Computation theory with atoms

I. Sets with atoms
II. Computation models with atoms

Sławomir Lasota
University of Warsaw

FoPSS School 2019: Nominal Techniques

II. Computation models with atoms

- automata with atoms
- Turing machines with atoms
- other models of computation

computation theory with atoms

orbit-finite automata
[Bojańczyk, Klin, L. 2011, 2014]
orbit-finite pushdown automata
[Clemente, L. 2015, 2019]
orbit-finite Turing machines
[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]
tractability in orbit-finite computation
[Bojańczyk, Toruńczyk 2018]
programming languages processing orbit-finite objects
[Bojańczyk, Braud, Klin, L. 2012]
[Klin, Szynwelski 2016]
[Kopczyński, Toruńczyk 2016, 2017]
orbit-finite homomorphism/isomorphism problem
[Klin, Kopczyński, Ochremiak, Toruńczyk 2015]
[Klin, L., Ochremiak, Toruńczyk 2016]
[Keshvardoost, Klin, L., Ochremiak, Toruńczyk 2019]
orbit-finite logics
[Bojańczyk, Place 2012]
[Klin, Łetyk 2017]
[Klin, Eberhart 2019]

In the sequel, atoms are well-behaved:

- have finite vocabulary
- are homogeneous
- have bounded substructures
hence oligomorphic and
$\mathrm{FO}=$ quantifier free logic
- are effective
hence quantifier-free
logic decidable

although may have arbitrarily high complexity

Automata

Nondeterministic automata:

- alphabet A
- states Q
- $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

$=$ definable sets
orbit-finite sets
instead of finite ones

Deterministic automata:

- $\delta: ~ \mathrm{Q} \times \mathrm{A} \rightarrow \mathrm{Q}$
- initial state $\in \mathbb{Q}$

Unambiguous automata, alternating automata:

Question: Consider an equivariant language accepted by a nondeterministic orbit-finite automaton. Is this language accepted by an equivariant one? What about deterministic automata?

Question: Consider an S-supported language accepted by a nondeterministic orbit-finite automaton.
Is this language accepted by an S-supported one?
What about deterministic automata?

- alphabet A
- states Q
- $\delta \subseteq \mathrm{Q} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Question: do ε-transition increase the power of nondeterministic automata?
input alphabet: atoms
language: "exactly two different atoms appear"

number of registers may vary from one orbit to another

states: $Q=$ atoms $\leq 2 \cup\{$ reject $\}$
transitions: $\quad \delta: \underline{Q} \times \mathrm{A} \rightarrow \mathrm{Q}$

$\delta((), \mathrm{a})=$	(a)	$\mathrm{a} \in$ atoms
$\delta((\mathrm{a}), \mathrm{b})=$	(ab)	$\mathrm{a} \neq \mathrm{b}$
$\delta((\mathrm{a}), \mathrm{b})=$	(a)	$\mathrm{a}=\mathrm{b}$
$\delta((\mathrm{ab}), \mathrm{c})=$	reject	$\mathrm{c} \neq \mathrm{a}, \mathrm{b}$

initial state: ()
accepting states: atoms 2
input alphabet: atoms
language: "exactly two different atoms appear"

$$
\text { states: } \mathrm{Q}=\mathcal{P}_{\leq 2} \text { (atoms) } \cup\{\text { reject }\}
$$

transitions: $\delta: Q \times \mathrm{A} \rightarrow \mathrm{Q}$

$$
\begin{array}{ll}
\delta(\varnothing, a)=\{a\} & a \in \text { atoms } \\
\delta(\{a\}, b)=\{a, b\} & a, b \in \text { atoms } \\
\delta(\{a, b\}, c)=\text { reject } & c \neq a, b
\end{array}
$$

initial state: \varnothing
accepting states: $\quad \mathcal{P}_{2}$ (atoms)
input alphabet: atoms
language: "exactly two different atoms appear"

input alphabet: atoms
language: "last letter appears elsewhere and is different than 7"
can it be determininized?

