappers. See text for more details.

Exemplary use cases. We constructed a set of exemplary workflows. Their main pur-
pose is to demonstrate usage of the Tav4SB WS operations from the Taverna Work-
bench client. There are two kinds of exemplary workflows: Tav4SB WS operation wrap-
pers and exemplary in silico experiments.

The wrapper workflows illustrate the direct usage of Tav4SB operations in Taverna.
Their purpose is to be re–used as a nested workflows, as demonstrated in two exem-
plary experiments described below. Additionally, we built a number of helper Taverna
processors, used for interacting with XML–formatted inputs and outputs of the WS op-
erations. Those helpers are standard Taverna’s XML splitters and local services as well
as additional BeanShell scripts.

In our two exemplary experiments we have used an enzymatic reaction model with
species names and parameters values from the [5]. The first workflow numerically sim-
ulates models’ ODEs and plots the results. ODEs are derived automatically from the
SBML model file, based on the rate laws for described reactions. The enzymatic reac-
tion deterministic model contains mass–action kinetics rates. As a result of running this
simple experiment one gets the trajectories of the species (ODEs) variables, together
with their plot. Figure 1 depicts the simulation workflow and the resulting plot for all
model’s species variables over a 30 seconds time period.

The second experiment runs a probabilistic model checking for the stochastic ver-
sion of the enzymatic reaction model of [5], also encoded in the SBML format. The
reward–based CSL formula, which is being checked, is

R”#r1”=?[F(p > 0.5∗ lim
t→∞

p(t))].

Roughly speaking, the formula answers the following question: how many times, on
average, the enzyme-substrate complex association reaction r1 has to occur before the
amount of product p reaches 50% of its maximum? This corresponds to the half max-
imal effective concentration (EC50 coefficient). The formula is evaluated for different
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enzyme initial amounts to find its optimal efficiency. As this is a time consuming task,
and plotting usually requires many runs to fine–tune the plot parameters, the experiment
is divided into two separate parts: a computational part and a plotting part. Figure 2 de-
picts the computational part of the workflow and the resulting plot.

The plot can be read as: if E(0) is equal to 1 then on average, before product reaches
half of its maximum, each enzyme has to convert slightly more than 6 substrates. To no
surprise, when E(0) is equal to 12 — the initial amount of substrate, each enzyme has
to convert at most one substrate. The total, parallel enzymatic reaction system’s effi-
ciency doesn’t improve significantly from that point as not much more than 12 complex
formation reactions r1 are needed to achieve half of the maximum product amount.

Availability. The definition of the operations provided by the Tav4SB WS plus exem-
plary workflows files, together with installation and execution instructions are available
from the project’s Web page: http://bioputer.mimuw.edu.pl/tav4sb/. Documentation of
the Tav4SB WS can be found in the BioCatalogue [3], a curated catalogue of life sci-
ences Web services. Wrappers and experiments workflows are also available from the
myExperiment repository [6], together with the workflow figures.
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1   Introduction 

Protein structure superposition is useful for evaluating the quality of predicted protein 

models, assessing the precision of NMR ensembles, and identifying structurally 

conserved or flexible regions. Root-mean-squared deviation (RMSD) is the most 

widely used measure for comparing protein structures. For a pair of superimposed 

structures, we measure the average distance of all point pairs and for multiple 

superimposed structures, we measure the average distance of point pairs in all structure 

pairs. One deficiency with the RMSD is its sensitivity to outliers, in which case a 

single outlier may cause a significant increase of the RMSD. 

We introduce a new measure called normalized weighted RMSD (nwRMSD), which 

is extended from weighted RMSD with position weights [6], to minimize the structure 

superposition. We show that with normalization, the nwRMSD becomes a natural 

extension of RMSD and we can compare nwRMSD values of different superimposed 

structures. We also show that nwRMSD can be regarded as a function space, where 

many existing measures are special cases. Furthermore, we present an efficient 

iterative algorithm to minimize the nwRMSD given any convergent weight function 

and propose a new weight function for measuring superimposed structures. For 

pairwise structure superposition, we test on the structure superposition of predicted 

protein structure models and experimentally determined targets in free modeling 

category of CASP7 [4] and new folds category of CASP8 [1] and compare nwRMSD 

to measures used by CASP (GDT_TS [7], AL0_P [7], and MAMMOTH Z-score [5]) 

and the Gaussian-weighted RMSD [3]. For multiple structure superposition, we test on 

NMR ensembles in CASP8 and compare to the ensembles optimized by the standard 

RMSD and those used by the Protein Data Bank (PDB). The results show in general 

the nwRMSD performs better than other standard CASP scores in measuring the 

similarity between predicted protein structure models and experimentally determined 

targets and performs better than the standard RMSD and the original PDB ensembles 

in displaying structurally conserved or flexible regions of NMR ensembles. 

2   Normalized Weighted RMSD 

We assume there are n structures each having m points (atoms) and each structure Si 

for (1  i  n) has points pi1, pi2, …, pim. We assign a position weight wk  0 to each 

superimposed position k that 0
1

 

m

k kw  and define a normalized position weight 

 


m

k kkk wwmw
1

ˆ  (note that mw
m

k k  1
ˆ ). We define a weighted average structure S  

to have points  


n

i k

n

i ikkk wpwp
11
ˆˆ  for (1  k  m). We define a normalized 
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weighted root mean squared deviation (nwRMSD) 
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The normalization of position weights makes it possible to directly compare 

nwRMSD values when using different weight assignments. We have the following two 

theorems establish how the nwRMSD changes when weights change. 

Theorem 1. Given two weight functions wk and wk' (1  k  m) for n structures and 

two nwRMSD measures nwRMSD and nwRMSD', if wk' = swk, where s > 0 is a scalar, 

then nwRMSD = nwRMSD'. 

Theorem 2. Given two weight functions wk and wk' (1  k  m) for n structures, 

RMSD for each position k: )1(2
2

1

1

2

  




nnppRMSD

n

i

i

j jkikk
, and two 

nwRMSD measures nwRMSD and nwRMSD', if 
kk ww '  when k  c and 

kkk www ' when k = c (1  c  m), then we have: 

(a) if 0 kw , nwRMSD  nwRMSD' iff RMSDc  nwRMSD and nwRMSD  

nwRMSD' iff RMSDc  nwRMSD 

(b) if 0 kw , nwRMSD  nwRMSD' iff RMSDc  nwRMSD and nwRMSD  

nwRMSD' iff RMSDc  nwRMSD 

Next we list three theorems that establish the relations of the nwRMSD and the 

average structure. 

Theorem 3. The normalized weighted sum of squared distances for all pairs equals 

the normalized weighted sum of squared distances to the average structure: 

     


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k kikk

n

i

i

j

m

k jkikk ppwnppw
1 1

2

2

1

1 1

2
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Theorem 4. The average structure S  minimizes the weighted sum of squared 

distances from all the structures, i.e. for any structure Q with points q1, q2, …, qm, 

     


n

i

m

k kikk

n

i

m

k kikk ppwqpw
1 1

2

1 1

2
ˆˆ  and equality holds if and only if 

kk pq   for all positions with wk > 0. 

Theorem 5. The structure in a set Q1, …, Qt that minimizes the weighted sum of 

squared distances to all structures Si for (1  i  n) is the one whose nwRMSD is 

closest to S . 

Next we present an iterative algorithm that takes O(n m) operations in each iteration 

to minimize the nwRMSD for multiple structures. 

Algorithm 1. Given n structures with m points (atoms) each and weights wk at each 

position, minimize nwRMSD to within a threshold value  (e.g.  = 1.010
–5

). 

1. Translate a weighted centroid of each structure Si  for (1  i  n) to the origin. 

2. Calculate the average structure S  and deviation   


n

i

m

k kikk ppwSD
1 1

2
ˆ . 

3. For each Si (1  i  n), superimpose it to S  using Horn’s method that minimizes 

 


m

k kikik ppRw
1

2
ˆ  with an optimum rotation matrix Ri. Replace Si

new
 = Ri  Si. 

4. Calculate a new average newS  and deviation   


n

i

m

k kikk ppwSD
1 1

2
newnewˆ . 

5. If SD – SD
new

 < , exits; otherwise, set SD = SD
new

 and newSS   and go to step 3. 
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Algorithm 1 minimizes nwRMSD if all position weights are fixed. If we already 

know a weight function f(k) for (1  k  m) that assigns higher weights to better 

superimposed positions and lower weights to outliers, then we could use the following 

heuristic algorithm to optimize structure superposition. 

Algorithm 2. Given n structures with m points (atoms) each, optimize structure 

superposition based on weight function f(k) for (1  k  m). 

1. Set all wk = 1 for (1  k  m) and minimize SD of the protein structures using the 

Algorithm 1. 

2. For each aligned position k, calculate and set wk
new

 = f(k) and minimize SD
 new

 

using Algorithm 1. 

3. If SD – SD
new

 <  (e.g.  = 1.010
–5

), then the algorithm terminates;  

otherwise set SD = SD
 new

 and go to step 2. 

Since SD  0 and SD decreases in steps 2 and 3, Algorithm 2 will eventually stop. 

3   Results and Discussion 

We can regard the nwRMSD as a function space, where many existing distance-cutoff, 

number-cutoff, or position weighted RMSD based measures can be regarded as special 

cases of the nwRMSD measure. For example, we can map a distance-cutoff method to 

the nwRMSD by using a weight function 


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

td

td
w

k

k
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, so 
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nwRMSD = mdw
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2ˆ  = mmmd
m

k k 

1

1 1

2
 = 

11

21

md
m

k k 
 = RMSD. Then 

we can use the same method to minimize nwRMSD, use the weight function to choose 

a new set of m2 point pairs, and repeat these steps until the RMSD converges or certain 

criterion satisfies. 

We choose a weight function ))1(log(1
3

cdw kk   and Algorithm 2, where c is a 

non-negative constant, to optimize both pairwise and multiple structure superpositions. 

For pairwise structure superposition, we test the weight function on 17 protein 

targets in the free modeling category in CASP7 experiment [4] and 8 protein targets in 

the new fold category in CASP8 experiment [1]. In both experiments, evaluators 

(experts) vote on a few best models and second best models among all models using 

the scores from existing measures as references. Table 1 shows the top models chosen 

by experts and show the rankings by nwRMSD, GDT_TS [7], AL0_P [7], 

MAMMOTH Z-score [5], and the Gaussian-weighted RMSD [3] for CASP8 targets. 

The performance of the nwRMSD is comparable to GDT_TS and AL0_P in general. 

Considering the fact that the expert rankings are highly influenced by the GDT_TS and 

AL0_P scores [2], the comparable performance shows that the nwRMSD measure can 

be considered as an alternative measure for the CASP model evaluation. 

For multiple structure superposition, we test the weight function on 14 NMR 

structure targets in CASP8 and compare the results to both the superposition by 

standard RMSD and the one used by PDB. Figure 1 shows the NMR ensemble of 

T0472 (2K4M). We can see that the ensembles optimized by PDB and nwRMSD are 

significantly better than optimized by RMSD and the ensemble by the nwRMSD is 

slightly better than the one by PDB. 
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Table 1.  Comparison the rankings of expert, nwRMSD, and other measures for the predicted 

structure models for 8 targets in the new fold category in CASP8. 

