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Concurrent Reachability Game

* Arena:
— Finite directed graph.
— Distinguished terminal GOAL node.
— Each non-goal node contains @ matrix of outgoing arcs.
— Let us also allow probabilistic transitions
* Play:
— A pebble moves from position to position.

— In each step, Row player chooses a row and Column player
simultaneously chooses a column of the matrix.

— The pebble moves along the appropriate arc.
— If pebble reaches GOAL, Row player wins.
— If this never happens, Column player wins.

Why study these games?

¢ Common generalization of

* Turn-based reachability games.

* Matrix games

* Parity games

* Shapley’s discounted stochastic games.
¢ de Alfaro, Henzinger, Kupferman (‘98+'07):

* Concurrent games capture the interaction of a system with its environment: in
many concurrency models, in each state, both the system and the environment
can independently propose moves (input or output signals), and the parallel
execution of the moves determines the next state. Concurrent games also
provide a natural model for distributed systems in which the moves are not
revealed until their combined effect (the state transition) is apparent.

¢ Natural model for Poker tournaments.
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Values and Near-Optimal Strategies

* Everett’57: Each position i in a CRG has a value v,
so that

Vi = mlnstationaryy maxgeneral X ui(X,y)
=sup stationary x mmgeneraly ui(x'Y)

where p,(x,y) is the probability of reaching GOAL
when row player plays by strategy x and column
player plays by strategy y.

Why sup instead of max?

e Everett’57, Example 1:

— Column player hides a
penny. =

— If Row player can guess if
it is heads up or tails up,

DUR—

he gets the penny. Tl
— If he incorrectly guesses Q
heads, play repeats.
guarantees

— If he incorrectly guesses reaching GOAL with

tails, the game ends. probability 1 — &,
so value of start
position is 1.




22-09-2015

The problem(s) we study in this talk

e Compute the value of a given game

— Caveat: The value might be irrational

¢ Exact decision problem: Compare value to given
rational number
— Interesting special case: Value-1 problem.

¢ Compute (additive) approximation to the value
* Synthesize good strategies

— Given a game and g, synthesize stationary strategy
guaranteeing the value within €.

Classical results

The value-1 and associated synthesis problem can be
solved in polynomial time

— [de Alfaro, Henzinger, Kupferman 98]
The general problems can be solved in polynomial space

— [Etessami & Yannakakis’05]
A practically applicable strategy improvement algorithm for
the row player

— [de Alfaro, Chatterjee, Henzinger ‘06]

— We used this algorithm to solve the poker tournament..
No “standard” hardness results!

— Non-standard hardness: SQRT-SUM hardness [EY’05], “hard for
solving parity games”.

PSPACE upper bound

¢ Given a game, we solve it as follows:
— 1. Write down first order formulae defining the real
numbers forming the solution.
— 2. Use the best available decision procedure for the first
order theory of the real numbers to turn the definitions
into actual answers.

P
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The recent results

A worst case time complexity analysis of the
strategy improvement algorithm of de Alfaro et
al.

— The complexity is doubly exponential.

A polynomial time algorithm for the general
problem when the number of positions is P
constant.

A polynomial hierarchy algorithm for the
approximation version of the general problem.
A structural theorem on near-optimal strategies:
"Monomial” strategies suffice.
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Why sup instead of max

@ polynomials in &

v\ guarantees
_) I . reaching
1 GOAL with
— 1-¢ L
probability
4 1-¢

The value of this game is 1.

A variant

+ Avariant: v
— Bob hides a die “
— If Alice can guess its outcome x, and x is in 3,4,5,6, she gets a cookie.

— If Alice can guess its outcome x, and x is in 1,2, she gets a cookie with
probability x/2.

— If she incorrectly guesses 3,4,5 or 6, play repeats.
— If she incorrectly guesses 1 or 2, play ends.

¢ The value for Alice is % cookie.

¢ An g-optimal strategy for Alice:
— Guess 3,4,5 each with probability%
— Guess 1 with probabilityge ~

— Guess 2 with probability%e -
polynomials in &

Two-level Purgatory

Two-level Purgatory
— Bob repeatedly hides a penny. {2

— If Alice can guess correctly if it is heads up or tails up
twice in a row, she gets the penny.

— If she ever incorrectly guesses tails, the game ends.

The value for Alice is 1 penny.

An g-optimal strategy for Alice:

— Guess tails with probability €2 in initial state.

— Guess tails with probabiity £ after having guessed
correctly once.

polynomials in &

Do “simple” strategies always suffice?

¢ In the preceeding examples, the e-optimal
strategies had probabilities expressed as
(simple) polynomials in €.