$$
\text { states: } \quad Q=\text { atoms } \cup\{\text { init, accept }\}
$$

$$
\begin{array}{ll}
\delta(\text { init }, \mathrm{a})=\{\text { init, } \mathrm{a}\} & \mathrm{a} \in \text { atoms, } \mathrm{a} \neq 7 \\
\delta(\mathrm{a}, \mathrm{~b})=\mathrm{a} & \mathrm{a}, \mathrm{~b} \in \text { atoms, } \mathrm{a} \neq \mathrm{b} \\
\delta(\mathrm{a}, \mathrm{~b})= & \text { accept } \\
\mathrm{a}, \mathrm{~b} \in \text { atoms, } \mathrm{a}=\mathrm{b}
\end{array}
$$

initial state: init
accepting states: accept
input alphabet: atoms
language: "last letter doesn't appear elsewhere and is different than 7"

$$
\text { states: } Q=\text { atoms } \cup\{\text { accept }\}
$$

transitions: $\delta: Q \times A \rightarrow Q$

$$
\begin{array}{lll}
\delta(\mathrm{a}, \mathrm{a})= & \text { accept } & \mathrm{a} \in \text { atoms } \\
\delta(\mathrm{a}, \mathrm{~b})= & \mathrm{a} & \mathrm{a}, \mathrm{~b} \in \text { atoms }, \mathrm{a} \neq \mathrm{b}
\end{array}
$$

initial states: atoms $\backslash\{7\}$
accepting states: \{accept\}
input alphabet: $\quad P_{2}$ (atoms)
language: "nonempty intersection of all letters, or empty word"

transitions: $\quad \delta: Q \times A \rightarrow Q$

$$
\delta(a,\{a, b\})=a \quad a, b \in \text { atoms, } a \neq b
$$

initial states: atoms
accepting states: atoms
input alphabet: $\quad P_{2}$ (atoms)
language: "nonempty intersection of all letters, or empty word"

$$
\text { states: } \quad \mathrm{Q}=\mathcal{P}_{\leq 2} \text { (atoms) } \cup\{\text { atoms }\}
$$

transitions: $\delta: Q \times \mathrm{A} \rightarrow \mathrm{Q}$
$\delta(x, y)=x \cap y$
initial states: \{atoms\}
accepting states: all states except \varnothing
input alphabet: triples of atoms up to cyclic shift

$$
\begin{aligned}
& \{(a, b, c),(b, c, a),(c, a, b)\} \text { for } a, b, c \text { distinct } \\
& \underline{3} b=\underline{5} \underline{\underline{5}} \underline{\underline{5}}=\underline{b^{0}} \underline{3} \\
& \underline{\underline{0}} \underline{\underline{0}}
\end{aligned}
$$

 that can be glued into a chain $\quad \underline{3}, \underline{5}, \underline{8}, \underline{8}$
states: $\quad\{0\} \cup\{\triangle(a, b), \nabla(a, b): a, b$ distinct $\} \quad$ isn't it transitions: $\quad \delta: Q \times \mathrm{A} \rightarrow \mathrm{P}_{\mathrm{fin}}(\mathrm{Q})$
$\left(0, a_{b}^{b}\right) \rightarrow \stackrel{\ulcorner }{b}^{a} \quad$ for a, b, c distinct
$\left(\nabla_{b}^{a}, a_{b}^{c}\right) \rightarrow Q_{c} \quad$ for a, b, c distinct
$\left(\alpha_{b}, a_{b}^{c}\right) \rightarrow \stackrel{\rightharpoonup}{b}^{c}$
initial states: $\quad\{0\}$
accepting states: all states except 0
input alphabet: atoms
language: nonempty monotonic words

$$
\text { states: } \quad Q=\text { atoms } \cup\{-\infty\}
$$

transitions: $\delta: Q \times A \rightarrow Q$

$$
\begin{array}{lll}
\delta(-\infty, \mathrm{b})=\mathrm{b} & \mathrm{~b} \in \text { atoms } \\
\delta(\mathrm{a}, \mathrm{~b})= & \mathrm{b} & \mathrm{a}, \mathrm{~b} \in \text { atoms, } \mathrm{a}<\mathrm{b}
\end{array}
$$

initial state: $-\infty$
accepting states: atoms

input alphabet: atoms

language: "local minima are monotonic"

input alphabet: V
language: dependent words = "some subsequence of letters sums up to 0 "

$$
\text { states: } \quad \mathrm{Q}=\text { atoms } \cup\{\text { init }\}
$$

can it be
determininized?