Target Predicted structure 
Rankings 

Expert nwRMSD GDT_TS AL0_P MAMMOTH Gaussian 

T0397-D1 
TS093_2 1 31 38 56 54 38 

TS020_5 2 66 16 1 56 33 

T0405-D1 
TS489_1 1 1 1 1 1 51 

TS371_5 2 2 3 2 6 24 

T0443-D1 
TS149_3 1 2 1 7 11 70 

TS149_5 2 1 3 19 12 60 

T0460-D1 
TS489_3 1 1 1 1 1 73 

TS387_1 2 2 2 4 2 90 

T0476-D1 TS489_1, TS404_2 1, 2 1, 11 1, 2 1, 2 8, 12 47, 100 

T0482-D1 
TS489_3 1 1 1 1 1 100 

TS081_3 2 6 2 4 10 65 

T0510-D3 
TS404_4_2 1 1 1 1 2 35 

TS340_3, TS385_4 2, 3 5, 6 2, 3 2, 3 3, 4 81, 82 

T0513-D2 top 28 of GDT_TS 1-28 1-27, 29 1-28 1-28 1, 4-22, 24-30 24  78 

   
a. standard RMSD                        b. PDB                             c. nwRMSD 

Fig. 1. The superposition of NMR structure target T0472 (2K4M). 
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Abstract. During their lifetime, organisms as simple as bacteria are exposed to 
a variety of environments, each with its distinct spatio-temporal dynamics. 
Microbial communities display a remarkable degree of phenotypic plasticity, 
and organisms with high fitness emerge quite rapidly during evolution in novel 
environments. However, while adaptation occurs rapidly in certain 
environmental transitions, in others organisms struggle to adapt. Here, we 
investigate the hypothesis that the rate of evolution can both increase or 
decrease, depending on the similarity and complexity of the intermediate and 
final environments. Our results show that the rate of evolution can be 
accelerated by evolving cell populations in sequential combinations of 
environments that are increasingly more complex. To quantify environmental 
complexity, we evaluate various information-theoretic metrics, and we show 
that multivariate mutual information of environmental signals correlates well 
with the rate of evolution measured in our simulations. We find that strong 
positive and negative correlations between the intermediate and final 
environments lead to the increase of evolutionary rates, when the environmental 
complexity increases. . Elucidating such dependencies is the first step towards 
controlling the rate and direction of evolution, which is of interest to 
bioengineering and biotechnological applications.  

Keywords: Microbial Evolution, Biological Networks, Simulation, Multi-scale 
Modeling. 

1   Introduction and Methods 

All life forms, from microbes to higher vertebrates, are constantly subjected to 
evolutionary processes that lead to adaptation and phenotypic variation. Whether 
evolutionary forces lead to new and rapidly evolving species, as it is in the case of 
adaptive radiation, or are responsible for phenotypic divergence within a species, the 
underlying mechanism by which complex behavior arises remains the same: gradual 
accumulation of selected genetic mutations and epigenetic changes gives rise to a 
myriad of anatomical, physiological and behavioral expressions. A challenging task is 
to identify the environmental and organism-specific characteristics that allow the 
rapid adaptation from past to new environments. Computer simulations with logic 
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gates and RNA secondary structures have demonstrated that facilitated variation 
spontaneously emerges during evolution [1], while theoretical models provide support 
that varying environments  alter evolution [2] and gives rise to modular structures [3].  

 

 
 

Fig. 1. Step-wise evolution: Adaptation to a complex environment (A) can be accelerated (B) 
or decelerated (C) if guided through intermediate steps of a lesser complexity. Fitness profile 
for a population evolving in a target complex environment (solid black curve) is a 
multidimensional surface with multiple local maxima. Adaptation to intermediate environments 
(dashed grey fitness profiles) can direct evolution towards to (or away from) the global fitness 
maximum of the target environment. 

 
In complex environments, organisms have to explore a large parameter space 

before settling in stable fitness points (Fig. 1). Local minima and discontinuities may 
lead to sub-optimal fitness peaks, from where it may be difficult, or even infeasible, to 
escape. In addition, it has been shown that phenotypes that occupy flatter regions of 
the fitness surface are more robust to mutations, a phenomenon that was coined as 
“survival of the flattest”[4]. To further investigate the hypothesis that intermediate 
environments can accelerate or decelerate the evolution, we first define metrics to 
quantify environmental complexity, and then proceed to measure the rate of evolution 
in five environments by performing multi-scale simulations of evolving microbial 
populations in fluctuating environments.  

 
 

 
 
 
Fig. 2. Environments: Environmental signals 
(green) and nutrient abundance for five 
environments (bottom to top: AND, OR, A, B, 
XOR) shown as a function of time steps within 
one epoch. Nutrient presence is a delayed 
function of the two signals. 
 

 
We used the EVE simulator (Evolution in Variable Environments) to perform 

simulations of microbial populations in six environments with distinct temporal 
dynamics. The EVE simulator employs abstract, multi-scale models of basic sub-
cellular phenomena related to expression (transcription, translation, protein 
modification, degradation, basal expression), evolution (mutation, gene duplication, 
gene deletion), network regulation and other evolutionary processes (natural 
selection). It has been used successfully to generate hypotheses in nutrient-limited 
microbial communities [5], and it has been documented elsewhere [6,7]. In our 
simulations, organisms evolving in a fixed sized population cannot directly sense the 
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presence of resources, but can infer their future presence, if they couple to various 
environmental signals through biochemical and regulatory interactions. For our 
simulations here, we used environments where two signals, s1 and s2, correlate to the 
presence of nutrients in the environment (Fig. 2). For example the I/O characteristic 
of environment A is given by the logic Nutrients Presence [A] = Delayed (s1 AND 
NOT(s2)). XOR environment with the most complex correlation structure, due to the 
fact that the XOR gate is not linearly separable.  

2   Results and Discussion 

It is expected that during evolution, the time it takes until a fit phenotype emerges is 
inversely proportional to the complexity of the environment and information 
processing that the fit network model should be capable of. It is an open question, 
however, how we can capture the environmental complexity and link it to the time it 
will take to have a partial or full solution – in other words, to calculate the “rate of 
evolution”. To address this question, we evolved initially random populations in five 
environments (Fig. 2), and then measured the rate of evolution over 32 simulation 
runs. As expected, the rate of evolution (measured as the time constant in an 
exponential fit) was slower for XOR than any other environment tested. We found 
that multivariate mutual information, I(s1;s2;nutrients), correlates well with the rate of 
evolution for the environments that we studied (Fig. 3A). Next, we calculated the 
environmental similarity between any two environments by measuring the pair-wise 
Pearson correlation of nutrient presence.  Fig. 3B depicts the final “environmental 
network” that reflects the two measured quantities, the environmental quantity and 
similarity. We continued by testing whether evolution can be accelerated or 
decelerated by using different paths within the environmental network (Fig. 4). We 
found that exposing organisms to intermediate correlated environments of increasing 
complexity leads to a higher rate of evolution. As shown in Fig. 4, adaptation to a 
XOR environment becomes 74% faster, if cells first evolve in an intermediate OR 
environment. This phenomenon holds even for more than one intermediate 
environment (Fig. 4C). Interestingly, this acceleration is also observed in the case 
where the intermediate environment is strongly anti-correlated to the final one, as in 
the case of XOR evolution through the AND environment (Fig. 4D). 

 
Fig. 3. (A) Multivariate mutual information was found to correlate with the evolutional rate 
measured in simulations. Insert depicts this relationship with other informational measures 
used. (B) Relative complexity (node values) and similarity (link values) of AND, OR, A, B, 
and XOR environments.  
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Fig. 4. Single-step and multi-step evolution towards a XOR phenotype: The highlighted edges 
of each network correspond to the environmental transitions made during evolution 
(evolutionary path). The value of each edge corresponds to the average time to evolve a fit 
phenotype, in number of epochs. <T> and P are the average total time it takes to evolve the 
XOR phenotype and the success probability (ratio of successful over total experiments). (A) 
Direct evolution to an XOR environment is slow and has a low probability of success; (B,C) 
Initial evolution to one or more intermediate environments of lower complexity and subsequent 
evolution to the final environment accelerates adaptation, and boosts the fraction of successful 
simulations; (D) Intermediate environment, which is strongly anti-correlated to the final one: 
evolution is accelerated as well, but the fraction of successful simulations is significantly lower. 
 

In this paper, we show that the rate of evolution can be both accelerated and 
decelerated by exposing a cell population to a series of environments. The 
implications of this work span many areas of biological research. First, we extend our 
current understanding of evolution by deriving a set of rules that explain the 
directional change of evolutionary rates when populations are exposed to a series of 
environments. By quantifying the environmental complexity, we made possible a 
more rigorous assessment of the evolutionary potential of microbial communities in 
complex environments. In the context of synthetic biology and bioengineering, our 
work can provide a first glimpse on how to control evolutionary rates by 
systematically exposing microbial cultures to correlated environments, a method that 
may prove a powerful tool for the fine-tuning of genetic constructs and for the 
engineering of desired phenotypes.  
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Abstract. Using knowledge generated in science to promote human health is 

the main goal of translational medicine. To make this possible we need 

computational methods to handle the large amount and heterogeneity of 

information that arise from bench to bedside. A computational barrier to be 

overcome is the integrations of clinical, socio-demographic and biological data. 

In these effort ontologies plays an essential role by being a powerful artifact for 

knowledge representation. Chado is a modular database model ontology-

oriented that gained popularity for being a robust, flexible and generic platform 

to store biological data but it lacks supporting representation of clinical and 

social demographic information. This paper presents a framework to support 

translational research by integrating clinical and socio-demographic data with 

biomolecular information coming from different “omics” technologies. For this 

we extended Chado to allow the representation of clinical and socio-

demographic information.  

Keywords: Translational Medicine; Biological Database; Data Integration; 

Chado 

1   Introduction 

Translational research seeks to reduce the gap that exists between the bench and 

bedside. This is a great challenge that has many barriers to overcome. One of the most 

important is related to the nature of the data. The nature of clinical data is very 

different from molecular data although they are often closely related. To conduct a 

deep investigation regarding complex mechanisms responsible for the onset of 

pathological processes, a global analysis concerning different levels of information is 

most necessary. To make this possible, two aspects of data handling must be well 

defined: storage and analysis. It is necessary to provide a computational platform and 

a data model able to store, represent and integrate clinical and biomolecular 

information consistently. From a well formalized and structured model it is possible 

to design novel methods of computational analysis. 

In the area of genomics there are several models of biological databases such as 

AceDB  and Ensembl. These models serve as the basis for construction of 

computational tools for genomic analysis in an organism-independent way. A model 
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of biological databases which has gained popularity is Chado. It is a robust, flexible 

and generic platform that can be adapted to support research in different organisms. 

