Timed pushdown automata and

branching vector addition systems

Sławomir Lasota
University of Warsaw

joint work with Lorenzo Clemente, Filip Mazowiecki and Ranko Lazic

AVERTS 2016, Chennai

Definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

Definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

Definable PDA

have decidable non-emptiness problem, by reduction to an extension of BVASS in dimension 1.

- Motivation
- Definable NFA
- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

Time domain

- reals
- rationals
- integers

discrete time any

Time domain

- reals
- rationals
- integers

1dense time
discrete time
choice of time domain is fine any

Time domain

No restriction to non-negative!

Time domain

No restriction to non-negative!

Let input alphabet be reals

Time domain

- reals
- rationals
- integers

1dense time discrete time

No restriction to non-negative!

Let input alphabet be reals
Timed automata assume monotonic input words :

Timed automata [Alur, Dill 1990]
 with uninitialized clocks $\cdots ?$

Timed automata [Alur, Dill 1990]

the automaton accepts words $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \in \mathrm{R}^{3}$ such that

คน

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

คน

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

ค 1 ค

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

Deterministic timed automata don't minimize

Deterministic timed automata don't minimize

Deterministic timed automata don't minimize

1 or 2

Towards timed pushdown automata

Towards timed pushdown automata

- timed automata [Alur, Dill 1990]

Towards timed pushdown automata

- timed automata [Alur, Dill 1990] finite stack alphabet
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

Towards timed pushdown automata

- timed automata [Alur, Dill 1990] finite stack alphabet
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- clocks can be pushed onto stack
- the emptiness problem EXPTIME-c

Towards timed pushdown automata

- timed automata [Alur, Dill 1990] finite stack alphabet
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- clocks can be pushed onto stack
- recursive timed automata
- the emptiness problem EXPTIME-c [Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]

Towards timed pushdown automata

- timed automata [Alur, Dill 1990] finite stack alphabet
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- clocks can be pushed onto stack
- the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively equivalent to pushdown timed automata.

Towards timed pushdown automata

- timed automata [Alur, Dill 1990] finite stack alphabet
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- clocks can be pushed onto stack
- the emptiness problem EXPTIME-c

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively equivalent to pushdown timed automata.

An accidental combination of

- stack discipline
- monotonicity of time
- syntactic restrictions
- do not invent a new definition
- do not invent a new definition
- re-interpret a classical definition in definable sets, with finiteness relaxed to orbit-finiteness
- do not invent a new definition
- re-interpret a classical definition in definable sets, with finiteness relaxed to orbit-finiteness
- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$
- do not invent a new definition
- re-interpret a classical definition in definable sets, with finiteness relaxed to orbit-finiteness
- alphabet A
- states Q
- transitions $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

- do not invent a new definition
- re-interpret a classical definition in definable sets, with finiteness relaxed to orbit-finiteness
- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

In search of lost definition

- Motivation
- Definable NFA
- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

In search of lost definition

- Motivation
- Definable NFA

NFA re-interpreted in definable sets

- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}_{-\mathrm{C} 1}<2$ iff $\mathrm{C}_{1}<\mathrm{t}<\mathrm{C}_{1}+2$

Timed automata are register automata

[Bojańczyk, L. 2012]

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}_{-\mathrm{C} 1}<2$ iff $\mathrm{C}_{1}<\mathrm{t}<\mathrm{C}_{1}+2$

Timed automata are register automata

[Bojańczyk, L. 2012]

the only modifications of a clock: $\mathrm{c}:=\mathrm{t}$

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}_{-\mathrm{C} 1}<2$ iff $\mathrm{C}_{1}<\mathrm{t}<\mathrm{C}_{1}+2$

(<, +1)-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

$\mathrm{FO}(<,+1)=\mathrm{QF}(<,+1)=$

definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

$$
\mathrm{FO}(<,+1)=\mathrm{QF}(<,+1)=\bigvee_{\text {finite }} \underbrace{\bigwedge_{\text {finite }} x_{i}-x_{j} \in I_{i j}}_{\text {zone }}
$$

for instance:

$$
\phi\left(x_{1}, x_{2}\right) \equiv x_{1}+3<x_{2} \quad \equiv \quad x_{2}-x_{1} \in(3, \infty)
$$

Orbit-finiteness

Automorphisms π of (R, <, +1) act on a definable set thus splitting it into orbits.