transitions:

$$
\delta: \mathrm{Q} \times \mathrm{A} \rightarrow \mathrm{P}_{\mathrm{fin}}(\mathrm{Q})
$$

$$
\delta(\text { init }, a)=\{\text { init }, a\} \quad a \in \text { atoms }
$$

$$
\delta(\mathrm{a}, \mathrm{~b})=\{\mathrm{a}, \mathrm{a}+\mathrm{b}\} \quad \mathrm{a}, \mathrm{~b} \in \mathrm{atoms}
$$

initial state: init
accepting state: 0

Theorem: Every equivariant orbit is isomorphic to atoms (n) modulo G, for some n and G a group of permutations of $\{1 \ldots \mathrm{n}\}$.
(Non)deterministic orbit-finite automata slightly generalize register automata:

- number of registers (dimension) may vary from one orbit to another
- registers are not necessarily ordered
- alphabet letters may contaif morrthan one atom

Expressive power

momdeterministic register automata with $=$ equality tests $x=y$
nondeterministic automata with equality atoms over alphabet atoms \times (a finite set)

- likewise for total order atoms (Q, \leq)
straight automata with equality atoms

Claim: Every (non)deterministic automaton over a straight alphabet A is equivalent to a straight one

Straightization (determinisicicase)

Claim: Every (non)deterministic automaton over a straight alphabet A is equivalent to a straight one

Think of 1-orbit Q straight set: every orbit isomorphic to atoms ${ }^{(n)}$ for some n

Theorem: Every equivariant orbit is isomorphic to atoms $(\mathrm{n}) / \mathrm{G}$, for some n and G a group of permutations of $\{1 \ldots n\}$.
$\mathrm{f}: \operatorname{atoms}^{(n)} \rightarrow \underline{Q}$ support-reflecting

- $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q}^{\mathrm{Q}} \quad \mathrm{f}^{-1}(\delta) \subseteq \operatorname{atoms}(\mathrm{n}) \times \mathrm{A} \times \operatorname{atoms}^{(\mathrm{n})}$
- $\delta: \underline{Q} \times \mathrm{A} \rightarrow \mathrm{Q}$ an orbit of atoms $(\mathrm{n}) \times \mathrm{A} \xrightarrow{?}$ atoms (n)

Minimization

deterministic
 register automata with
 equality tests $x=y$

do not minimize

deterministic

$=$ automata with equality atoms over alphabet atoms \times (a finite set)
do minimize

Myhill-Nerode Theorem

Theorem: L is recognized by a deterministic automaton iff
the set of L-equivalence classes is orbit-finite

The equivalence classes are states of the minimal automaton for L

Two words are L-equivalent iff
they lead the minimal automaton to the same state
this is impossible in register automata!
language: \quad defdef, defefd, deffde : d, e, f pairwise different

579, 795 and 957 are L-equivalent

after reading first three letters, the minimal automaton should remember their order up to cyclic shift only!
again, this is impossible in register automata!

- automata with atoms
- Turing machines with atoms
- other models of computation

Turing machines

- tape alphabet A
- states Q
- subset $\delta \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \underline{\mathrm{Q}} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\}$
- subsets $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Deterministic machines:

- $\delta: \underline{\mathrm{Q}} \times \mathrm{A} \rightarrow \mathrm{Q} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\}$
input alphabet: atoms
language: "no atom appears twice":
$\left\{a_{1} a_{2} \ldots a_{n}: a_{i} \neq a_{j}\right.$ when $\left.i \neq j\right\}$
tape alphabet:
states:
transitions:

$$
\begin{array}{lll}
\delta: \mathrm{Q} \times \mathrm{A} \rightarrow \mathrm{Q} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\} & \\
\delta(\text { start } \mathrm{a})= & (\mathrm{a}, \perp, \rightarrow) & \mathrm{a} \in \text { atoms } \\
\delta(\mathrm{a}, \mathrm{~b})= & (\mathrm{a}, \mathrm{~b}, \rightarrow) & \mathrm{a} \neq \mathrm{b}, \mathrm{a}, \mathrm{~b} \in \text { atoms } \\
\delta(\mathrm{a}, \mathrm{~B})= & (\text { ret, } \mathrm{B}, \leftarrow) & \mathrm{a} \in \text { atoms } \\
\delta(\text { ret, a) }= & (\text { ret, } \mathrm{a}, \leftarrow) & \mathrm{a} \in \text { atoms } \\
\delta(\text { ret, } \perp)= & (\text { start, } \perp, \rightarrow) & \\
\delta(\text { start }, \mathrm{B})= & (\text { accept }, \mathrm{B}, \rightarrow) &
\end{array}
$$

input alphabet: $\quad P_{\leq 10}$ (atoms)
language: "some atom belongs to an odd number of letters"

Questions

1. Are TMs with atoms equivalent to classical TMs?

A - orbit-finite equivariant input alphabet
$\mathrm{L} \subseteq \mathrm{A}^{*}$ equivariant

- TM with atoms inputs a word $w \in \mathrm{~A}^{*}$
- classical TM inputs definition of w

2. Do TMs with atoms determinize?

yes
3. Do TMs with atoms determinize when alphabet $=$ atoms?
4. Has \mathbf{P} vs NP question the same answer as classically in this case? $P \neq N P$

1. Nondeterministic TMs with atoms = classical TMs

$\mathrm{L} \subseteq \mathrm{A}^{*}$ equivariant

- TM with atoms inputs a word $\mathfrak{w \in \mathrm { A } ^ { * }}$
- classical TM inputs definition of w
atoms are well-behaved:
- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

with atoms \Longleftrightarrow classical:

- L recognized by a definable TM
- atom-less simulation by manipulating definitions
classical \Longleftrightarrow with atoms (case $\mathrm{A}=$ atoms):
- L recognized by a classical TM
- TM with atoms, on input w :
- computes the quantifier-free formula defining the orbit of w
- atom-less simulation by manipulating definitions

1. Nondeterministic TMs with atoms = classical TMs

$\mathrm{L} \subseteq \mathrm{A}^{*}$ equivariant

- TM with atoms inputs a word $w \in \mathrm{~A}^{*}$
- classical TM inputs definition of w
atoms are well-behaved:
- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

Fact: Every equivariant orbit finite set A admits a surjective equivariant function

$$
\mathrm{f}: \bigcup_{\mathrm{i} \in \mathrm{I}} \text { atoms }\left(\mathrm{n}_{\mathrm{i}}\right) \longrightarrow \mathrm{A}
$$

classical \Longleftrightarrow with atoms (case $\mathrm{A} \neq$ atoms):

- L recognized by a classical TM
- $\mathrm{f}^{-1}(\mathrm{~L})$ too (alphabet = atoms)
- $f^{-1}(\mathrm{~L})$ recognized by a TM with atoms M (previous slide)
- TM with atoms, on input w : guess $f^{-1}(w)$ and execute M

2. Do TMs with atoms determinize?

In case of equality atoms $(\mathrm{N},=)$ this depends on input alphabet:

- atoms
- ordered pairs of atoms
- unordered pairs of atoms
- unordered pairs of ordered pairs of atoms

- ordered triples of pairs of atoms modulo even non-standard! number of flips

In case of total order atoms $(\mathrm{Q},<)$ they do.
abaeddcdfdgyheusedfergffeds

- deatomization: replace atoms with binary encodings

a sequence of atoms	2		1		1		9		1
deatomisation	1	$\#$	10	$\#$	10	$\#$	100	$\#$	10