In this context the present work aims at the definition of an integrative 

computational platform for translational science. We will use and extend Chado as the 

underline database model to be able to aggregate, in a consistent way, clinical and 

molecular data, enabling the development of computational analysis to be applied in 

the field of translational medicine. To guarantee the standardization and enable 

further development of generic analysis tools we propose the design and use of a 

common reference ontology. Through this framework it will be possible to integrate 

sequence data, gene expression data from microarray, microRNA and disease 

association data with the clinical and socio-demographic features. 

2   Proposed Framework 

The proposed framework is compound by the proposed Chado clinical module, a 
migration methodology to be applied in legacy clinical research databases and an 
ontological mapping that allows data standardization, integration and development of 
generic analysis tools. 

2.1   Chado 

Mungal, Emmert and the Flybase group proposed a modular design based on ontology 
to represent biological information called Chado. Chado is a relational database 
schema that can be used as a basis for any group of genomic research. Chado is part of 
GMOD project[1] (Generic Model Organism Database) and is currently used by 
several research groups such as Xendb, ParameciumDB, AphidBase among others.  

One hallmark of Chado in relation to other generic databases models is that it 
makes intensive use of ontologies. Ontology plays a central role in Chado, because all 
stored information must be related to some ontology or controlled vocabulary. Some 
ontologies are already incorporated into but it is possible to incorporate new ontologies. 

There are computational tools that are compatible with Chado database. These 

tools are mostly provided by the GMOD group. We can cite the genome browser 

Gbrowse[2] and the annotation tool Apollo[3]. Chado also allows incorporation of 

other tools through the creation of Bridge Layers which consist of built views to make 

Chado similar to other databases and act as layers of compatibility with other tools. 

2.2 Proposed Model 

The proposed Clinical Module is compound  mainly by five tables: patient, 
patient_project, clinicosocialdata, clinicosocialdata_relationship and extrainfo. The 
patient table is self-described, this is where are stored the patients.  Each patient can 
participate in various projects, this information is represented in table patient_project. 
The clinicosocialdata table is where the most of the information are stored. This table 
was designed to represent, in a flexible way, any kind of clinical or socio-demographic 
information. The table clinicosocialdata_relationship is used when it is necessary to 
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represent complex relationships between clinical or socio-demographic data. In 
extrainfo table are stored data that are patient-independent such as cities names and 
codes. The semantics of the clinical data stored in this module is typed by an ontology 
stored in the Controlled Vocabulary module of Chado. 

 

2.3 Proposed Migration Methodology 

We developed a methodology to migrate data from a legacy databases to the Chado 
Clinical Module. The methodology consists in four steps: 

1. Create an ontology to represent the clinical database; 
2. Store the clinical database ontology in the Controlled Vocabulary Module of 

Chado; 
3. Store the data in Clinical Module according to the clinical database ontology; 
4. Create a set of views in Chado to act as a bridge layer of the clinical database; 

2.4 Ontological Mapping 

The proposed structure does not define the meaning of information stored. These 
information could be represented using specific ontologies that capture the meaning of 
that data in the particular database. But to get the most out of this generic model, 
enabling the development of analysis tools that could be applied in different instances 
of Chado with data descending from different clinical databases it is necessary to 
define a common semantic. This can be done by adopting a reference ontology, so the 
analysis tools could be designed to obtain semantic information from the reference 
ontology. The work then consists of ontological mapping between the ontology that 
describes the clinical database and the reference ontology. 

In this work we proposed the SNOMED CT[4] as the common reference ontology. 
The advantage of using SNOMED as reference ontology is because it covers many 
independent domains. It is composed by more than 300.000 terms and the domains 
coverage vary from body structures, diseases, pharmaceutical products to geographic 
locations, social contexts and physical objects. 

3   Results 

To test the proposed framework we have implemented an instance of Chado using the 
Database Management System PostgreSQL 8.4[5].  We also implemented the 
proposed Clinical Module. 

We tested the approach with success in data from the project "Oncogenomics 
Applied to Therapy of Head and Neck Carcinoma” from GENOPROT Network 
(CNPq) where the information was stored in the database of Clinical Genomics Project 
which is part of the Ludwig/FAPESP Human Cancer Genome Project. 

Clinical and demographic data were obtained from patients with tumors of head 

and neck through the Service of Head and Neck Surgery in School Hospital of 

Faculty of Medicine (SH-FM) of University of São Paulo, at Ribeirao Preto, Brazil. 
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A Chado instance was installed on the relational DBMS PostgresSQL. The clinical 
database has about 20 tables with some table containing up to 120 columns. The main 
table stores information about the patient like age, sex, weight and height. The clinical 
information was stored in a MySQL[6] relational DBMS. 

4 Conclusion 

Turning knowledge generated by science in a real benefit to enhance human health is a 
difficult task. This is one of main goals of translational research, more specifically 
research in translational medicine. To make this real, a computing infrastructure is 
required to support storage, management, integration and analysis of both biological 
and clinical information. 

This work aims to take a step toward this infrastructure proposing a data model that 
enables the representation of clinical, socio-demographic and biological information in 
a single database. The biodatabase model Chado was extended to include a module for 
representing clinical information 

Through the proposed clinical information module several clinical databases can be 
adapted. The real benefit of adopting a generic model for information representation 
becomes concrete with the emergence of various applications and analysis tools that 
are constructed and maintained by the community that adopts this model. It also 
facilitates the integration of applications and the exchange of data between research 
groups and also for research groups that do not adopt Chado and may be wearing it 
after the proposed extension. 

The adoption of Chado as the basic model of biological database allows the reuse 

of the existing tools built from Chado or adapted to it through bridge layers for 

analysis and visualization of molecular data. With the proposal of the clinical module 

this solution becomes a robust computational framework to support research in 

translational medicine. 
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High-throughput technologies have emerged over the last few years as important tools 
for genomic research. Variable selection, such as gene selection using microarray 
expression data, becomes fundamental to high-dimensional data analysis. It enables us 
to identify the most significant genes associated with a certain kind of disease. 
However, the large-scale data measured usually comes with a much higher dimension 
of genes than the number of observed samples. Thus, it poses unique challenges for 
data mining. Additionally, highly correlated features are also frequently encountered 
in variable selection. Therefore, standard statistical techniques are often inadequate. 
We address the problem by introducing Bayesian Elastic Net to achieve a grouped 
and sparse solution. Here, we mainly extend this method in two directions. First, since 
genomic or proteomic data usually comes with more than two types of samples, we 
develop a multinomial probit regression model of Bayesian Elastic Net for 
classification problem. It is capable of identifying classifiers to infer a set of important 
and highly correlated predictors, e.g. genes or peptides. Additionally, in order to 
identify genomic biomarkers for clinical application, we present an adaptation of 
Bayesian Elastic Net under censored exponential regression model. Although 
sampling from the full posterior distribution using Gibbs sampler can be 
straightforward and accurate, it is computationally expensive if given large sample 
size or predictor numbers. Therefore, we adopt a variational Bayesian (VB) inference 
method, which has advantage in fast convergence and computational efficiency. 
Those two models are validated by first performing simulation on toy datasets, and 
then on case studies. We apply the multinomial probit regression model to classify 
and predict sepsis patients’ disease status. The dataset in this study, collected by 
National Center for Genome Resources (NCGR), is drawn from measurements of 
clinic indices of sepsis patients at different status, including NIS (non-infected SIR), 
UCS (uncomplicated sepsis), SS/Shock (severe sepsis or septic shock) and SD (sepsis 
death). A goal of this study is to help diagnose patients’ prognosis based on the 
biomarker indices. Additionally, we assess Bayesian survival model on lung cancer 
patients’ microarray data and failure time. The genetic signatures selected from the 
model separate the good and poor prognosis patient groups at a significant level, using 
the Kaplan-Meier curves. Results from Gibbs sampling are compared with the VB 
approximation. It shows that Gibbs sampler has better accuracy in classification, 
while VB tends to achieve better sparseness and efficiency. Thus, Bayesian Elastic 
Net strategy is a practical and informative method for variable selection. Additionally, 
the proposed multinomial probit regression model offers consistent and reliable 
classification across multi-categorized samples. Finally our survival regression model 
is a powerful technique for studying genomic effects on the duration of survival. 
 

Keywords: Bayesian Elastic Net, multinomial probit regression, survival analysis, 
variational Bayesian, variable selection. 
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Abstract. Multifactor dimensionality reduction (MDR) has been successfully 
applied to identification of gene-gene interactions that are well recognized as 
playing an important role in understanding complex traits. Generalized MDR 
(GMDR) was its extension that allows adjustment for covariates. The current 
GMDR software mainly focuses on candidate gene association studies with a 
relatively small number of genetic markers and has some limitations to be 
extended to genome-wide association studies (GWAS) with a large number of 
genetic markers. We developed GWAS-GMDR, an effective parallel computing 
program package with special features for GWAS using distributed job 
scheduling method and/or CUDA-enabled high-performance graphic processing 
units (GPU). First, it implemented an effective memory handling algorithm and 
efficient procedures for GMDR to make joint analysis of multiple genes 
feasible for GWAS. Second, a weighted version of cross-validation consistency 
based on ‘top-K selection’ (WCVCK) was proposed to report multiple 
candidates for causal gene-gene interactions. Our simulations indicated that  
WCVCK has better performance in its ability to identify epistatic loci, compared 
with selecting models that just minimized the prediction error. Third, various 
performance measures were implemented to evaluate MDR classifiers, 
including balanced accuracy, tau-b, likelihood ratio and normalized mutual 
information. Fourth, three popular methods for handling missing genotypes 
were implemented   complete, available and missing category. Finally, our 
applications support both CPU-based and GPU-based parallel computing 
system. We applied our applications using a real genome wide data set from 
WTCCC hypertension dataset to identify two-way interaction models in 
genome-wide scale.  

Keywords: Gene-gene interaction; Multifactor dimensionality reduction(MDR); 
Genome-wide association study(GWAS); General purpose graphic processing 
unit (GPGPU);  
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1   Introduction 

Multifactor dimensionality reduction (MDR) is a popular method to identify gene-
gene (GG) interactions that affect disease susceptibility simultaneously (Ritchie et 
al., 2001). MDR classifies samples into high and low risk groups based on relative 
risks at their genotype combinations of genetic variables. An evaluation measure (e.g., 
balanced accuracy) is used to assess classification and prediction performances and 
select the best MDR classifier. Finally, the single best MDR classifier is suggested via 
a voting algorithm based on cross-validation (CV), such as cross-validation 
consistency (CVC; Ritchie et al., 2001). 

In genetic association studies, there often exist covariates that would interfere with 
correct inference on genetic effects. Thus the adjustment for such covariates is 
necessary. Generalized MDR (GMDR) was extended from the MDR to permit 
adjustment for covariates and implemented in Java GMDR (Lou eat al., 2007). 
GMDR computes score statistics using a generalized linear model that contains 
covariates as well as genetic interactions, and constructs GMDR classifiers based on 
score statistics. 