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $\left(1^{1 / 3}, 3\right)$ are in the same orbit.

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $\left(1^{1 / 3}, 3\right)$ are in the same orbit.

Example:

$$
x_{1}+3<x_{2} \quad \equiv \quad x_{2}-x_{1} \in(3, \infty)
$$

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $(1 / 3,3)$ are in the same orbit.

Example:

$$
\begin{array}{ll}
x_{1}+3<x_{2} \equiv x_{2}-x_{1} \in(3, \infty) & \text { orbit-infinit } \\
x_{1}+3<x_{2} \leq x_{1}+7 \equiv x_{2}-x_{1} \in(3,7] & \text { orbit-finite }
\end{array}
$$

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $\left(1^{1 / 3}, 3\right)$ are in the same orbit.

Example:

$$
\begin{array}{ll}
x_{1}+3<x_{2} \equiv x_{2}-x_{1} \in(3, \infty) & \text { orbit-infinit } \\
x_{1}+3<x_{2} \leq x_{1}+7 \equiv x_{2}-x_{1} \in(3,7] & \text { orbit-finite }
\end{array}
$$

A definable set is orbit-finite iff
it is defined using bounded intervals only

Definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \underline{\mathrm{Q}}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable NFA

- alphabet A

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right)
\end{array}
$$

- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

$$
\phi_{I}\left(x_{1}, \ldots, x_{m}\right), \phi_{F}\left(x_{1}, \ldots, x_{m}\right)
$$

Definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Runs, acceptance, language recognized, etc. are defined exactly as for classical NFA!

Definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right) \\
\phi_{\delta}\left(x_{1}, \ldots, x_{m+n+m}\right)
\end{array}
$$

$$
\phi_{I}\left(x_{1}, \ldots, x_{m}\right), \phi_{F}\left(x_{1}, \ldots, x_{m}\right)
$$

Runs, acceptance, language recognized, etc. are defined exactly as for classical NFA!

Register automata $=$ definable NFA

Register automata $=$ definable NFA

states: $Q=\{\perp\} \cup R \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$

Register automata $=$ definable NFA

states: $\mathrm{Q}=\{\perp\} \cup \mathrm{R} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{C}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$

Register automata $=$ definable NFA

states: $\mathrm{Q}=\{\perp\} \cup \mathrm{R} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{C}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}^{\prime}=\mathrm{t}\right\} \quad \cup$

Register automata $=$ definable NFA

states: $\mathrm{Q}=\{\perp\} \cup \mathrm{R} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{C}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}^{\prime}\right): \mathrm{c}_{1}^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\} \cup
$$

Register automata $=$ definable NFA

states: $\mathrm{Q}=\{\perp\} \cup \mathrm{R} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{C}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\left.\begin{array}{l}
\left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\}
\end{array}\right\}
$$

Register automata $=$ definable NFA

states: $\mathrm{Q}=\{\perp\} \cup \mathrm{R} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\left.\begin{array}{l}
\left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\} \cup
\end{array}\right\} \begin{aligned}
& \left\{\left(\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right), \mathrm{t}, \mathrm{~T}\right):\left(2<\mathrm{t}-\mathrm{c}_{1}<3\right) \wedge\left(\mathrm{t}-\mathrm{c}_{2}=1 \vee \mathrm{t}-\mathrm{c}_{2}=2\right)\right\}
\end{aligned}
$$

$\phi_{\delta}\left(\mathrm{c} 0, \mathrm{C} 1, \mathrm{C} 2, \mathrm{t}, \mathrm{co}^{\prime}, \mathrm{C}^{\prime}, \mathrm{C}_{2}{ }^{\prime}\right) \equiv \ldots$

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another
- the input needs not be monotonic (but can be enforced to be) nor non-negative

