Computation theory with atoms

I. Sets with atoms **II. Computation models with atoms**

> Sławomir Lasota University of Warsaw

FoPSS School 2019: Nominal Techniques

II. Computation models with atoms

- automata with atoms
- Turing machines with atoms
- other models of computation

computation theory with atoms

orbit-finite automata [Bojańczyk, Klin, L. 2011, 2014] orbit-finite pushdown automata [Clemente, L. 2015, 2019] orbit-finite Turing machines [Bojańczyk, Klin, L., Toruńczyk 2013] [Klin, L., Ochremiak, Toruńczyk 2014] tractability in orbit-finite computation [Bojańczyk, Toruńczyk 2018] programming languages processing orbit-finite objects [Bojańczyk, Braud, Klin, L. 2012] [Klin, Szynwelski 2016] [Kopczyński, Toruńczyk 2016, 2017] orbit-finite homomorphism/isomorphism problem

[Klin, Kopczyński, Ochremiak, Toruńczyk 2015] [Klin, L., Ochremiak, Toruńczyk 2016] [Keshvardoost, Klin, L., Ochremiak, Toruńczyk 2019]

orbit-finite logics

[Bojańczyk, Place 2012] [Klin, Łełyk 2017] [Klin, Eberhart 2019] In the sequel, atoms are **well-behaved**:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

hence quantifier-free

logic decidable

hence oligomorphic and FO = quantifier free logic

orbits of atoms(n) = substructures generated by n atoms

there is a function **b** such that substructures generated by n atoms have size bounded by **b**(n)

finitely generated substructures of atoms are computable

although may have arbitrarily high complexity

Automata

Nondeterministic automata:

- alphabet A
- states Q
- $\delta \subseteq Q \times A \times Q$
- I, F ⊆ Q

orbit-finite sets instead of finite ones = definable sets

Deterministic automata:

- $\delta: Q \times A \rightarrow Q$
- initial state $\in Q$

Unambiguous automata, alternating automata:

Question: Consider an equivariant language accepted by a nondeterministic orbit-finite automaton. Is this language accepted by an equivariant one? What about deterministic automata?

Question: Consider an S-supported language accepted by a nondeterministic orbit-finite automaton. Is this language accepted by an S-supported one? What about deterministic automata?

- alphabet A
- states Q
- $\delta \subseteq Q \times (A \cup \{\epsilon\}) \times Q$
- I, $F \subseteq Q$

Question: do ɛ-transition increase the power of nondeterministic automata?

input alphabet: atoms

language: "exactly two different atoms appear"

input alphabet: $P_2(atoms)$

language: "nonempty intersection of all letters, or empty word"

states:
$$Q = \mathcal{P}_{\leq 2}(atoms) \cup \{atoms\}$$

transitions: $\delta : Q \times A \rightarrow Q$
 $\delta(x, y) = x \cap y$

initial states: {atoms} accepting states: all states except \emptyset

total order atoms (Q, <)

input alphabet: atoms

language: nonempty monotonic words

states: $Q = atoms \cup \{-\infty\}$ transitions: $\delta : Q \times A \rightarrow Q$ $\delta(-\infty, b) = b$ $b \in atoms$ $\delta(a, b) = b$ $a, b \in atoms, a < b$

initial state: $-\infty$ accepting states: atoms

total order atoms (Q, <)

input alphabet: atoms

language: "local minima are monotonic"

Theorem: Every equivariant orbit is isomorphic to $atoms^{(n)}$ modulo G, for some n and G a group of permutations of $\{1...n\}$.

(Non)deterministic orbit-finite automata slightly generalize register automata:

- number of registers (dimension) may vary from one orbit to another
- registers are not necessarily ordered
- alphabet letters may contain more than one atom

ordered for total order atoms (Q, <)

not a design decision but a property of orbit-finite sets

19

equality atoms (N, =)

Expressive power

-nendeterministic

register automata with equality tests x = y

-nondeterministic

automata with equality atoms over alphabet atoms × (a finite set)

• likewise for total order atoms (Q, \leq)

straight automata with equality atoms

Claim: Every (non)deterministic automaton over a straight alphabet A is equivalent to a straight one

equality atoms (N, =) Straightization (deterministic case)

Claim: Every (non)deterministic automaton over a straight alphabet A is equivalent to a straight one

Think of 1-orbit Q

straight set: every orbit isomorphic to atoms⁽ⁿ⁾ for some n

Theorem: Every equivariant orbit is isomorphic to $atoms^{(n)}/G$, for some n and G a group of permutations of $\{1...n\}$. f: $atoms^{(n)} \rightarrow Q$ support-reflecting