Since the genotype data with up to ~1 million single nucleotide polymorphisms 
(SNPs) became common, there is a growing need for more efficient GMDR program 
that enables genome-wide analysis of GG interactions. However, Java GMDR was 
developed mainly for candidate gene studies with a small number of genetic variables, 
and no GMDR software is available for large-scale genotype data. For the original 
MDR analysis, some high performance software have been proposed, such as parallel 
MDR (pMDR) (Bush et al., 2006) that employs parallel computing environment, and 
MDRgpu (Sinnott-Armstrong et al., 2009) that requires graphics processing units. 
Unfortunately, none of these MDR software have capability of adjusting covariates.  

We developed GWAS-GMDR, the first parallel computing software for GMDR 
analysis of GWAS. In addition, GWAS-GMDR has implemented some special 
features for GWAS. For example, it can report multiple best SNP combinations with 
similar GG effects, instead of reporting one single best SNP combination. 

2   Methods & Materials 

2.1 MDR implementation 
The GWAS-GMDR was modularized with four main components: data-processing, 

score-calculation, analysis, and result-reporting modules. The data-processing 
includes data-loading, handling of missing data, and data-partitioning for CV. In the 
score-calculation module, score statistics are computed for covariate adjustment. The 
analysis module consists of five sub-modules: generating combinations of genetic 
variables to be analyzed; calculating multilocus-genotype counts or average scores; 
constructing MDR classifiers; evaluating the classifiers; and storing results. In the 
result-reporting module, all results are aggregated and summarized to report final 
results. When there is no covariate, GWAS-GMDR skips the score-calculation 
module and performs the same MDR analysis. 

When high-order interactions are exhaustively searched in GWAS, it may be 
infeasible to populate all combinations of genetic variables due to physical limitation 
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of system (e.g., machine memory). To resolve this problem, we developed an efficient 
indexing algorithm that partitions the indices for all possible combinations into equal-
size subsets. Corresponding to each index-subset, MDR classifiers are constructed 
and evaluated. Users can specify the size of index-subsets to accommodate a memory 
condition of their machines as well as to optimize the performance of the software. 

Besides balanced accuracy, we implemented eight additional evaluation measures, 
including tau-b, likelihood ratio, and normalized mutual information, three of which 
are known to improve the MDR performance (Namkung et al, 2009a). Also, three 
popular approaches were implemented to handle missing genotypes, such as 
‘complete’, ‘available’ and ‘missing category’ (Namkung et al, 2009b). 
 
2.2 Weighted cross-validation contingency 

In GWAS-GMDR, we proposed an extension of CVC, called as WCVCK, which is 
a weighted voting algorithm based on top-K selection. This procedure selects a user-
specified number (K) of the best MDR classifiers (i.e., top K classifiers), rather than 
the single best classifier, at each CV step. For each selected MDR classifier, its 
weighted vote WCVCK is calculated as below to indicate how many of the training-
test sets support the selected classifiers as the K best classifiers in m-fold CV (e.g., m 
= 10): 

 
 
 
 
 
 
Here, the weights are used to take their performances at each CV step into account 

when top K classifiers are selected. Examples of a weight system are the inverse rank 
of top K classifiers within each CV step. Based on WCVCK (e.g., all combinations 
with WCVCK > 0.8), multiple candidates of causal GG interactions can be reported 
along with their performance measures (e.g., predictability for training and test 
datasets). Note that WCVC1 is equal to CVC. 

 
2.3 Simulation and genome-wide real data analysis 
Simulation was conducted to compare the performance of WCVCK with general 
selecting model that just minimized the prediction error. This simulation was assumed 
case-control study using similar two-locus epistasis models considered by Namkung 
et al. (2009a). Using WTCCC hypertension dataset, we demonstrated genome-wide 
two-way interaction analysis. After quality control process, WTCCC hypertension 
dataset has 327,632 SNPs and 6,417 samples. 
 

3   Result & Discussion 

We developed GWAS-GMDR for GG interaction analysis with covariate 
adjustment in genome-wide scale. GWAS-GMDR is flexible for various kinds of 
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computing environments. Under a parallel computing environment, users can use 
GWAS-GMDR via a job scheduling system including portable batch system which 
most cluster systems employ. When parallel computing is unavailable, GWAS-
GMDR is executable with a single processor. And, users can run GWAS-GMDR 
(GPU version) on CUDA-enabled computing system with GPU devices with high-
performance. 

In order to demonstrate the performance, we installed GWAS-GMDR and the 
current Java GMDR on 2-GHz Dual Core AMD Opteron(tm) Processor and a 
workstation with three NVIDIA GeForce GTX285 graphic cards. We tested them for 
scanning all pairwise interactions under various settings (i.e., no or three covariates, 
sample sizes of 500~10000,  and 100~30000 SNPs). With a single processor, 
GWAS-GMDR performed much faster (2~7 times) than the Java GMDR across all 
the test settings. In testing with larger sample sizes and a large number of SNPs, 
GWAS-GMDR showed further reduction in processing time in a remarkable degree 
under parallel computing. When 1000 SNPs are pre-screened for interaction analysis, 
GWAS-GMDR can evaluate all pairwise and three-way interactions in less than 1 
minute even with 20 processors. Additionally, we found that datasets with no 
covariates can be analyzed 2~3 times faster by GWAS-GMDR than other CPU-based 
MDR software, such as libMDR and pMDR. With a GPU system, GWAS-GMDR 
completed two-way interactions in ~4.1 days with 327,632 SNPs and 6,417 samples. 

The modularization feature makes GWAS-GMDR pliable to future modifications 
on individual modules. The new indexing algorithm can optimize the performance 
according to machine memory condition; eliminate limitations on sample sizes, the 
number of genetic variables, and the order of gene-gene interactions; and hence make 
it practically feasible to investigate GG interactions for genome-wide scale datasets.  

Finally, the GWAS-GMDR provides users with various options for missing 
handling and for evaluation measures. The proposed weighted voting algorithm 
(WCVCK) enables users to produce a list of candidate causal GG interactions in the 
order of importance.  
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Abstract. GWA (Genome-wide association) analysis has been successful to 
detect significant SNPs and genes affecting common diseases. However, the 
single SNP approach in GWA can miss the joint effect from multiple genetic 
risks. Considering the multiple SNPs jointly under the prior biological 
knowledge can increase power of GWA analysis. When multiple SNPs are 
considered, the corresponding SNP-level association measures can be 
correlated due to LD among SNPs. We proposed SNP-PRAGE, a SNP-based 
parametric robust analysis of gene-set enrichment, which handles correlation 
adequately among association measures of SNPs by the parametric assumption. 
We summarized SNP-level association measures based on the gene size and the 
LD structure of nearby genes. We conducted the simulation study and applied 
SNP-PRAGE to hypertension data of 7,551 samples from KARE (Korea 
Association Resource) cohorts recruited in Korea. Our results shows SNP-
PRAGE can reduce many false positives and requires much less computational 
efforts than the previous permutation-based gene set approaches.  

Keywords: Genome-wide association analysis, gene set analysis, linkage 
disequilibrium (LD), parametric 

1   Introduction 

The GWA (genome-wide association) analysis has been successful to investigate 
generic variant of individuals associated with some targeted phenotypes. Most GWA 
tests only consider association of a single SNP and list the most significant SNPs or 
genes. However, complex diseases often result from joint action of multiple risk 
factors and therefore the single-SNP-based approach may miss the genetic variants 
that jointly have significant risk effect but individually make only a small contribution. 
To address these issues, we consider the effect of multiple SNPs jointly and use prior 
biological knowledge for the SNPs.  

GSEA [1], the pioneering gene set analysis method, was extended to GWA data by 
Wang et al. [2]. They repeated the permutation of sample label and calculation of 
gene set statistics 1,000 times for the test of gene set statistic. This permutation-based 
testing can preserve a correlation among the SNP-level measures due to LD among 
SNPs, but this is very computationally expensive process in genome-wide scale. 
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In order to reduce computing time, some parametric methods based on a specific 
distribution have been used. For example, GLOSSI method developed by Chai et al. 
[3] used Fisher’s combination test under the assumption of correlated p-values. Nam 
et al. [4] proposed the Z-statistic method that compares a specific gene set to other 
sets. The Z-statistic method is the extension of PAGE [5], which is the parametric and 
competitive GSA for microarray data. However, the Z-statistic method assumes no 
correlation among SNP-level p-values. 

We propose SNP-PRAGE, a SNP-based parametric robust analysis of gene-set 
enrichment, which is based on the simple normality assumption. We consider the 
correlation among SNP-level p-values without taking permutation step. We compare 
our method to Wang’s method, GLOSSI and Z-statistic method via the simulation 
study in terms of size, power and computing time and also show the result based on 
hypertension phenotype of 7,551 samples from KARE cohorts. 

2   Methods 

2.1.  Z-statistic method 
 

Nam et al. [4] implemented the Z statistic method in their software, GSA-SNP. 
They used a negative logarithm of mth best p-value (p(m)) within each gene as the gene 
summary measure. Using this gene summary measure, they calculated a Z-score as 
gene-set level summary. This Z-score is expected to follow a normal distribution 
based on the central limit theorem. In order to meet a normal distribution assumption, 
they assumed the gene level order statistic summary has identical and independent 
distribution (i.i.d.). However, the mth best p-value is not identical over the gene size 
because a gene with many SNPs will have a lower mth best p-value than genes with a 
few SNPs. They also assumed the gene-level summary measure has a homogeneous 
variance over the gene sets. However, the variance of their summary measure depends 
on the gene size. When the gene size is large, the variance of the summary measure of 
the gene will be small.  

2.2   SNP-PRAGE 

To address the issues of the Z-statistic method we mentioned above, we can 
multiply the gene size to the mth best p-value so that it has approximately identical 
distribution over the gene size. The moment generating function does not depend on 
the gene size when p-values are independent of each other and the gene size is large 
enough. Gene-level measure may have an independent distribution but SNP-level p-
values are not independent of each other because of the LD structure. We propose 
using the effective gene size instead of gene size so that gene-level summary measure 
has approximately identical distribution over the gene size irrespectively of the LD 
structure between p-values. 
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Our empirical research shows that gene level measure does not have common 
variance over gene set especially with the small gene set size. So we assumed that the 
gene level measure has a heterogeneous variance over the gene sets. We compute the 
sample variance distinctly over gene set and apply Welch’s t-statistic for the test. 

3   Real Data analysis 

We used canonical pathways from MsigDB database (http://www.broadinstitute. 
org/gsea/msigdb/index.jsp). We applied SNP-PRAGE to KARE (Korea Association 
REsource) GWA data. Participants of population-based cohorts recruited in Korea are 
genotyped with the Affymetrix Genome-Wide Human SNP array 5.0. We analyzed 
the hypertension data from 7,551 unrelated individuals. The logistic regression 
analysis with an additive model is conducted after adjustment for age, sex, and 
recruitment center. We obtained 5 significant gene sets from the result of SNP-
PRAGE based on q-value 0.1 as cut off. These gene sets are known to be related to 
hypertension, directly or indirectly. [6-9] 

4   Simulation study  

We generated simulation data based on KARE data for the various gene size and 
SNP effect size. We compared the performance of SNP-PRAGE, modified GSEA 
method [1], GLOSSI [3], and Z-statistic method [4].  
We found type 1 error and power of the Z-statistic method depend largely on gene 

size. When causal gene set consists of genes with large gene size, Z-statistic method 
led very high type 1 error and power, and gave larger power as m is larger. So the 
results from Z-statistic method can have false positive especially when gene set has 
larger genes. 