Timed automata vs. definable NFA

Definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another
- the input needs not be monotonic (but can be enforced to be) nor non-negative
- alphabet letters may be tuples of timestamps

Timed automata vs. definable NFA

definable NFA

timed automata

with uninitialized clocks

Timed automata vs. definable NFA
deterministic definable NFA
deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks
minimal automata for languages of deterministic timed automata
with uninitialized clocks

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks
minimal automata for languages of deterministic timed automata with uninitialized clocks
closed under

minimization

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks
minimal automata for languages of deterministic timed automata with uninitialized clocks
closed under
minimization

Theorem: [Bojańczyk, L. 2012]
Deterministic definable NFA do minimize.

Timed automata vs. definable NFA

deterministic definable NFA
deterministic timed automata
with uninitialized clocks
minimal automata for languages of deterministic timed automata with uninitialized clocks

Theorem: [Bojańczyk, L. 2012]
Deterministic definable NFA do minimize. Likewise, if $\mathrm{FO}(<,+1)$ is replaced by $\mathrm{FO}(<,+)$.

In search of lost definition

- Motivation
- Definable NFA
- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

In search of lost definition

- Motivation
- Definable NFA

PDA re-interpreted in

- Definable PDA definable sets
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

Definable PDA

- alphabet A
- states Q
- stack alphabet S
- push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable PDA

- alphabet A
- states Q
- stack alphabet S

orbit-finite

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right) \\
\phi_{S}\left(x_{1}, \ldots, x_{k}\right)
\end{array}
$$

- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable PDA

- alphabet A
- states Q
- stack alphabet S
- push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right) \\
\phi_{S}\left(x_{1}, \ldots, x_{k}\right) \\
\phi_{\text {push }}\left(x_{1}, \ldots, x_{m+n+m+k}\right) \\
\phi_{\text {pop }}\left(x_{1}, \ldots, x_{m+k+n+m}\right) \\
\phi_{I}\left(x_{1}, \ldots, x_{m}\right), \phi_{F}\left(x_{1}, \ldots, x_{m}\right)
\end{array}
$$

Acceptance defined as for classical PDA.

Example

input alphabet: $\quad A=R \biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states:
stack alphabet:
transitions:
initial state:
accepting state:

Example

input alphabet: $\quad A=R \biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $Q=R \biguplus\{$ init, finish, acc $\}$
stack alphabet:
transitions:
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=R \biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $Q=R \biguplus\{$ init, finish, acc $\}$
stack alphabet: $\quad S=R \biguplus\{\perp\}$
transitions:
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=R \biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals"
states: $\quad Q=R \biguplus\{$ init, finish, acc $\}$
stack alphabet: $S=R \biguplus\{\perp\}$
transitions: \quad push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$

	$($ init, $\varepsilon, t, \perp)$	
in state init, without reading input, change	(t, u, u, u)	$t<u$
$(t, u, f$ finish, $u)$	$t<u$	

state to an arbitrary real t , and push \perp on stack
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=R \biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $\quad \mathrm{Q}=\mathrm{R} \uplus\{$ \{init, finish, acc $\}$
stack alphabet: $S=R \biguplus\{\perp\}$ transitions: \quad push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
in state finish, pop a real t from stack, read the same t from input, and stay in the same state

$($ init, $\varepsilon, t, \perp)$	
(t, u, u, u)	$t<u$
$(t, u$, finish, $u)$	$t<u$

$$
\text { pop } \subseteq \underline{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}
$$

(finish, t, t, finish)
(finish, \perp, ε, acc)
initial state: init
accepting state: acc

Definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S

(<, +1)-definable
- $\rho \subseteq \underline{Q} \times S^{*} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}^{*}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S

(<, +1)-definable
- $\rho \subseteq \underline{Q} \times S^{\leq n} \times A \times Q \times S^{\leq m}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S
(<, +1)-definable
- $\rho \subseteq \underline{Q} \times S^{\leq n} \times A \times Q \times S^{\leq m}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Acceptance defined as for classical prefix rewriting.