• $\delta \subseteq Q \times A \times Q$ $f^{-1}(\delta) \subseteq atoms^{(n)} \times A \times atoms^{(n)}$

Minimization

deterministic

register automata with equality tests x = y

deterministic

automata with equality atoms over alphabet atoms × (a finite set)

do not minimize

do minimize

Myhill-Nerode Theorem

Theorem: L is recognized by a deterministic automaton iff

the set of L-equivalence classes is orbit-finite

The equivalence classes are states of the minimal automaton for L

Two words are L-equivalent iff they lead the minimal automaton to the same state Every equivariant orbit is isomorphic to atoms⁽ⁿ⁾ modulo G, for some n and G a group of permutations of {1...n}. they lead the minimal automaton to the same state

input alphabet: atoms

language: "exactly two different atoms appear"

18 and 81 are L-equivalent

after reading first two different data values, the minimal automaton should not remember their order!

this is impossible in register automata!

Every equivariant orbit is isomorphic to $atoms^{(n)}$ modulo G, for some n and G a group of permutations of $\{1...n\}$. they lead the minimal automaton to the same state

input alphabet: atoms
language: {defdef, defefd, deffde : d, e, f pairwise different}

579, 795 and 957 are L-equivalent

after reading first three letters, the minimal automaton should remember their order up to cyclic shift only!

again, this is impossible in register automata!

• automata with atoms

- Turing machines with atoms
- other models of computation

- tape alphabet A
- states Q
- subset $\delta \subseteq Q \times A \times Q \times A \times \{\leftarrow, \rightarrow, \downarrow\}$
- subsets I, $F \subseteq Q$

orbit-finite sets instead of finite ones

Configurations = $A^* \times Q \times A^*$

Deterministic machines:

• $\delta: Q \times A \rightarrow Q \times A \times \{\leftarrow, \rightarrow, \downarrow\}$

input alphabet:	atoms	-				
language:	"no atom app $\{a_1a_2\dots a_n$	bears twice": : $a_i \neq a_j$ when i	$\neq j \}$			
tape alphabet:	A = atoms ∪	! {⊥}				
states:	$Q = atoms \cup \{start, accept, ret\}$					
transitions:	$\delta: Q \times A \rightarrow$	$Q \times A \times \{\leftarrow, \rightarrow, \downarrow\}$				
	$\delta(\text{start, a}) =$	(a, ⊥, →)	a ∈ atoms			
	δ(a, b) =	(a, b, →)	a ≠ b, a, b ∈ atoms			
	$\delta(a, B) =$	(<mark>ret</mark> , B, ←)	a ∈ atoms			
	$\delta(\text{ret}, a) =$	(<mark>ret</mark> , a, ←)	a ∈ atoms			
	$\delta(\text{ret}, \perp) =$	$($ start, \perp , \rightarrow $)$				
	$\delta(\text{start, B}) =$	(accept, B, →)				

input alphabet: $P_{\leq 10}(atoms)$

language: "some atom belongs to an odd number of letters"

7

Questions

1. Are TMs with atoms equivalent to classical TMs? yes

A - orbit-finite equivariant input alphabet $L \subseteq A^*$ equivariant

yes

- TM with atoms inputs a word *w*∈A*
 classical TM inputs **definition** of *w*
- 2. Do TMs with atoms determinize? no! $P \neq NP$
- 3. Do TMs with atoms determinize when alphabet = atoms?
- 4. Has **P** vs **NP** question the same answer as classically in this case? $P \neq NP$

well-behaved atoms

1. Nondeterministic TMs with atoms = classical TMs

$L \subseteq A^*$ equivariant

- TM with atoms inputs a word $w \in A^*$
- classical TM inputs **definition** of *w*

with atoms \implies classical:

- L recognized by a definable TM
- atom-less simulation by manipulating definitions

classical \implies with atoms (case A = atoms):

- L recognized by a classical TM
- TM with atoms, on input *w*:
 - computes the quantifier-free formula defining the orbit of *w*
 - atom-less simulation by manipulating definitions

atoms are **well-behaved**:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

well-behaved atoms

1. Nondeterministic TMs with atoms = classical TMs

 $L \subseteq A^*$ equivariant

- TM with atoms inputs a word $w \in A^*$
- classical TM inputs **definition** of *w*

atoms are **well-behaved**:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

Fact: Every equivariant orbit finite set A admits a surjective equivariant function

$$f: \bigcup_{i \in I} atoms^{(n_i)} \longrightarrow A$$

classical \implies with atoms (case A \neq atoms):