However, SNP-PRAGE gave the consistent results irrespective of gene size. As m 
is larger, SNP-PRAGE has a little larger power. Based on the results, SNP-PRAGE 
has comparable performance to GLOSSI and GSEA in terms of power and size.  

Z-statistic method has shortest computing time for analysis. It is because they do 
not consider LD structure between SNPs. Among methods which consider LD 
between SNPs, SNP-PRAGE has shortest computing time and the nonparametric 
GSEA method takes 18.5 times computational efforts than SNP-PRAGE based on our 
simulation results. When considering the computing time for the single SNP analysis 
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in KARE data is more than 300 times than one in simulation data, GSEA method will 
take very long period of computing time. 

5   Discussion 

We compared the performance of three parametric test-based methods (Z-statistic 
method, GLOSSI, SNP-PRAGE) and one nonparametric test-based method (GSEA) 
for the test of the gene set. The Z-statistic method does not consider LD and reduce 
much computing time but may have lots of false positive results because of 
overestimated gene set statistics when the gene set has many large genes. We found 
that considering LD block of SNPs helps us to deal with the correlation between p-
values appropriately for estimating the effective gene size. Multiplying the effective 
gene size to minimum p-value for the gene-level summary of SNP-PRAGE can 
reduce the false positive results from large gene size. SNP-PRAGE has comparable 
performance to GLOSSI and GSEA despite not undergoing permutation step which 
requires a lot of computing time 
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Abstract. P.R.E.S.S. is an R package developed to allow researchers
to get access to and manipulate on a large set of statistical data on
protein residue-level structural properties such as residue-level virtual
bond lengths, virtual bond angles, and virtual torsion angles. A large
set of high-resolution protein structures are downloaded and surveyed.
Their residue-level structural properties are calculated and documented.
The statistical distributions and correlations of these properties can be
queried and displayed. Tools are also provided for modeling and analyz-
ing a given structure in terms of its residue-level structural properties.
In particular, new tools for computing residue-level statistical potentials
and displaying residue-level Ramachandran-like plots are developed for
structural analysis and refinement. P.R.E.S.S. will be released in R as an
open source software package, with a user-friendly GUI interface, acces-
sible and executable by a public user in any R environment.

Key words:Protein structure analysis, protein residual-level structural
properties, structural bioinformatics, statistical potentials, structural cor-
relation plots

1 Introduction

The atomic-level structural properties of proteins, such as bond lengths, bond an-
gles, and torsion angles, have been well studied and understood based on either
chemistry knowledge or statistical analysis. Similar properties on the residue-
level, such as the distances between two residues and the angles formed by short
sequences of residues, can be equally important for structural analysis and mod-
eling, but they have not been examined and documented on a similar scale.
While these properties are difficult to measure experimentally, they can be sta-
tistically estimated in meaningful ways based on their distributions in known
protein structures.
In our recent work [1], we have downloaded a large number of high-resolution
X-ray structures from PDB Data Bank [2], and collected and analyzed several
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important residue-level structural properties including the distances between two
neighboring residues; the angles formed by three residues in sequence; and the
torsion angles of four residues in sequence. We call them, respectively, the residue
level virtual bond lengths, virtual bond angles, and virtual torsion angles. We
have examined the statistical distributions of these virtual bonds and virtual
angles in known protein structures. In a four-residue sequence, there are two
virtual bond angles and one torsion angle in between. We name them, according
to their order in the sequence, the α-angle, τ -angle, and β-angle, where τ is the
torsion angle (Fig. 1a). In a five-residue sequence, there are three virtual bond
angles and two torsion angles. We name them, according to their order in the
sequence, the α-angle, τ1-angle, β-angle, τ2-angle, γ-angle, where τ1 and τ2 are
torsion angles (Fig. 1b). For these sequences, we have investigated the correla-
tions among some of associated angles and in particular, the α-τ -β correlations
for four-residue sequences and τ1-β-τ2 correlations for five-residue sequences.
We have shown that the distributions of residue distances and angles may vary
with varying residue sequences, but in most cases, are concentrated in some
high probability ranges, corresponding to their frequent occurrences in either
α-helices or β-sheets in proteins. We have shown that between α and τ angles
and τ and β angles, there exist strong correlations, which suggests that proteins
follow certain rules to form their residue level angles as well, just like those for
their atomic level φ-ψ angles. To the authors knowledge, these properties have
not been discovered and documented before, but can be very valuable in applica-
tions [1]. In this paper, we describe a related piece of work with [1] on developing
a software package called P.R.E.S.S. for direct access to the statistical data on
the residue-level structural properties we have collected and analyzed. The soft-
ware is developed in R [3] and will be released as an open source package, with
a user-friendly GUI interface, accessible and executable by a public user in any
R environment. With this software, the distributions and correlations of given
types of residue distances or angles can all be retrieved and displayed. Tools
are also provided in P.R.E.S.S. for modeling and analyzing a given structure in
terms of its residue-level structural properties. In particular, tools for computing
residue-level statistical potentials and displaying residue-level Ramachandran-
like plots are developed for structural analysis and refinement. We describe the
organization of the software, the data source, the computational methods, and
all the functional modules. We provide examples to demonstrate the use of the
software.

2 Sytem Organization and Interface

P.R.E.S.S. can be divided into two ends, front end and back end. The back end
includes the parts for downloading structural data, calculating residue distances
and angles, and saving the distances and angles. The front end is responsible
for providing all data retrieving and analysis functions using the distance and
angle data calculated and saved in the back end. In the back end, there are
three major components: 1). Download the structural data from PDB Data
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(a) (b)

Fig. 1: Residue distances and angles. (a) The α-τ -β angle triplet in a four-
residue sequence. (b) The α-τ1-β-τ2-γ angle quadruple in a five-residue sequence.
The residues are assumed to be located at xi, xj , xk, xl, xm.

Bank, which can be down automatically or manually, but currently only semi-
automatically. 2). Compute and collect residue-level distances and angles. 3).
Save the distances and angles into five databases. They are database for virtual
bond lengths, database for virtual bond angles, database for virtual torsion an-
gles, database for virtual angle sequences of four-residue sequences, and database
for virtual angle sequences of five-residue sequences, named B, A, T, ATA, and
TAT databases, respectively. More specific information on the content of each of
these databases is given below.
B-database: Stores the virtual bond lengths for all the neighboring pairs of
residues for each downloaded structure. Each record in the database contains
the following information:

Protein ID Residue 1 Residue 2 1-2- distance

A-database: Stores the virtual bond angles formed by all the connected triplet
of residues of each downloaded structure. All residue-level 1-3-distances are also
saved. Each record in the database contains the following information:

Protein ID Residue 1 Residue 2 Residue 3 Bond Angle 1-3- distance

T-database: Stores the virtual torsion angles (τ) formed by all the connected
quadruplets of residues of each downloaded structure. All residue-level 1-4-
distances are also saved. Each record in the database contains the following
information:

Protein ID Residue 1 Residue 2 Residue 3 Residue 4 τ 1-4 distance

ATA-database: Stores the α-τ -β angle sequences for all the four-residue se-
quences in each downloaded structure. Each record in the database contains the
following information:

Protein ID Residue 1 Residue 2 Residue 3 Residue 4 α τ β
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TAT-database: Stores the α-τ2-β-τ2-γ angle sequences for all the five-residue
sequences in each downloaded structure. Each record in the database contains
the following information.

Protein ID Residue 1 Residue 2 Residue 3 Residue 4 Protein 5 α τ1 β τ2 γ

In the front end, there are two major components: the GUI interface and the
computational unit. The GUI interface takes a query from the user and passes
it to the computational unit. The computational unit has a collection of rou-
tines, responsible for various computational tasks. It retrieves the data from the
databases in the back end, performs certain calculations, and returns the results
to the GUI interface. The interface then displays the results. More specifically,
the GUI interface shows a window of six functional panels (Fig. 2), each ac-
cepting a specific type of queries: 1). Queries on virtual bond lengths for two
residues. 2). Queries on virtual bond angles for three residues. 3). Queries on
virtual torsion angles and ATA correlations for four residues. 4. Queries on TAT
correlations for five residues. 5. Structural analysis and evaluation. 6. Help in-
formation. The overall system organization of P.R.E.S.S. is shown in Fig. 3. We

Fig. 2: P.R.E.S.S. graphics interface. PRESS has a graphics interface with six
functional panels corresponding six functional routines, each providing a specific
structural computing or analysis function.
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describe the data source and computational methods used in P.R.E.S.S. in the
following section.

3 Functional Modules

3.1 Distribution of Virtual Bond Lengths

One of functions of P.R.E.S.S. is to retrieve the virtual bond lengths for a given
pair of residues and find the distribution of the particular bond length over a
certain distance range. The found distribution can be displayed in a graph as
shown in Fig. 4. The residue pair to be searched for can be specified from a
pull-down menu. Each residue can be a specific or any type. For the latter, any
type is considered for that residue. The bin size of the distribution graph can be
adjusted. The graph can be displayed to show either the frequency or density of
the bond lengths.

Fig. 3: Distribution of virtual bond lengths. This snapshot shows the dis-
tribution graph for the virtual bond lengths between ASN and MET. The users
can not only move the slider to adjust the bin size of the histogram, but also
switch between frequncy and density displays.

3.2 Distribution of Virtual Bond Angles

One of functions of P.R.E.S.S. is to retrieve the virtual bond angles for a given
sequence of three residues and find the distribution of the particular bond angle
over a certain angle range. The found distribution can be displayed in a graph
as shown in Fig. 5. The residue triplet to be searched for can be specified from a
pull-down menu. Each residue can be a specific or any type. For the latter, any
type is considered for that residue. The bin size of the distribution graph can be
adjusted. The graph can be displayed to show either the frequency or density of
the bond angles.
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Fig. 4: Distribution of virtual bond angles formed by Any, ASN, and
Any. This snapshot shows the distribuion graph for the virtual bond angles
formed by a residue sequence Any, ASN, and Any.

3.3 Angle-Distance Correlations

When the distribution of a virtual bond angle is queried, an option is available
for displaying the correlation between the bond angle and the corresponding
residue 1-3-distance. This correlation can be requested for any sequence of three
residues, as shown in Fig. 6.

3.4 Distribution of Virtual Torsion Angles

The virtual torsion angles for a given sequence of four residues can be retrieved.
The distribution of the particular torsion angle can be displayed over a certain
angle range. The residue quadruplet to be searched for can be specified from a
pull-down menu. Each residue can be a specific or any type. For the latter, any
type is considered for that residue. The bin size of the distribution graph can be
adjusted. The graph can be displayed to show either the frequency or density
of the torsion angles. The graph can be displayed along with the distributions
of the neighboring virtual bond angles (α,β), as shown in Fig. 7. The density
distribution of the angle sequence α-τ -β can be displayed as a 3D plot in α-τ -β
space, as shown Fig. 8. The correlation between the virtual torsion angle and
the corresponding residue 1-4 distance for a given sequence of four residues can
also be displayed.