« Is this the case for all concurrent reachability
games?

Classical result: de Alfaro, Henzinger,
Kupferman ‘98: YES for games of value 1.

¢ Recent result [FM’13]: YES for all games.

Monomial strategies

tioaary strategies (2 )ocece, for Plaver 1 in a

mal if for all states k abile

¢ action, we hi
m of the form ¢t

sibly

W i
where o is a non-negative

ive real number.

3 >0 and a
I, 5o that for

I family of
eol, we hae

that x, is £

Motivation: Opens up possibility of symbolic algorithm for finding near-optimal
strategies for recursive games.

* Let v be the supremum of payoffs to Alice guaranteed by her stationary strategies.

* By definition of supremum, for every § > 0 there is a stationary strategy
guaranteeing at least v — & (*)

* (*) can be formalized in the first order theory of the reals.

* By the Tarski Transfer Principle, (*) is also true if R is replaced with ]R((s))c: The
real closed field of Puiseux series that converge for sufficiently small € > 0.

—  APuiseux series: ¥, a;e/K.

* In particular, (*) is true for § = ¢. Let the corresponding strategy be x.

* The probabilities of x are Puiseux series in €. For sufficiently small € they converge
and describe an e-optimal strategy.

* Using perturbation theory for Markov chains (Solan’03), the Puiseux series can be
“rounded” to their most significant term while preserving near-optimality.

« If the exponents in the leading terms is of the form i/K, we immediately have a
monomial £X-optimal strategy.

* This strategy is also e-optimal.
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Open Problem

* |s there an elementary and constructive (in
some sense) proof of this theorem?
— Motivation: leads to algorithm?

The recent results

e A worst case time complexity analysis of the

strategy improvement algorithm of de Alfaro et
al.
— The complexity is doubly exponential.

* A polynomial time algorithm for the general

problem when the number of positions is
constant.

* A polynomial hierarchy algorithm for the

approximation version of the general problem.

e Astructural theorem on near-optimal strategies:

”"Monomial” strategies suffice.

Strategy iteration for CRGs
Chatterjee, de Alfaro, Henzinger ‘06
Lti=1

r! := the uniform distribution at each position

Solve Markov

a
3 while true do
1y i= an optimal best reply to &'

forie (0,12, ... NN + 1} do Decision Process
6: vf = gty
7 end for
8  t=it41
wo forie {1,2,...,] N} do
1 if val( A (') = o7 then
11 o} r= maximin{4, (v~} < Solve matrix game
12 else
13: ab = al!
14: end if
15 end for
16 end while

Properties

The valuations v!; converge to the values v; (from
below).

The strategies x* guarantee the valuations v'; for row
player.

What is the number of iterations required to
guarantee a good approximation?

[HKLMT’11, HIM’11]

For all games with N positions and m actions for each
player in each position, (1/e)’"O(N) iterations is sufficient
to arrive at e-optimal strategy.

— Proof relies heavily on R.A.G.

— Reliance on R.A.G. means that I’'m not quite sure what the
constant in the big-O is.

— For some games (”Purgatory games”), (1/€)™
are necessary to get e-optimal strategy.

ol irerations

Step 1: Reduction to analysis of value
iteration

* We can relate the valuations computed by
strategy iteration to the valuations computed
by value iteration.

nt< ot < g

!,f' SV S Ui Actual values
Valuations computed )
by value iteration Valuations computed

by strategy iteration
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Value iteration (dynamic

programming)
I: +:=0
2 i = (0,0,...,1) {the vector ' is indexed 0L1,... NN +1}
3 while true do
o ti=f+1
5 thi=0
[ |"If\-_] =11
n forie{l,2,...,] Vi do
8 it 1= val(Ai(#51))

9. end for
10: end while

Value iteration computes the value of a time bounded game,
for larger and larger values of the time bound t, by backward induction.

Step 2: Reduction to bounding
patience

¢ We need to upper bound the difference in value between
time bounded and infinite versions of the game.

¢ The difference in value between a time bounded and the
infinite version of a concurrent reachability game is captured
by the patience of its stationary near-optimal strategies.
— Patience = 1/smallest non-zero probability used

* Lemma: If the game has an e-optimal strategy with patience
L, then for T = kNL", the value of the game with time bound
T differs from the value of the original game by at most
e+e7k,

Step 3: Bounding patience using R.A.G.

« Everett’s characterization (1957) of value and near-optimal strategies:

Step 3: Bounding patience using R.A.G.