Definable context-free grammars

$\left.\begin{array}{l}\text { - nonterminal symbols S } \\ \text { - terminal symbols A }\end{array}\right\}$ orbit-finite

- an initial nonterminal symbol
- $\rho \subseteq \mathrm{S} \times(\mathrm{S} \biguplus \mathrm{A})$ *

Definable context-free grammars

$\left.\begin{array}{l}\text { - nonterminal symbols S } \\ \text { - terminal symbols A }\end{array}\right\}$ orbit-finite

- an initial nonterminal symbol
- $\rho \subseteq \mathrm{S} \times(\mathrm{S} \uplus \mathrm{A})^{\leq n}$
definable in $\mathrm{FO}(<,+1)$

Generated language defined as for classical PDA.

Expressiveness of definable models
 [Clemente, L. 2015]

Expressiveness of definable models
 [Clemente, L. 2015]

Expressiveness of definable models
 [Clemente, L. 2015]

Expressiveness of definable models

[Clemente, L. 2015]
palindromes over $\{\mathrm{a}, \mathrm{b}\} \times$ reals with the same number of a's and b's

Constrained definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Constrained definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Constrained definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \underline{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Span of transitions is bounded. Too strong restriction!

Constrained definable PDA

- alphabet A
- states Q
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Span of transitions is bounded. Too strong restriction!
For instance, such PDA do not recognize palindromes over reals.

Constrained definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Constrained definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- push $\subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \underbrace{\mathrm{Q} \times \mathrm{S}}$
- pop $\subseteq \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Constrained definable PDA

- alphabet A
- states Q
- stack alphabet S
- push $\subseteq \underline{Q} \times \mathrm{A} \times \underbrace{\mathrm{Q} \times \mathrm{S}}$
- \quad pop $\subseteq \underbrace{\mathrm{Q} \times \mathrm{S}} \times \mathrm{A} \times \underbrace{\mathrm{Q}}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Constrained definable PDA

- alphabet A
- states Q
- stack alphabet S
orbit-finite

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.
Fact: The model subsumes dense-timed PDA with uninitialized clocks.

Decidability of non-emptiness
 [Clemente, L. 2015]

Decidability of non-emptiness

[Clemente, L. 2015]

Theorem 3:
The non-emptiness problem of definable PDA is in 2-EXPTIME.

Theorem 3:
The non-emptiness problem of definable PDA is in 2-EXPTIME.

Complexity gap: EXPTIME ... 2-EXPTIME

Towards decision procedure

Towards decision procedure

Notation: $q \rightarrow p$

- there is a run from state p to state q that starts and ends with the empty stack

Towards decision procedure

Notation: $q \gg p$

- there is a run from state p to state q that starts and ends with the empty stack
(base)

```
    X ....> X
```


Towards decision procedure

Notation: $q \ggg$ - there is a run from state p to state q that starts and ends with the empty stack
$\begin{array}{ll}\text { (base) } & \begin{array}{l}x \rightarrow x \\ \text { (transitivity) }\end{array} \\ & \frac{x \rightarrow y \quad y \rightarrow z}{x \cdots z}\end{array}$

Towards decision procedure

Notation: $\mathrm{q} \rightarrow \mathrm{p}$

- there is a run from state p to state q that starts and ends with the empty stack
(base)

(transitivity) $\frac{x \cdots y y y}{x \cdots z}$
(push-pop) $\frac{x \cdots y}{x^{\prime} \cdots y^{\prime}}$
if push($\left.x^{\prime}, x, s\right)$ and $\operatorname{pop}\left(y, s, y^{\prime}\right)$ for some stack symbol s

Towards decision procedure

Notation: $q \gg p$

- there is a run from state p to state q that starts and ends with the empty stack
(base)

(transitivity) $\frac{\mathrm{x} \cdots \mathrm{y} \quad \mathrm{y} \cdots \mathrm{z}}{\mathrm{x} \cdots \mathrm{z}}$
(push-pop) $\frac{x \cdots y}{x^{\prime} \cdots y^{\prime}}$
if push ($\left.x^{\prime}, x, s\right)$ and $\operatorname{pop}\left(y, s, y^{\prime}\right)$ for some stack symbol s

Problem: how to make this work for orbit-finite state space?