3.5 Correlation of Virtual Torsion Angles

The angle sequence α-τ1-β-τ2-γ for a given sequence of five residues can be re-
trieved. The density distributions of the virtual bond angle β and its neighboring
two virtual torsion angles can be displayed. The graphs can be displayed in a
matrix of plots, as shown in Fig. 9. The density distribution of τ1-β-τ2 can also
be displayed as a 3D plot in the τ1-β-τ2 space as shown Fig. 10.
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Fig. 5: Scattered plot of the virtual bond angles against their residue 1-
3 distances. This snapshot shows the distribution graph for the angle-distance
pairs for residues ALA, GLU, and VAL.

Fig. 6: A matrix of scattered plots of the distributions and correlations
of the virtual torsion angle and its two neighboring virtual bond an-
gles. The plots show the distribution and correlation graphs for the virtual
torsion angle and its two neighboring virtual bond angles for residues LYS, Any,
ASN, Any. The matrix of plots is 3 by 3. The graph in each is defined as follows:
Square(1,1) = distribution of virtual bond angle 1; Square(2,2) = distribution
of the virtual torsion angle; Square(3,3) = distribution of virtual bond angle 2;
Square(1,2) = correlation between virtual bond angle 1 and the virtual torsion
angle; Square(1,3) = correlation between the bond angle 1 and virtual bond
angle 2; Square(2,3) = correlation between the virtual torsion angle and virtual
bond angle 2.
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Fig. 7: 3D scattered plot for the virtual torsion angle and its two neigh-
boring virtual bond angles. This snapshot shows the density distribution of
the α-τ -β angle triplets for residue sequence LYS, Any, ASN, and Any in the
α-τ -β space. A lowess approximation to the distribution is also plotted.

3.6 Structural Analysis – Computation of Statistical Potentials

One of important functions of P.R.E.S.S. is to evaluate the statistical potentials
on the virtual bonds or virtual bond angles for a given structure (Fig. 11). The
potentials are defined in terms of the statistical distributions of the virtual bond
lengths and virtual bond angles. The virtual bond length potential can be evalu-
ated for every neighboring pair of residues of the given structure. Therefore, the
distribution of the potential energy along the residue sequence of the structure
can be obtained and displayed to show how flexible the virtual bonds are along
the sequence. The higher the potential energy is for a specific bond, the lower
the probability of the bond length is in the distribution of the bond length in
known proteins, and hence the more deviated it must be from its average value
the bond length (Fig. 12). The virtual bond angle potential can be evaluated for
every sequence of three residues of the given structure as well. The distribution
of the potential energy along the residue sequence of the structure can also be
obtained and displayed to show how flexible the virtual bond angles are along
the sequence. It has the same property as that for the bond length energy for
structural evaluation (Fig. 13).

3.7 Structural Analysis – Residue Angle-Angle Correlation Plots

One of the most important functions of P.R.E.S.S. is that it can evaluate the
correlations of the virtual bond and torsion angles and display a residue-level

ISBRA 2011  Short Abstracts 

 
124



9

Fig. 8: A matrix of scattered plots for the distributions and correlations
of virtual bond and torsion angles τ1-β-τ2. The plots show the distribution
and correlation graphs for the virtual bond and torsion angles τ1-β-τ2 for residues
ARG, Any, ALA, GLU, and Any. The matrix of plots is 3 by 3. The graph in
each is defined as follows: Square(1,1) = distribution of virtual torsion angle τ1;
Square(2,2) = distribution of virtual bond angle β; Square(3,3) = distribution of
virtual torsion angle τ2; Square(1,2) = correlation between τ1 and β; Square(1,3)
= correlation between τ1 and τ2; Square(2,3) = correlation between β and τ2.
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Fig. 9: scattered plot of virtual bond and torsion angles. This snapshot
shows the density distribution of the τ1-β-τ2 angle sequence in a τ1-β-τ2 space
for a residue sequence ARG, Any, ALA, GLU and Any. A lowess approximation
to the distribution is also plotted.

Fig. 10: Virtual bond length potentials. A window is popped out for the
user to upload the structural file. The system can then evaluate the virtual bond
length potential for each neighboring pair of residues in the protein sequence
and display the distribution of the potential energy over the residue sequence.
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Fig. 11: Distributions of virtual bond energies for 1PHY (2.4Å) and
2PHY (1.4Å). The energy levels of the virtual bond lengths of two structures
1PHY and 2PHY are shown in solid lines. The minimal possible energies are
plotted as the dashed line. If there is no distribution data for some virtual bond,
such as the bond at index 98, the potential function is not defined, and there is a
gap in the energy plot for that bond. These two structures are determined with
different resolutions for the same protein. The better-resolved structure (2PHY)
has lower potential energies in average than the poorly determined one (1PHY).
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Fig. 12: Distribution of virtual bond length and bond angle energies for
1PHY (2.4Å) and 2PHY (1.4Å). The energy levels of the virtual bond angles
of two structures 1PHY and 2PHY are plotted in solid lines. The minimal possi-
ble energies are shown as the dashed line. These two structures are determined
with different resolutions for the same protein. The better-resolved structure
(2PHY) has lower potential energies in average than the poorly determined one
(1PHY).
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Ramachandran-like plot for a given structure. Two of the angle-angle correlation
plots are proven to be expecially valuable. One is the α-τ correlation plot or the
AT-plot for short. Another one is the τ -β correlation plot or the TB-plot for
short. Given a protein structure, the α-τ or τ -β angle pairs can be computed
along the residue sequence for the structure. Each angle pair can be plotted as
a dot in the α-τ or τ -β space. The distribution of the dots over the contour
of the general α-τ or τ -β density distribution can then be evaluated to show
how the angle pairs in the given structure correlated against to their average
correlations in known proteins. These plots can be used effectively to differentiate
high-quality structures from low-quality structures at the residue level as the
Ramachandran plots for structural evaluation at the atomic level, as shown in
Fig. 13 and 14.

3.8 Display of Residue Angle Correlations of a Structure

The contours of density distributions of α-τ and τ -β angle pairs can be plotted
in 2D α-τ and τ -β angle planes. Regions of different densities are outlined with
colours in different gradients. They are defined as Most Favoured, Favoured, and
Allowed, corresponding to regions of high 50%, 75%, and 90%, respectively.
The α-τ or τ -β angle pairs for every sequence of four residues of a given structure
can be computed and plotted in the α-τ or τ -β plane, on top of the contour of
the general α-τ or τ -β density distribution function. The structure is considered
to be well formed in terms of its virtual bond angels and virtual torsion angles if
most of the plotted dots are in the high-density regions of the α-τ or τ -β density
distribution contour.

4 Summary and Discussion

In this paper, we have reported our recent work for the development of an R
package, called P.R.E.S.S., which allows researchers to get access to and manipu-
late on a large set of statistical data on protein residue-level structural properties
such as residue-level virtual bond lengths, virtual bond angles, and virtual tor-
sion angles. We have downloaded and surveyed a large set of high-resolution
protein structures, and calculated and documented an important set of their
residue-level structural properties in P.R.E.S.S. With P.R.E.S.S., the statistical
distributions and correlations of these properties can be queried and displayed.
Tools are also provided for modeling and analyzing a given structure in terms
of its residue-level structural properties. In particular, new tools for computing
residue-level statistical potentials and displaying residue-level Ramachandran-
like plots are developed for structural analysis and refinement. We have dis-
cussed the principle for the development of P.R.E.S.S. for statistical analysis on
protein structures. We have described the system organization and interface of
the software, and provided detailed information on how the structural data was
collected and documented in P.R.E.S.S., and how all the statistical results were
calculated. We have described the major computational and analysis functions of
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(a) (b)

Fig. 13: The α-τ correlation plots for a protein at two different resolu-
tions. The photoreactive yellow protein in the dark state, 1PHY (2.7Å), shown
in (a) compared with the DD-peptidase, 2PHY (1.4Å), shown in (b). The back-
ground contours are generated from the general density distributions of the α-τ
angle pairs in known proteins. Regions of different densities are outlined with
colours in different gradients. They are defined as Most Favoured (high 50%
density), Favoured (high 75% density), and Allowed (high 90% density) regions.
The scattered triangles correspond to the α-τ angle pairs in the given protein
structures. The lines in (a) indicate that there are 51.22% of the triangles of the
α-τ angles pairs in 1PHY falling in the 90% region, 28.46% of triangles falling
in the 75% region, and only 10.57% of the triangles falling in the 50% region.
On the other hand, In (b), there are 93.44% of the triangles of the α-τ angles
pairs in 2PHY falling in the 90% region, 76.23% of triangles falling in the 75%
region, and 45.9% of the triangles falling in the 50% region.
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(a) (b)

Fig. 14: The τ-β correlation plots for a protein at different resolution.
The photoreactive yellow protein in the dark state, 1PHY (2.7Å), shown in (a)
compared with the DD-peptidease, 2PHY (1.4Å), shown in (b). The background
contours are generated from the general density distributions of the τ -β angle
pairs in known proteins. Regions of different densities are outlined with colours
in different gradients. They are defined as Most Favoured (high 50% density),
Favoured (high 75% density), and Allowed (high 90% density) regions. The scat-
tered triangles correspond to the τ -β angle pairs in the given protein structures.
The lines in (a) indicate that there are 58.54% of the triangles of the τ -β an-
gle pairs in 1PHY falling in the 90% region, 33.33% of the triangles falling in
the 75% region, and only 13.82% of the triangles falling in the 50% region. On
the other hand, in (b), there are 95.9% of the triangles of the τ -β angle pairs
in 2PHY falling in the 90% region, 75.41% of the triangles falling in the 75%
region, and 47.54% of the triangles falling in the 50% region.
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P.R.E.S.S. and demonstrated them in many examples. P.R.E.S.S. will be released
in R as an open source software package, with a user-friendly GUI interface, ac-
cessible and executable by a public user in any R environment. The statistical
distributions of residue-level distances and angles in known protein structures
provide a valuable source of information for estimating these residue level struc-
tural properties of proteins, which are not otherwise accessible experimentally.
However, these statistical measures rely upon the quality as well as quantity of
the sampled known structures. We have downloaded around one thousand high-
quality structures from the PDB Data Bank, which should be sufficient to obtain
reliable statistical estimates of the distributions of virtual bond lengths, virtual
bond angles, virtual torsion angles, and some of their correlations, but of course
there is the possibility that for some cases of specific residue sequences, the val-
ues might deviate from the overall characteristic distributions. In P.R.E.S.S., we
have provided information about the size of the data set for each estimate. The
useful tool from this study is a residue-level Ramamchandran-type of plot for
correlations between pairs of neighboring virtual bond angles and virtual tor-
sion angles. Several examples have been given in the present paper, but these
differ from the atomic-level Ramachandran Plot in an important way, because
the density distribution contours of these residue-level angles show relatively
larger deviations. Thus their use requires specifying more precisely what density
regions should be permitted for high-quality structures. Further evaluations are
needed to decide generally what these evaluation criteria should be.
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Abstract. We present two new highly efficient error correction algorithms: (i) 

k-mer - based error correction (KEC); and (ii) empirical frequency threshold 

(ET). Both were compared to the recently published algorithm SHORAH to 

evaluate the relative performance using 24 experimental datasets obtained by 

454-sequencing of amplicons with known sequences. We found that all three 

algorithms showed similar performance in terms of finding true sequences, but 

KEC and ET methods significantly outperformed SHORAH both in terms of 

their ability to remove false sequences and to estimate the frequency of true 

ones.  

