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Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.
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Theorem 1:  [Clemente, L. 2015]
Dense-timed pushdown automata are expressively 
equivalent to pushdown timed automata. 

An accidental combination of • stack discipline
• monotonicity of time
• syntactic restrictions
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• the input needs not be monotonic (but can be enforced to be) nor 
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Theorem:  [Bojańczyk, L. 2012]
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definable sets
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language: "ordered palindromes of even length over reals"
input alphabet:     A = R ⨄ {ε}

states:
stack alphabet: 

transitions:

accepting state: 
initial state: 

Example
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"ordered palindromes of even length over reals"
input alphabet:     A = R ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

S =   R ⨄ {⊥}

in state init, without 
reading input, change 
state to an arbitrary 
real t, and  push ⊥ on 
stack

Example
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language:

Q =  R ⨄ {init, finish, acc}

"ordered palindromes of even length over reals"
input alphabet:     A = R ⨄ {ε}

push ⊆ Q × A × Q × S

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

S =   R ⨄ {⊥}

Example

(finish, t, t, finish)
(finish, ⊥, ε, acc)

pop  ⊆  Q × S × A × Q

(init, ε, t, ⊥)
(t, u, u, u) t < u
(t, u, finish, u) t < u

in state finish, pop a real 
t from stack, read the 
same t from input, and 
stay in the same state

19
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• states Q
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}(<, +1)-definable
}orbit-finite
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orbit-finite	set	of	symbols	S

Definable context-free grammars     

• nonterminal symbols S
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• nonterminal symbols S

• terminal symbols A

• an initial nonterminal symbol

• ρ ⊆ S×(S⨄A)*
}definable in FO(<, +1)

} orbit-finite

Generated language defined as for classical PDA.
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prefix rewriting

CFG

Expressiveness of definable models

palindromes

dense-timed PDA  
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with  
timeless stack 

(finite stack alphabet)

PDA

constrained PDA

palindromes over {a,b}×reals with 
the same number of a’s and b’s

22

[Clemente, L. 2015]
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Span of transitions is bounded. Too strong restriction! 
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 Theorem 2:  [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete. 
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undecidable
prefix rewriting

CFG

dense-timed PDA  
with uninitialized clocks

[Abdulla, Atig, Stenman 2012]

PDA with  
finite stack alphabet

PDA

constrained PDA

EXPTIME-c.

in NEXPTIME

EX
PT

IM
E-c

.

in 2-EXPTIME

 Theorem 3: 
The non-emptiness problem of definable PDA 
is in 2-EXPTIME.

 Complexity gap: EXPTIME … 2-EXPTIME



27

Towards decision procedure



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

Towards decision procedure



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

Towards decision procedure



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

Towards decision procedure



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

x ⤑ y  
x’ ⤑ y’     

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s 

Towards decision procedure



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

x ⤑ y  
x’ ⤑ y’     

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s 

Towards decision procedure

Problem:    how to make this work for orbit-finite state space? 



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

x ⤑ y  
x’ ⤑ y’     

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s 

Towards decision procedure

Problem:    how to make this work for orbit-finite state space? 
Guideline:  think like state =  an integer



27

Notation:  q ⤑ p         — there is a run from state p to state q that
                                                starts and ends with the empty stack 

x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

x ⤑ y  
x’ ⤑ y’     

(push-pop) if push(x’, x, s) and pop(y, s, y’)
for some stack symbol s 

Towards decision procedure

Problem:    how to make this work for orbit-finite state space? 
Guideline:  think like state =  an integer

  capture all differences y - x, for x ⤑ y 



Towards decision procedure

28

• Motivation

• Definable NFA 

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

29



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

29

where right-hand sides use:



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

29

where right-hand sides use:

for instance:

x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}{



orbit-finite	set	of	symbols	S

The core problem: non-emptiness
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

29

where right-hand sides use:

for instance:

x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}{

What is the least solution with respect to inclusion?
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x ⤑ x     (base) 

x ⤑ y      y ⤑ z    
x ⤑ z     

(transitivity) 

x ⤑ y  
x’ ⤑ y’     

(push-pop) 

exponential blowup
definable PDA systems of equations

over sets of integers

Xpp ⊇ {0}

Xpr ⊇ Xpq + Xqr

Xpq ⊇ (I + (Xrs ∩ (J+N)) + L) ∩ -(M+K)

Guideline:  
think like state =  an integer, 
capture all differences y - x, 
for x ⤑ y 
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The core problem - no intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1
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. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

How to solve the problem in absence of intersections?

x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}{

Decidable in P
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The core problem - intersections
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

The problem is undecidable for unlimited intersections. 
[Jeż, Okhotin 2010] 

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩
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The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1
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What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

33



orbit-finite	set	of	symbols	S

The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = (x1 + {1} [ x1 + {�1}) \ {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩
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The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = x1 + {1} [ x1 + {�1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

membership problem
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The core problem - limited intersection
Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

{x1 = {0} [ x2 + {1} [ x2 + {�1}
x2 = {1}

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about limited intersections: _ ∩ I, for I a finite interval?

• NP-complete
• non-emptiness of constrained definable PDA reduces to 

the core problem (with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• in EXPTIME, by reduction to 1-BVASS(+ -)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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Given a systems of equations

decide, whether its least solution assigns a non-empty set to      ?x1

{x1 = t1

x2 = t2

. . .

xn = tn

What about _ ∩ I, for I an arbitrary interval?

• in EXPTIME, by reduction to 1-BVASS(+ -)
• non-emptiness of definable PDA reduces to the core problem 

(with exponential blow-up)

• constants {-1}, {0}, {1}
• set union ∪
• point-wise addition + 
• limited intersection ∩

The core problem - limited intersection
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definable PDA
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systems of equations
over sets of integers

po
ly

1-BVASS(+ -)

Decision procedure

effective

non-emptiness in EXPTIME



Decision procedure

• Motivation

• Definable NFA 

• Definable PDA

• The core problem: equations over sets of integers

• Branching vector addition systems in dimension 1
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• automaton with 1 non-negative counter

• run is a tree

• in leaves: initial state with counter=1

• transition rules:

• non-emptiness problem: is there a run 
with a final state in the root?
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Non-emptiness  of 1-BVASS(+ -)
 Theorem 4: 

The non-emptiness problem of 1-BVASS(+ -) is in EXPTIME.

 Theorem: [Goeller, Haase, Lazic, Totzke 2016]
The non-emptiness problem of 1-BVASS(+) is in P
(unary encoding).

 Proof idea: 
Exponentially bounded witness.

 Complexity gap:  PSPACE … EXPTIME



Definable sets 
offer a right setting for timed models of computation, like 
timed automata, or timed pushdown automata.
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Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.



Definable sets 
offer a right setting for timed models of computation, like 
timed automata, or timed pushdown automata.

40

Definable PDA
have decidable non-emptiness problem, by reduction to
an extension of BVASS in dimension 1.

thank you!