Towards decision procedure

Notation: $\mathrm{q} \rightarrow \mathrm{p} \quad$ - there is a run from state p to state q that starts and ends with the empty stack
(base)

(transitivity) $\frac{x \cdots y y y}{x \cdots z}$
(push-pop) $\frac{x \cdots y}{x^{\prime} \cdots y^{\prime}}$
if push ($\left.x^{\prime}, x, s\right)$ and $\operatorname{pop}\left(y, s, y^{\prime}\right)$ for some stack symbol s

Problem: how to make this work for orbit-finite state space?
Guideline: think like state $=$ an integer

Towards decision procedure

Notation: $q \rightarrow p$ - there is a run from state p to state q that starts and ends with the empty stack
(base)

(transitivity) $\frac{x \cdots y y y}{x \cdots z}$
(push-pop) $\frac{x \rightarrow y}{x^{\prime} \cdots y^{\prime}}$
if push ($\left.x^{\prime}, x, s\right)$ and $\operatorname{pop}\left(y, s, y^{\prime}\right)$ for some stack symbol s

Problem: how to make this work for orbit-finite state space?
Guideline: think like state $=$ an integer capture all differences $\mathrm{y}-\mathrm{x}$, for $\mathrm{x} \rightarrow \mathrm{y}$

Towards decision procedure

- Motivation
- Definable NFA
- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

The core problem: non-emptiness

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

where right-hand sides use:

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{array}{rlr}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots & \\
x_{n} & =t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{array}{rll}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{array}{rll}
x_{1} & =t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & =t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +

The core problem: non-emptiness

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap

The core problem: non-emptiness

Given a systems of equations

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?
for instance:

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

The core problem: non-emptiness

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?
for instance:

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

What is the least solution with respect to inclusion?
systems of equations over sets of integers
definable PDA
systems of equations over sets of integers
(base)

(transitivity) $\frac{\mathrm{x} \cdots \mathrm{y} \mathrm{y}^{\mathrm{y}} \boldsymbol{\mathrm { y }} \mathrm{m}}{\mathrm{x} \rightarrow \mathrm{z}}$
(push-pop) $\frac{x^{\prime \cdots} y}{x^{\prime} \rightarrow y^{\prime}}$
definable PDA
systems of equations over sets of integers
(base)

(transitivity) $\frac{x \cdots y y y y}{x \rightarrow z}$
(push-pop) $\frac{x^{\prime} \rightarrow y}{x^{\prime} \cdots y^{\prime}}$

Guideline:

think like state $=$ an integer, capture all differences $y-x$, for $x \rightarrow y$
definable PDA
exponential blowup
systems of equations over sets of integers
(base)

$$
\mathrm{X}_{\mathrm{pp}} \supseteq\{0\}
$$

(transitivity) $\frac{\mathrm{x} \cdots \mathrm{y} y \mathrm{y} \rightarrow \mathrm{z}}{\mathrm{x} \cdots \mathrm{z}}$
(push-pop) $\frac{x^{\prime \rightarrow} y}{x^{\prime} \rightarrow y^{\prime}}$

Guideline:

think like state $=$ an integer, capture all differences $y-x$, for $x \rightarrow y$
definable PDA
exponential blowup
systems of equations over sets of integers
(base) $\quad \begin{aligned} & \mathrm{x} \rightarrow \mathrm{x}\end{aligned} \mathrm{X}_{\mathrm{pp}} \supseteq\{0\}$
(transitivity) $\frac{\mathrm{x} \rightarrow \mathrm{y}}{\mathrm{x} \cdots \mathrm{y} \rightarrow \mathrm{z}} \quad \mathrm{X}_{\mathrm{pr}} \supseteq \mathrm{X}_{\mathrm{pq}}+\mathrm{Xq}_{\mathrm{qr}}$
(push-pop) $\frac{x \rightarrow y}{x^{\prime} \cdots y^{\prime}}$