- atom-less simulation of atom-full computation

Fact: TMs over this alphabet do determinize

$$
(\mathrm{a}, \mathrm{~b}) \in \operatorname{atoms}^{(2)}
$$

- input word represents a directed graph
- nodes (atoms) can be computed using projections

$$
(a, b) \mapsto a \quad(a, b) \mapsto b
$$

and stored on the tape

- then any decidable property of directed graphs can be decided deterministically

Fact: TMs over this alphabet do determinize

$$
\{a, b\} \in \mathcal{P}_{2} \text { (atoms) }
$$

- input word represents an undirected graph
- can nodes (atoms) be computed?

$$
\begin{array}{r}
\frac{[a, b]}{(\{a, b\},\{b, c\}) \mapsto b}
\end{array}
$$

- then any decidable property of undirected graphs can be decided deterministically

Fact: TMs over this alphabet do determinize

alphabet: unordered pairs of ordered pairs

 of atoms $\{(a, c),(b, d)\} \stackrel{a \longrightarrow c}{a \longrightarrow d}$simple strips:

Are simple strips recognized by a deterministic TM?
which is legal?

$\left(\begin{array}{l}a \longrightarrow c \\ b \longrightarrow d\end{array}, \begin{array}{l}c \longrightarrow e \\ d \longrightarrow f\end{array}\right) \longmapsto \begin{aligned} & a \longrightarrow e \\ & b \longrightarrow f\end{aligned}$

Fact: TMs over this alphabet do determinize

Theorem:

There is an alphabet A, and a language over A that is in NP but is not recognizable by a deterministic TM.

Let triangles with same side sets be equivalent if exactly two pairs are flipped:

alphabet: equivalence classes of triangles
alphabet: ordered triples of

ordered pairs of atoms modulo even number of flips

alphabet: ordered triples of

ordered pairs of atoms modulo even number of flips

alphabet: ordered triples of ordered pairs of atoms modulo even number of flips
there is no function!

separating language

side sets either equal or disjoint

sequence
of
elements

U

U

Language: a word is in the language iff some sequence of elements is conflict-free
closely related APCYai-Fuerer-Immern
recognized in APP? not recognized by a deterministic machic,, , $\left(b, b^{\prime}\right) \quad\left(b^{\prime}, b\right) \quad\left(d, d^{\prime}\right)$ enumeration of sequences of elements is not doable by a deterministic machine

Hard inputs

For sufficiently large n, deterministic machine can not distinguish an input torus from a "flipped" one but flipping alters membership in the language!

Thara inouts

Flipping one position in a torus alters membership in the language

Fix a deterministic machine M

Machine M ignores a position x after y steps at tape cell z : content of cell z after y steps would remain the same if the position x was flipped

Claim: For n sufficiently large M ignores, after every step at every cell, all positions except for k^{2} of them
$\mathrm{k}:=$ twice the maximal support of a tape cell

Hard inputs

$$
\mathrm{k}:=\text { twice the maximal support of a tape cell }
$$

Observation: The greatest connected component C contains all except at most k^{2} positions

Claim: For n sufficiently large M ignores, after every step at every cell, all positions except for k^{2} of them

Induction on number of steps:

- Induction base: initially, M ignores, at every cell, all positions except that one

- Induction step:

- cell content after a step depends on three neighbour cell contents before the step
- hence M ignores, after the step, all except for $\mathbf{3} \mathrm{k}^{2}$
- hence M ignores some position in C (for n sufficiently large)
- hence M ignores every position in C (move the flip along the connecting path)

3. TMs with atoms determinize when alphabet = atoms

atoms are well-behaved:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective
- input word $w \in$ atoms $^{\mathrm{n}}$
- compute the quantifier-free formula defining the orbit of w $=$ the substructure of atoms generated by w
- atom-less simulation by manipulating definitions

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

Theorem:

There is a language over the alphabet of atoms that is in NP but not in P .