Keywords: HCV, quasispecies, pyrosequencing, error correction 

1   Introduction 

Hepatitis C virus (HCV) shows a very high level of sequence heterogeneity, which 

is responsible for its escape from neutralizing host immune responses and rapid 

development of drug resistance. Recent advances in high-throughput (HT) sequencing 

methods allow for analysis of the unprecedented number of HCV-genomic sequence 

variants from infected patients and present a novel opportunity for understanding 

HCV evolution, drug resistance and immune escape. However, owing to the massive 

scale of sequencing, sequence errors generated during HT sequencing require 

extensive computational processing with error correction algorithms in order to obtain 

high quality reads for genetic analysis. The key purpose of such algorithms is to 

discriminate between artifacts and actual sequences. This task becomes especially 

challenging for recognizing and preserving low-frequency natural variants in viral 

population.   

SHORAH [5][6] is currently one of the best error correction algorithms available. 

It uses probabilistic clustering approach based on the Dirichlet process mixture. 

Another approach to error correction is based on the use of k-mers, or substrings of 

reads of a fixed length k [2][3][4]. These algorithms have good performance but high 

time- and memory-consumption needs, together with the possibility of errors 

introduced during the correction phase [5]. To overcome these disadvantages, the 

authors of EDAR algorithm [1] developed an approach for the detection and deletion 
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of sequence regions containing errors. This error deletion works well for shotgun 

experiments, but is unacceptable for the small amplicon reads commonly analyzed in 

viral samples. 

In this paper, we present two new efficient error correction algorithms: (i) k-mer-

based error correction (KEC); and (ii) empirical frequency threshold (ET). KEC uses 

the EDAR algorithm optimized for amplicon sequencing for the detection of error 

regions and a novel algorithm for correction of errors associated with homopolymers. 

KEC does not require a reference sequence and is, therefore, suitable for de-novo 

sequencing. The ET algorithm uses estimation of a frequency threshold for indels and 

haplotypes calculated from experimentally obtained clonal sequences, also correcting 

homopolymers. Both algorithms were compared to SHORAH to evaluate their 

relative performance using 25 experimental amplicon datasets with known sequences 

obtained using 454 sequencing.  

2   Algorithms description 

2.1. KEC algorithm 
 

The scheme of KEC includes 4 steps: (1) Calculate k-mers and their frequencies 

(k-counts). We assume that k-mers with high k-counts (“solid” k-mers) are correct, 

while k-mers with low k-counts (“weak” k-mers) contain errors. (2) Determine the 

threshold k-count (error threshold), which distinguishes solid k-mers from weak k-

mers. (3) Find error regions. The error region is the segment [i,j] of read such that for 

every p∈[i,j] the k-mer starting at the position p is considered weak. (4) Correct the 

errors in error regions. 

Methods proposed in EDAR were used for steps 1 and 3. However, they were 

optimized using efficient data structures based on hash maps.  The error threshold 

estimation from [1] is not applicable to the amplicon data. It was replaced by an 

algorithm based on the detection of local minima in smoothed distributions. We call 

error region x=[b,e] of a read r a tail, if either b = 1 or e = n-k+1 (n is the length of r). 

Let l(x) be the length of x, and hi(w) be a homopolymer of length i composed of 

nucleotide w∈{A,T,G,C}.   

Claim 1. Suppose, that the non-tail error region x was caused by a one-nucleotide 

error E. Let w be the last nucleotide of x.  If E is a replacement, then l(x) = k. If E is 

an insertion in the homopolymer of length r (0≤r ≤k), then l(x)= k-r+1, x is followed 

by a homopolymer hl-1(w). If E is a deletion in the homopolymer of length m, then l(x) 

= k-m-1 and if m≥1, then x is followed by a homopolymer hm(c), where c≠w.  

Errors were identified and corrected in non-tail error regions using Claim 1, and 

then the corresponding prefixes or suffixes were deleted from reads for tails. The 

procedure was repeated until the dataset had no errors or the specified number of 

iterations was reached. Claim 1 considers only error regions with l(x)≤k. The longer 

error regions correspond to the occurrence of >1 errors separated by ≤ k nucleotides. 

We found that this type of error is much less frequent and we correct it by a heuristics 

based on Claim 1.   
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2.2. ET algorithm 
The key idea of the procedure is to calculate the frequency of erroneous sequences in 

amplicon samples where only a single sequence was expected. Each single-clone 

sample was processed in the following way:  First, each sequence is aligned against a 

set of external references of all known genotypes. For each sequence the best match of 

the external set is chosen. The aligned sequence is clipped to the size of the chosen 

external reference. The 20 most frequent sequences that do not create insertions or 

deletions are selected, constituting the internal reference set. Each sequence is aligned 

against each member of the internal references set and its best match is chosen.  

The frequency of erroneous indels and its standard deviation (s.d.) was calculated 

over all nucleotide positions for 15 single-clone samples. An indel threshold was 

defined as the average frequency of erroneous indels + 5 s.d. If a sequence contained 

an indel with a frequency lower than the threshold, the sequence was removed. Then 

all homopolymers of at least 4 nucleotides were identified, followed by removal of the 

insertions and replacement of the deletions by the repeated nucleotide. The frequency 

of erroneous sequences and its s.d. were calculated over the 15 single-clone samples. 

A sequence threshold was defined as the average frequency of erroneous sequences + 

5 s.d. All sequences with a frequency lower than the threshold were removed. This 

procedure was applied to each mixture sample. 

3   Algorithms comparison 

Individual plasmid clones (n=10) containing different HCV hypervariable region 1 

sequences were purified and sequenced using dye-terminator sequencing. A set of 

plasmid samples was generated. 14 samples contained a single clone. 10 samples 

contained 8 clones mixed together in different proportions (from 1% to 93%). The 

E1/E2 region (309 nt) was amplified from each sample and sequenced using GS FLX 

Titanium Series Amplicon kits. Low quality reads were removed using the GS Run 

Processor (Roche, 2010). Each sequence file was then analyzed using ET, KEC or 

SHORAH error correction algorithms. SHORAH was applied several times under 

different parameters and the best attained results are reported here. All results are 

summarized in Table. 

 

Table. Test results of the single-clone (S) and mixture (M; n=8) samples. MT: 

Missing true sequences; FS: False sequences; MSE: root mean square error; HD: 

Average Hamming distance, averaged over all false sequences. 

ET KEC SHORAH 

MT FS MSE HD MT FS MSE HD MT FS MSE HD 

S1 0 0 0.00 0 0 1 4.67 1 0 351 29.02 4.84 

S2 0 0 0.00 0 0 0 0.00 0 0 269 30.12 4.44 

S3 0 1 1.09 1 0 2 4.93 1.5 0 292 23.44 5.31 

S4 0 1 0.98 2 0 1 2.84 1 0 271 44.68 5.39 

S5 0 0 0.00 0 0 0 0.00 0 0 319 9.63 4.47 
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S6 0 1 5.26 2 0 1 6.10 1 0 194 18.70 3.94 

S7 0 0 0.00 0 0 1 5.80 1 0 496 21.52 6.70 

S8 0 0 0.00 0 0 0 0.00 0 0 262 14.37 4.58 

S9 0 0 0.00 0 0 0 0.00 0 0 183 6.23 6.97 

S10 0 0 0.00 0 0 0 0.00 0 0 288 7.77 5.11 

S11 0 1 0.53 2 0 0 0.00 0 0 717 24.71 5.03 

S12 0 0 0.00 0 0 0 0.00 0 0 611 25.94 5.52 

S13 0 0 0.00 0 0 0 0.00 0 0 156 5.53 4.93 

S14 0 0 0.00 0 0 0 0.00 0 0 161 6.83 6.60 

Mean 0.00 0.29 0.56 0.50 0.00 0.43 1.74 0.39 0.00 326.43 19.18 5.27 

M1 0 0 1.17 0 0 1 0.87 1 0 320 1.23 4.51 

M2 0 0 1.50 0 0 0 1.75 0 0 738 3.70 4.44 

M3 0 0 2.92 0 0 0 3.55 0 0 638 3.65 4.25 

M4 0 0 2.18 0 0 0 2.30 0 0 577 2.88 5.20 

M5 0 0 0.34 0 7 0 7.00 0 0 214 0.91 7.37 

M6 1 0 2.20 0 1 0 1.97 0 1 394 2.48 4.54 

M7 0 0 1.20 0 0 0 1.97 0 0 499 2.04 5.00 

M8 1 0 0.89 0 1 0 2.31 0 1 336 3.09 5.54 

M9 0 0 2.23 0 6 0 9.25 0 0 643 6.56 4.49 

M10 1 0 3.53 0 1 0 4.21 0 2 637 5.88 5.32 

Mean 0.30 0.00 1.82 0.00 1.60 0.10 3.52 0.10 0.40 499.60 3.24 5.07 

 

All methods found the correct sequence in each single-clone sample. However, ET 

and KEC retained the lower number of false sequences. Similarly, ET and KEC 

showed lower number of false sequences than SHORAH in each mixed samples. All 

three algorithms were successful in identifying most of true sequences, with ET being 

the most accurate. KEC did not detect true sequences representing ~1% in mixtures 

M5 and M9. The low root mean square error between observed and expected 

frequencies of true sequences indicates a high accuracy of ET and KEC, whereas 

SHORAH has much higher MSE, owing to the detection of a greater number of false 

sequences. Analysis of the Hamming distance between false sequences and their 

closest match shows that false sequences retained by KEC and ET are genetically 

closer to true sequences than sequences retained by SHORAH. 

 

4 Conclusions 
 

SHORAH, ET and KEC perform equally efficient in finding true sequences. 