- L recognized by a classical TM
- $f^{-1}(L)$ too (alphabet = atoms)
- f⁻¹(L) recognized by a TM with atoms M (previous slide)
- TM with atoms, on input w: guess $f^{-1}(w)$ and execute M

2. Do TMs with atoms determinize?

In case of equality atoms (N, =) this depends on input alphabet:

- atoms
- ordered pairs of atoms
- unordered pairs of atoms
- unordered pairs of ordered pairs of atoms

• ordered triples of pairs of atoms modulo even <u>non-standard!</u> number of flips

In case of total order atoms (Q, <) they do.

alphabet: atoms

• deatomization: replace atoms with binary encodings

a sequence of atoms	2		1		1		9		1
deatomisation	1	#	10	#	10	#	100	#	10

• atom-less simulation of atom-full computation

alphabet: ordered pairs of atoms (a, b) \in atoms⁽²⁾ equality atoms (N, =)

- input word represents a directed graph
- nodes (atoms) can be computed using projections

$$(a,b) \mapsto a \qquad (a,b) \mapsto b$$

and stored on the tape

• then any decidable property of directed graphs can be decided deterministically

alphabet: unordered pairs of atoms $\{a, b\} \in \mathcal{P}_2(atoms)$

equality atoms (N, =)

- input word represents an undirected graph
- can nodes (atoms) be computed?

 $\{a, b\} \mapsto a$ $(\{a, b\}, \{b, c\}) \mapsto b$

• then any decidable property of undirected graphs can be decided deterministically

equality atoms (N, =) alphabet: unordered pairs of ordered pairs of atoms $\{(a,c),(b,d)\} \xrightarrow[b]{a \longrightarrow c}{a \longrightarrow d}$ simple strips: $a \xrightarrow{c} c \xrightarrow{} e \xrightarrow{} a$ $b \xrightarrow{} d \xrightarrow{} f \xrightarrow{} b$ $a \xrightarrow{c} c \xrightarrow{e} a \\ b \xrightarrow{d} f \xrightarrow{b} b$ is not a simple strip which is legal? $\begin{array}{ccc} a & \longrightarrow c \\ b & \longrightarrow d \end{array} & \longmapsto \{a, b\} \\ a & \longrightarrow c \\ b & \longrightarrow d \end{array} & \longmapsto (a, c) \end{array}$ Are simple strips recognized by a deterministic TM? $\begin{pmatrix} a \longrightarrow c & c \longrightarrow e \\ b \longrightarrow d & d \longrightarrow f \end{pmatrix} \mapsto \begin{pmatrix} a \longrightarrow e \\ b \longrightarrow f \end{pmatrix}$

Theorem:

There is an alphabet A, and a language over A that is in NP but is not recognizable by a deterministic TM.

alphabet: ordered triples of equality atoms (N, =) ordered pairs of atoms modulo even number of flips

Let triangles with same side sets be equivalent if exactly two pairs are flipped:

alphabet: equivalence classes of triangles

alphabet: ordered triples of ordered pairs of atoms modulo even number of flips

alphabet: ordered triples of

ordered pairs of atoms modulo even number of flips

alphabet: ordered triples of ordered pairs of atoms modulo even number of flips

Language: a word is in the language iff some sequence of elements is conflict-free

Hard inputs

For sufficiently large n, deterministic machine can not distinguish an input torus from a "flipped" one but flipping alters membership in the language!

Hard inputs

Flipping one position **in a torus** alters membership in the language

Fix a deterministic machine M

- including possibly control state of the machine

Machine *M* **ignores** a position x after y steps at tape cell z: content of cell z after y steps would remain the same if the position x was **flipped**

Claim: For n sufficiently large M ignores, after every step at every cell, all positions except for k^2 of them

k := twice the maximal support of a tape cell

Hard inputs

k := twice the maximal support of a tape cell

Observation: The greatest connected component C contains all except at most k^2 positions

Claim: For n sufficiently large M ignores, after every step at every cell, all positions except for k^2 of them

Induction on number of steps:

- Induction base: initially, *M* ignores, at every cell, all positions except that one
- Induction step:
 - cell content after a step depends on **three** neighbour cell contents before the step
 - hence M ignores, after the step, all except for $3k^2$
 - hence M ignores **some** position in C (for n sufficiently large)
 - hence *M* ignores **every** position in *C* (move the flip along the connecting path)

well-behaved atoms

3. TMs with atoms determinize when alphabet = atoms

atoms are **well-behaved**:

- have finite vocabulary
- are homogeneous
- have bounded substructures
- are effective

- input word $w \in atoms^n$
- compute the quantifier-free formula defining the orbit of *w*= the substructure of atoms generated by *w*
- atom-less simulation by manipulating definitions

4. P \neq NP when alphabet = atoms

Theorem:

There is a language over the alphabet of atoms that is in NP but not in P.