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

Claim: $\left(a_{1} a_{2} \ldots a_{n}\right),\left(b_{1} b_{2} \ldots b_{n}\right) \in$ atoms $^{(n)}$ are in the same orbit

$$
\sum_{i \in I} \mathrm{a}_{i}=0 \quad \text { iff } \quad \sum_{i \in I} \mathrm{~b}_{i}=0 \text { for for every } I \subseteq\{1 \ldots \mathrm{n}\}
$$

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

input alphabet: V
language: dependent words $=$ "some subsequence of letters sums up to 0 "

Fix a deterministic equivariant TM M recognizing the language in polynomial time
W.l.o.g. assume that states Q and tape alphabet T are straight: Every orbit of Q or T is isomorphic to atoms ${ }^{(\mathrm{n})}$ for $\mathrm{n} \leq N$

Consider the rejecting run on sufficiently long independent input word w We fool M with a dependent input w^{\prime} which M will forcedly reject too

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

Every orbit of Q or T is isomorphic to atoms ${ }^{(\mathrm{n})}$ for $\mathrm{n} \leq N$
Consider the rejecting run on sufficiently long independent input word w We fool M with a dependent input w^{\prime} which M will forcedly reject too

The idea: use locality

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

Every orbit of Q or T is isomorphic to atoms ${ }^{(\mathrm{n})}$ for $\mathrm{n} \leq N$
Consider the rejecting run on sufficiently long independent input word w We fool M with a dependent input w^{\prime} which M will forcedly reject too

All subset of w have pairwise differentsums
As the run is of polynomial length (w.r.t. length of w), there are only polynomially many sums of 3 N atomsappearing in it $w^{\prime}:=$ take a subset I of w whose sum is not among them, and replace some arbitrary element a from I by $r:=$ the sum of $\{a\}$ $a \longmapsto r$
Claim: $I \backslash\{a\} \cup\{r\}$ is the only subset of w ' that sums up to 0
Claim: Every triple of elements of $\underline{Q} \cup T$ in run (w) is in the same orbit as the corresponding triple in run (w^{\prime})
$\left(a_{1} a_{2} \ldots a_{n}\right),\left(b_{1} b_{2} \ldots b_{n}\right) \in$ atoms $^{(n)}$ are in the same orbit

$$
\sum_{i \in I} \mathrm{a}_{i}=0 \text { iff } \sum_{i \in I} \mathrm{~b}_{i}=0 \text { for for every } \mathrm{I} \subseteq\{1 \ldots \mathrm{n}\}
$$

4. $\mathrm{P} \neq \mathrm{NP}$ when alphabet $=$ atoms

Claim: Every triple of elements of $\mathrm{Q} \cup \mathrm{T}$ in run(w) is in the same orbit as the corresponding triple in run (w)

Claim: run (w) is in the same orbit as run(w'), hence rejecting too

- automata with atoms
- Turing machines with atoms
- other models of computation

Pushdown automata

- alphabet A
- states Q
- stack alphabet S
- $\delta \subseteq \mathrm{Q} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Deterministic pushdown automata: ...

> orbit-finite sets
> instead of finite ones

Theorem: Pushdown automata $=$ prefix-rewriting

Pushdown automata

nondeterministic
orbit-finite automaton
Theorem: Pre*(regular set) is regular for pushdown automata, and may be effectively computed

Corollary: Emptiness of pushdown automata is decidable

Context-free grammars

- nonterminal symbols S
- terminal symbols A
- an initial symbol
- $\delta \subseteq \mathrm{S} \times(\mathrm{S} \cup \mathrm{A})^{*}$

Theorem: Context-free grammars $=$ pushdown automata

Examples

- a context-free language over 3 atoms
- palindroms

$$
\begin{aligned}
& S \longrightarrow a S a \quad \quad(a \in \text { atoms }) \\
& S \longrightarrow \varepsilon
\end{aligned}
$$

- bracket expressions with brackets (a) a for $\mathrm{a} \in$ atoms
- monotonic bracket expressions ?

Petri nets

- places P
- an initial configuration
- $\delta \subseteq \mathrm{M}_{\mathrm{fin}}(\mathrm{P}) \times \mathrm{M}_{\mathrm{fin}}(\mathrm{P})$

Configurations = finite multisets of places $\mathrm{M}_{\mathrm{fin}}(\mathrm{P})$