Guideline:

think like state $=$ an integer, capture all differences $y-x$, for $x \rightarrow y$
definable PDA
systems of equations
over sets of integers
(base)

$$
\mathrm{X}_{\mathrm{pp}} \supseteq\{0\}
$$

(transitivity) $\frac{\mathrm{x} \cdots \mathrm{y}}{\mathrm{x} \cdots \mathrm{y} \rightarrow \mathrm{z}} \quad \mathrm{X}_{\mathrm{pr}} \supseteq \mathrm{X}_{\mathrm{pq}}+\mathrm{X}_{\mathrm{qr}}$
(push-pop) $\frac{x \rightarrow y}{x^{\prime} \cdots y^{\prime}}$

$$
\mathrm{X}_{\mathrm{pq}} \supseteq(I+(\mathrm{Xrs} \cap(J+N))+L) \cap-(M+K)
$$

 capture all differences $y-x$, for $x \rightarrow y$

Guideline:

think like state $=$ an integer,

The core problem - no intersections

Given a systems of equations

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

Decidable in P

The core problem - intersections

Given a systems of equations

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The problem is undecidable for unlimited intersections.
[Jeż, Okhotin 2010]

The core problem - limited intersection

Given a systems of equations

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: _ \cap I, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=\left(x_{1}+\{1\} \cup x_{1}+\{-1\}\right) \cap\{1\}
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: _ \cap I, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\} \quad \text { membership problem }
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=\{1\}
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: $\cap \mathrm{I}$, for I a finite interval?

- NP-complete

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: $\cap \mathrm{I}$, for I a finite interval?

- NP-complete
- non-emptiness of constrained definable PDA reduces to the core problem (with exponential blow-up)

The core problem - limited intersection

Given a systems of equations

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

- in EXPTIME, by reduction to l-BVASS(+ -)

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

- in EXPTIME, by reduction to 1-BVASS(+ -)
- non-emptiness of definable PDA reduces to the core problem (with exponential blow-up)

Decision procedure

definable PDA

systems of equations over sets of integers

Decision procedure

definable PDA

 systems of equations over sets of integers

Decision procedure

systems of equations over sets of integers

Decision procedure

Decision procedure

Decision procedure

Decision procedure

- Motivation
- Definable NFA
- Definable PDA
- The core problem: equations over sets of integers
- Branching vector addition systems in dimension 1
1-BVASS(+ -)

1-BVASS(+ -)

- automaton with 1 non-negative counter

1-BVASS(+ -)

- automaton with 1 non-negative counter
- run is a tree

1-BVASS(+ -)

- automaton with 1 non-negative counter
- run is a tree
- in leaves: initial state with counter $=1$

1-BVASS(+ -)

- automaton with 1 non-negative counter
- run is a tree
- in leaves: initial state with counter $=1$
- transition rules:

1-BVASS(+ -)

- automaton with 1 non-negative counter
- run is a tree
- in leaves: initial state with counter $=1$
- transition rules:

- non-emptiness problem: is there a run with a final state in the root?

Non-emptiness of 1-BVASS(+ -)

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

The non-emptiness problem of 1-BVASS (+-) is in EXPTIME.

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

The non-emptiness problem of 1-BVASS(+-) is in EXPTIME.

Proof idea:

Exponentially bounded witness.

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

The non-emptiness problem of 1-BVASS(+-) is in EXPTIME.

Proof idea:

Exponentially bounded witness.

Complexity gap: PSPACE ... EXPTIME

Non-emptiness of 1-BVASS(+ -)

Theorem 4:

The non-emptiness problem of 1-BVASS(+-) is in EXPTIME.

Proof idea:

Exponentially bounded witness.

Complexity gap: PSPACE ... EXPTIME

Theorem: [Goeller, Haase, Lazic, Totzke 2016]
The non-emptiness problem of 1-BVASS(+) is in P (unary encoding).

Definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

Definable PDA

have decidable non-emptiness problem, by reduction to an extension of BVASS in dimension 1.

Definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

Definable PDA

have decidable non-emptiness problem, by reduction to an extension of BVASS in dimension 1.