4. $P \neq NP$ when alphabet = atoms

Claim: $(a_1 a_2 ... a_n), (b_1 b_2 ... b_n) \in atoms^{(n)}$ are in the same orbit $\inf_{i \in I} a_i = 0 \quad \text{iff} \quad \sum_{i \in I} b_i = 0 \text{ for for every } I \subseteq \{1...n\}$

4. P \neq NP when alphabet = atoms

input alphabet: V

language: **dependent** words = "some subsequence of letters sums up to 0"

Fix a **deterministic** equivariant TM *M* recognizing the language in polynomial time

W.l.o.g. assume that states Q and tape alphabet T are **straight**: Every orbit of Q or T is isomorphic to $atoms^{(n)}$ for $n \le N$

Consider the rejecting run on sufficiently long **independent** input word *w* We fool M with a **dependent** input *w*' which M will forcedly reject too

4. P \neq NP when alphabet = atoms

Every orbit of Q or T is isomorphic to $atoms^{(n)}$ for $n \le N$ Consider the rejecting run on sufficiently long **independent** input word wWe fool M with a **dependent** input w' which M will forcedly reject too

4. $P \neq NP$ when alphabet = atoms

Every orbit of Q or T is isomorphic to $atoms^{(n)}$ for $n \le N$ Consider the rejecting run on sufficiently long **independent** input word wWe fool M with a **dependent** input w' which M will forcedly reject too

All subset of *w* have pairwise different sums

As the run is of polynomial length (w.r.t. length of w), there are only polynomially many sums of 3N atoms appearing in it

w' := take a subset I of w whose sum is not among them, and replace some arbitrary element a from I by r := the sum of I {a}

Claim: $I \setminus \{a\} \cup \{r\}$ is the only subset of *w*' that sums up to 0

Claim: Every triple of elements of $Q \cup T$ in run(w) is in the same orbit as the corresponding triple in run(w')

 $a \mapsto r$

 $(a_1 a_2 \dots a_n)$, $(b_1 b_2 \dots b_n) \in atoms^{(n)}$ are in the same orbit

$$\begin{aligned}
& \text{iff} \\
\boldsymbol{\Sigma} a_i = 0 & \text{iff} \quad \boldsymbol{\Sigma} b_i = 0 & \text{for for every } I \subseteq \{1...n\} \\
& i \in I \qquad i \in I
\end{aligned}$$

4. P \neq NP when alphabet = atoms

Claim: Every triple of elements of $Q \cup T$ in run(w) is in the same orbit as the corresponding triple in run(w')

Claim: run(w) is in the same orbit as run(w'), hence rejecting too

• automata with atoms

- Turing machines with atoms
- other models of computation

Pushdown automata

Pushdown automata

Theorem: Pre*(regular set) is regular for pushdown automata, and may be effectively computed

Corollary: Emptiness of pushdown automata is decidable

Context-free grammars

- nonterminal symbols S
- terminal symbols A
- an initial symbol
- $\delta \subseteq S \times (S \cup A)^*$

orbit-finite sets instead of finite ones

Theorem: Context-free grammars = pushdown automata

Examples

- a context-free language over 3 atoms
- palindroms

 $S \longrightarrow a S a$ (a \in atoms) $S \longrightarrow \epsilon$

- bracket expressions with brackets
 (a) a for a ∈ atoms
- monotonic bracket expressions ?

$$S \longrightarrow (a \underline{a})_{a} \qquad (a \in atoms)$$

$$\underline{a} \longrightarrow (\underline{b} \underline{b})_{b} \qquad (a, b \in atoms, a < b)$$

$$\underline{a} \longrightarrow \underline{b} \underline{c} \qquad (a, b, c \in atoms, a < b, c)$$

$$\underline{a} \longrightarrow \varepsilon \qquad (a \in atoms)$$

any well-behaved atoms

total order atoms (Q, <)

Petri nets

- places P
- an initial configuration
- $\delta \subseteq M_{\text{fin}}(P) \times M_{\text{fin}}(P)$

orbit-finite sets instead of finite ones

Configurations = finite multisets of places $M_{fin}(P)$

		places = atoms × (finite set)
classical sets	sets with equality atoms (N, =)	
general Petri nets	elementary nets	
data Petri nets	general Petri nets	