However, KEC and ET outperform SHORAH in removing false sequences and 

estimating the sequence frequency. At the same time, in contrast to SHORAH and ET, 

KEC does not require a reference sequence. Both algorithms, KEC and ET, are highly 
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suitable for rapid recovery of high quality sequences from reads obtained by deep 

sequencing of genomic regions from heterogeneous viruses such as HCV and HIV.  
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Abstract. The data of Semantic Web exist in machine readable format called 
RDF, in order to promote data exchange on the web based on their semantics. 
Due to the nature of biological data, bio-ontologies tend to be very large, 
distributed, and interconnected. Thus, maintaining constraints and enforcing 
data consistency become very challenging. In previous study, we conducted a 
pioneer study and presented a framework for checking global constraints and 
ensuring integrity on data that span multiple ontologies. As an update is issued 
to a single site, global constraints that can be potentially violated are broken 
down into sub constraints that only involve a very small subset of ontologies. 
The checking of sub constraints runs effectively in parallel and returns results 
about each subset. The collection of these results determines the violation of 
global constraints. 
In this work, we present an efficient constraint planning algorithm for 
distributed bio-ontologies. This algorithm serves as the key part of the global 
constraint checking framework. This algorithm takes a number of distributed 
but interconnected bio-ontologies and a set of global constraints expressed in 
logic programming as inputs, and produces a set of sub-constraints in Semantic 
Web query language SPARQL for constraint checking. An working example is 
presented at the end. 

Keywords: Semantic Web, OWL, Distributed Bio-Ontology, Integrity 
Constraints. 

1 Introduction 

OWL ([1]) has been widely adopted in areas like science and commerce. One reason 
for its popularity is its ability to formally describe complex concepts and relationships 
among concepts. More importantly, OWL provides a way to facilitate automated 
reasoning at both the conceptual and the instance level ([2]). Although numerous bio-
ontologies, such as Cancer Ontology, Gene Ontology, Human Disease Ontology, are 
available in RDF ([3]) form, there is still a huge demand for developing more OWL 
ontologies for various purposes.  
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In previous studies, we uncovered the global constraint violation issue. As an 
initial investigation as well as an evidence to show ontologies are interdependent and 
dynamic, we explored a group of well-established and well-known ontologies from 
the biomedical field. We have investigated 81 bio-ontologies from The Open 
Biological and Biomedical Ontologies [4] and the Ontology Lookup Service [5]. In 
average, one biomedical ontology references to/depends on three other bio-ontologies. 
Although some ontologies in the set do not change very often, the majority of these 
ontologies updates 21.31 times/year, with 7010.57 lines/update in average.  

Since there is no formal mechanism available to enforce data consistency among 
distributed ontologies while they are interconnected and constantly changing, we 
designed a frame that is faster and of less network traffic than the naïve method. The 
infrastructure in figure 1 contains: 

 Update Parser: Parses a user specified update, and return involved ontology 
objects. 

 Metadata Extractor: Extract the set of global constraints that could be potentially 
violated by the update statement. 

 Constraint Planner:  runs an effective algorithm to generate sub constraints that 
will be dispatched to remote ontology sites. 

 Constraint Optimizer: reorganizes the order of sub constraints in order to achieve 
higher efficiency. 

 Constraint Executor: Execute sub constraints in parallel, and made decisions 
about the global constraint upon receiving the results of sub constraints. 

 

Fig. 1. Internal Architecture of Constraint Checker 

In section 2, we will introduce the constraint planning algorithm that is the central 
piece of the Constraint Planner. It is efficient because it breaks a global constraint 
that requires bringing in multiple larger ontologies into several sub-constraint 
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queries that are sent to remote ontologies in parallel. In section 3, we will provide a 
simple working example of this algorithm to conclude this poster. 

2 The Constraint Planning Algorithm 

The inputs of this algorithm contain an update statement U to ontology site S, and a 
list of global constraints C. As we step through the constraint checker to the constraint 
planning stage, we will also have the following two pieces of information available: 
(1) Ontology Object List (OOL) that identifies what predicates are to change and their 
new values; (2) Constraint-Source Table (CST) that specifies the sites involved in this 
update U for each global constraint in C. The output will be a list of sub-constraints 
for each global constraint in C affected by the update U. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 An Example 

In this example, we used the Anatomical Entity Ontology and Cancer Ontology in 
Protégé environment.  The global constraint we used was a useful OWL-style 
constraint called Specific Individual Type. It requires that the explicitly declared 
individual of a concept or relationship (property) in the instance data must be the most 
specific one.  This constraint can be expressed in logic programming as:  
 

Constraint Planning Algorithm: 
 
For each constraint c in the list of global constraints C 
 For each site s from CST that is affected by constraint c in the update 
  If site s is not where the update happens 
  Then generate sub-constraints in the form of SPARQL 
    queries  from all the predicates (available in OOL) that  

reference to site s using appropriate conditions. Include 
arithmetic queries when necessary. 

  Elseif site s is where the update happens 
  Then  If there are variables whose values are from s 
   Then generate sub-constraints similar to the above case 
   If there are variables whose values are from remote sites 

Then generate queries to retrieve values from those 
remote sites first, then use those values to generate sub- 
constraints using similar method above 

 End for 
End for 
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 inAnatomicalPart(x, y)   inAnatomicalPart (x, z)  cancer(x)  anatomicalPart 
(y)  anatomicalPart (z)  isSubClassOf(y,z). 
 
Upon receiving the result of the first two queries, by running the constraint planning 
algorithm, we will have sub-constraint query 3 targeted at Cancer Ontology and 
queries 4,5,6 targeted at the Anatomical Entity Ontology.  
 

C1 =  SELECT ?x, ?y 
 WHERE  

{?x rdf: inAnatomicalPart  
?y} 

 

C2 =  SELECT ?x, ?z 
 WHERE  

{?x rdf:inAnatomicalPart 
?z} 

 

C3 =  SELECT ?x 
 WHERE  
{?x rdf:hasClass 

Cancer}

C4  =  SELECT ?y 
 WHERE  
{ ?y rdf: hasClass  

AnatomicalPart } 
 

C5  =  SELECT ?z 
 WHERE  
{ ?z rdf: hasClass  

AnatomicalPart } 
 

C6  =  SELECT ?y, ?z 
 WHERE  
{ ?y rdf:isSubClassOf  

?z}

 
In this way, we avoid bringing both ontologies onsite for constraint checking. 
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Abstract  

In the past two decades there has been an explosive increase in the number of cases of Diabetes 

Mellitus worldwide, particularly type 2 diabetes (T2D). The modern lifestyles, abundant nutrient 

supply, reduced physical activity, and obesity increases the risk of T2D. About 60% to 90% 

cases of T2D are supposed to be related with obesity. Therefore the aim of present work was to 

examine the potential anti-diabetic agents from natural compounds using Insilico techniques. 

PPAR gamma was chosen as the target and its structure was retrieved from PDB (ID: 1I7I). 

From the literature survey total 120 small natural molecules having anti-diabetic potential were 

chosen as lead molecules. These molecules were subjected to receptor-ligand interaction using 

various softwares. ADME and Toxicity analysis was done using ADME TOX web. Three natural 

compounds namely Chlorogenic acid, Hesperidin and Lochnerine showed better ligand binding 

score in comparison with the reference drugs. Hesperidin which is the principal compound 

present in citrus fruits showed better ligand binding affinity towards the PPAR Gamma 

(Peroxisome Proliferator-Activated Receptor Gamma). Thus it can be concluded that these 

compounds can have therapeutic importance for the treatment of T2D.  

Introduction 

Diabetes is an important cause of amputations of lower body members resulting from a non-

traumatic origin, as well as blindness and kidney failure. Diabetes mellitus may present with 

characteristic symptoms such as thirst, polyuria, blurring of vision, and weight loss. The long–

term effects of diabetes mellitus include progressive development of the specific complications 

of retinopathy with potential blindness, nephropathy that may lead to renal failure. There are 

certain natural and synthetic PPAR inhibitors called anti-diabetic agents, which will prevent or 

slow down the pathway and hence regulate diabetes.  

 Methodology 

The methodology included - Collection of target molecule by literature study. Retrieval of 

information of drugs from drug bank . Retrieval of structures for the collected molecules 

performing energy minimization of the retrieved small molecules using Marvin Sketch 
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4.1.13.Retrieval of 3D structure of the drug target using PDB. Docking of different molecules 

obtained in Quantum 3.3.0 .IC50 calculations of screened molecules and drugs obtained in 

Quantum 3.3.0. Docking of the screened molecules in Argus lab 4.0.1. Docking of screened 

molecules and drugs in Hex 6.1 .Viewing the Hydrogen bond length of the Receptor - Ligand 

complex using Swiss PDB Viewer 4.0.1.Calculating the ADMET of the screened values using 

ADME TOX.  The best three results obtained were analysed under Quantum 3.3.0, Argus lab 

4.0.1 and Hex 6.1. Their IC50 value was also analysed using Quantum 3.3.0.1. Graphs were then 

plotted by analysing the values.  

Results 

Fig.1: Table showing Natural compounds and Quantum results  

S.No  Compund Name  G-Bind 

energy[kJ/mol]  

RMS  [A]  Lipinski’s rule  Selected  

   1  Bakuchiol  -16.71  30.94  No  No  

   2  Corosolic Acid  -21.82  22.74  No  No  

   3  Fagomine  -17.66  29.65  Yes  No  

   4  Marsupsin  -19.52  26.96  Yes  No  

   5  Pinitol  -13.74  33.16  No  No  

   6  Catechin  -17.19  34.85  No  No  

   7  Catharantine  -21.17  34.38  Yes  No  

   8  Chlorogenic Acid  -23.72  32.08  No  Yes  

   9  Hesperidin  -36.41  30.92  No  Yes  

  10  Lochnerine  -22.61  23.55  Yes  Yes  

Fig.2: Table showing Drugs and Quantum results  

Drug  G-bind[kJ/mol]  RMS  

Gemfibrozil  -19.89  33.15  

Pioglitazone  -23.33  25.23  

Troglitazone  -22.87  27.75  

 

 

 

 

 

 

 

Fig 3: Docking Results of natural molecules and drugs from Quantum 3.3.0  
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Fig 4: Docking results of screened molecules and drugs from Hex 6.1Fig 5: IC50 calculations of the screened 

molecules and the drugs in Quantum 3.3.0 

 

 

SIGNIFICANCE AND CONCLUSION 
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The characteristic symptoms of diabetes mellitus  are polydypsia, polyuria, polyphagia, 

retinopathy-blurring of vision, nephropathy and weight loss. The long–term effects of  

diabetes mellitus include progressive development of the specific complications like 

Retinopathy with potential blindness; nephropathy that may lead to renal failure, and 

neuropathy with risks of  foot ulcers, amputation together with features of autonomic 

dysfunction, including sexual dysfunction. On top of this People with diabetes are at an 

increased risk of cardiovascular, peripheral vascular and cerebro-vascular diseases. 

There are certain natural and synthetic PPAR inhibitors called anti-diabetic agents, 

which will prevent or slow down the pathway and hence regulate diabetes. It was 

found that molecules like Chlorogenic acid, Hesperidin and Lochnerine were 

showing reliable pharmacokinetics and pharamacodynamics features more than the 

reference drug.Further it was found that among the three molecules screened, 

Hesperidin was found to have the best ligand binding energy score. Thus, it can be 

taken as a diabetes mellitus type 2 curing drug candidate and it can be taken as an 

effective inhibitor of the PPAR pathway. Further invivo and invitro studies have to 

be conducted for concrete evidence against anti diabetic activity of these compounds 

and their target specifity for PPAR gamma.  
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