¢ Applying the fundamental theorem of linear
programming and Cramer’s rule:

Now we can rewrite the predicate vallA*(i)) > vu to the following expression:
aslion € FA T A ™, 1) 3 o det (AR V([ € FA T Adet (A0 )y 1) €
wnielet (A1 ")), where the disjunetion b over all potentiol basis sets, and each of the expresions
v € FA* and oy € F{4'= are shorthands for the conjunction of the s+ 1 polynomial inequalities
describing the corresponding sets.

Step 3: Bounding patience using R.A.G.

e Sampling theorem

Theorein 1

Step 3: Bounding patience using R.A.G.

2N free variables vy and vy that expresses

Lemma 40. There is a quantifier free formula with
d v .

erent polynowiols, each of
2N + m+2) )

Limitation of + ot . T
consumer
perspective!
+ separation bounds for roots of univariate polynomials

An g-optimal strategy with all probabilities either 0 or bounded
from below by emo®™
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[HKLMT’11, HIM’11] The tight example

For all games with N positions and m actions for each Generalized Purgatory P(N,m):
player in each position, (l/s)’”o(N) iterations is sufficient

¢ Column player repeatedly hides a number in {1,..,m}.
to arrive at e-optimal strategy.

* Row player must try to guess the number.
¢ If he guesses correctly N times in a row, he wins the game.

¢ If he ever guesses incorrectly overshooting hidden
— Reliance on R.A.G. means that I’'m not quite sure what the = == number, he loses the game.
constant in the big-O is.

— Proof relies heavily on R.A.G.

o) — These games all have value 1(!)
— For some games (”Purgatory games”), (1/g)™ iterations . . mN-o(N) .
are necessary to get e-optimal strategy. — Strategy iteration needs (1/¢) to get e-optimal
strategy.
. . ’ 4
Howard'’s algorithm is slow on P(7,2) [HKLMT’11, HIM’11]
#iterations: Valuation of start position: For all games with N positions and m actions for each
: s o(N) ; L .
1 0.01347 player in each position, (1/€)™ ™ iterations is sufficient
10 0.03542 to arrive at e-optimal strategy.
100 0.06879
1000 0.10207
10000 0.13396 — Proof relies heavily on R.A.G.
100000 0.16461 . ’
1000000 019415 = _Oga Tite sure what the = ==
10000000 0.22263 i the big-cis. ot
100000000 0.24828 — For some games (”Purgatory games”), (1/¢)™ iterations

> 2*1065 0.9 are necessary to get e-optimal strategy.

> 10128 0.99

[FHLM'15] Why does the algorithm work well ”in

practice”?

For all games with N positions and m actions for each
player in each position, (1/e)"’(4"°(1”N iterations is
sufficient to arrive at e-optimal strategy.

¢ The algorithm converges fast when the infinite
game is approximated well by a time limited
game with a reasonable time bound.

— Proof relies heavily on RA.G. * Games you want to solve in practlce.(e.g.,
—Refi ea ; Uit sure what the poker tournaments) tend to have this
e big-O is. property...

— For some games (”Purgatory games”), (1/E)mN-o(N)

are necessary to get e-optimal strategy.

iterations
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Exact Algorithms for Solving Stochastic

Games
(Hansen, Lauritzen, Koucky, Miltersen, Tsigaridas, STOC’11)

The recent results

* A worst case time complexity analysis of the
strategy improvement algorithm of de Alfaro et

al.
— The complexity is doubly exponential. ¢ Good news: Algorithms solving stochastic
A polynomial time algorithm for the general games exactly in polynomial time when the
problem when the number of positions is number of positions is constant.
constant.
* A polynomial hierarchy algorithm for the
approximation version of the general problem. ¢ Bad news: Complexity is something like
* A structural theorem on near-optimal strategies: Lexp(O(NlogN))

”"Monomial” strategies suffice.

Slogan of approach The tight example
» Doing numerical analysis/optimization in Generalized Purgatory P(N,m):
dangerous waters using real algebraic « Column player repeatedly hides a number in {1,..,m}.
geometry. * Row player must try to guess the number.
— The waters are dangerous because small perturbations mean * If he guesses correctly N times in a row, he wins the game.
everything... ¢ If he ever guesses incorrectly overshooting hidden
= Why? number, he loses the game.
— These games all have value 1(!)
— Strategy iteration needs (1/8)’"N"°(N) to get e-optimal
strategy. 1
In particular, this patience is necessary to be e-optimal!
Recursive Bisection Algorithm Recursive Bisection Algorithm

C\V - >0.5?
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Recursive Bisection Algorithm
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Recursive Bisection Algorithm
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position with | *

target value
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solve smaller
game

Recursive Bisection Algorithm
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position with 05
target value

3. Reinstate
position

4. Replace
pointers
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Recursive Bisection Algorithm
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target value

4. Replace
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2. Recursively
solve smaller
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Recursive Bisection Algorithm

1. Replace 0.5

position with 05 |09
target value

3. Reinstate
position

4. Replace
pointers

2. Recursively
solve smaller
game
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Recursive Bisection Algorithm

1. Replace 0.5 3. Reinstate
position with 05 |09 position
target value

4. Replace
pointers

N

Recursively
solve smaller
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Recursive Bisection Algorithm

1. Replace 0.5 3. Reinstate
position with 0.5 09 (.6 V position

target value B lo.4 0 . 62

7108 |02 (0.

4. Replace
pointers

5. Solve
matrix
game

N

. Recursively
solve smaller
game

Recursive Bisection Algorithm

1. Replace (\\w ~ 3. Reinstate
position with [ — > 05 - position
target value
¢ , Yes!

4. Replace
pointers

5. Solve
matrix
game

N

. Recursively
solve smaller
game

What'’s the catch?

* We can compare the value of a position in an N-position game
to a given rational number (and do binary search) if we
recursively can solve an (N-1)-position game exactly!

¢ How to solve (N-1)-position game exactly using binary search?
— 0.5 vs.0.5000000000000000000000000001
— Will happen on simple examples such as Purgatory.

¢ To get algorithm, we must replace "exactly”
with "approximately” or vice versa.

Real algebraic geometry to the rescue

¢ To reconcile approximately and exactly, we
need separation bounds.
— Separation bound: If games X and Y of certain

parameters have different values, they differ by at
least €.

e Separation bounds for stochastic games
using real algebraic geometry is the technical
meat of the work.

Isolated root theorem (HLKMT’11)

e Given a polynomial system:

— 1 (X, Xg) X3, o0y Xp) = oo = T (Xq, Xy, X, ooy Xp)

* with each f;in Q[x,, x,, ..., X,], of total degree d

and with an isolated root x* in R".

* Then, the algebraic degree of each x*; is at

most (2d+1)".

¢ Best(?) previously published bound: (O(d))".
¢ Open(?): Is d" possible?

10
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Open Problems

* Better exponent

¢ Polynomial time algorithm for finding
monomial e-optimal strategy for constant
number of positions and symbolic €?

The recent results

* A worst case time complexity analysis of the
strategy improvement algorithm of de Alfaro et
al.

— The complexity is doubly exponential.

* A polynomial time algorithm for the general
problem when the number of positions is
constant.

* A polynomial hierarchy algorithm for the
approximation version of the general problem.

e Astructural theorem on near-optimal strategies:
”"Monomial” strategies suffice.

Polynomial hierarchy?

¢ Not very impressive, is it?!

* Finite-state two-player zero-sum games can
"usually” be solved in NP N coNP!
— Parity games
— Condon’s simple stochastic games

e ”"Usual proof”: Guess a pair of strategies and
verify that they are in equilibrium.

e What is the catch?

Values and Near-Optimal Strategies

* Everett’57: Each position i in a CRG has a value v,
so that

Vi = mlnstationaryy maxgeneral X IJ.i(X,y)
=sup stationary x mmgeneraly ui(x'Y)

First catch: No
exact
equilibrium...

No worries, instead of NP N
coNP, we should still get
TFNP upper bound for the
approximation problem....

The tight example

Generalized Purg;

Second catch:
¢ Column player

Exponentially many bits
needed to express near-
optimal strategy in fixed
point notation!

* Row player
¢ If he guessest,

— These games all haveva

N-o(N)

— Strategy iteration needs (1/¢)™
strategy. 1

In particular, this patience is necessary to be e-optimal!

to get e-optimal

TENP[NP] upper bound

¢ When fixed point notation of numbers will not
do, what to go for?

* Floating point notation!
e Algorithm:

— Guess stationary strategies in floating point notation.

* Solan’03: Absorption probabilities of Markov chain change
benignly when transition probabilities change with
multiplicative error, so good guess is possible.

— Guess best replies

— Solve rare event absorbing Markov process using
appropriate numerical algorithm: State reduction
algorithm of Grassman, Takar and Heyman (1985).

11
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State reduction algorithm
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Absorption probabilities can be approximated in
polynomial time!

Open problem

Can a rare event Markov Decision Process (i.e.,
with probabilities given in floating point) be
approximately solved in polynomial time?

This would lead to TFNP upper bound for the
approxmation problem, but also seems
interesting in its own right..

The recent results

al. problem:

Improve

constant.

¢ A polynomial hierar >
approximation version of the general problem.

e Astructural theorem on near-optimal strategies:

"Monomial” strategies suffice.

RP'1S

Thank you!
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