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Reachability analysis 
of

first-order definable pushdown systems 
(= pushdown systems in sets with atoms)
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FO definable sets

4

Consider subsets of        described by first-order formulas 
φ(x₁, x₂, ..., xn) with constants or without constants.

FO definable sets are finite disjoint unions of such sets.

Example:  
{ (x₁, x₂, x₃) : x₁ < x₂ ≤ x₃ } ∪ { (x₁, x₂) : x₁ ≠ x₂ }

x₁ < x₂ < 7  invariant under action of {7}-automorphisms

}invariant under action 
of automorphisms

Option: quantifier-free definable sets.

An

different dimensions

x₁ < x₂ ≤ x₃ ≤ x₁+1+1



Relax finiteness to... FO definability
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Instantiate widely accepted symbolic approach: instead of 
enumerating sets, represent them and process symbolically.

Simple idea
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FO definable NFA 

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

6

}FO definable sets
instead of finite ones

DFA:
• δ : Q × A → Q

[Bojańczyk, Klin, L. 2011, 2014]

Acceptance defined as for classical NFA.
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• number of registers may vary from one control state to another
• alphabet letters may contain more than one atom
• arbitrary FO constraints on register valuations and transitions

• instead of (finite set) × A, disjoint union A ∪ A ∪ ...

Over equality atoms, FO definable NFA slightly generalize register 
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:
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FO definable NFA, Turing machines, PDA, etc. 
can be finitely presented.
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FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × (A∪{ε}) × Q × S*

• I, F ⊆ Q

Acceptance defined as for classical PDA, e.g. configurations = Q × S*

12

}FO definable sets
instead of finite ones

≤n



language:

13

"ordered palindromes"

input alphabet:     A = Q

states:
stack alphabet: 

transitions:

accepting state: 
initial state: 

total order atoms (Q, <)



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

total order atoms (Q, <)



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}

if in state init, ⊥ is 
topmost on the stack 
and atom a is read, 
stay in state init and 
push a on the stack



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



language:

13

Q =  {init, finish, acc}

"ordered palindromes"

input alphabet:     A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet: 

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state: 
initial state: init

acc

total order atoms (Q, <)

S =  Q ∪ {⊥}



Over equality atoms, FO definable PDA slightly generalize pushdown 
register automata of [Murawski, Ramsay, Tzevelekos 2014], exactly 
like FO definable NFA slightly generalize register automata.

equality atoms (A, =)

14

Pushdown register automata?
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FO-definable context-free grammars     

• symbols S

• terminal symbols A ⊆ S

• an initial symbol

• ρ ⊆ (S−A)×S*

15

}FO definable sets
instead of finite ones
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Under what assumptions on atoms:

• are context-free grammars as expressive as PDA?

• is equivalence of two PDAs decidable?

• is reachability problem decidable for PDA?
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Expressiveness
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Theorem:  [Bojańczyk, Klin, L. 2014] 
 The following models recognize the same languages: 
• FO definable context-free grammars
• FO definable PDA
• FO definable prefix rewriting systems,
when A is oligomorphic



orbit-finite	 set	 of	 symbols	 S

Equivalence-checking
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Theorem:  [Murawski, Ramsay, Tzevelekos 2015]
 Bisimulation equivalence is undecidable for
 FO definable PDA over equality atoms.
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Reachability

19

Assumption:  From now on assume that FO satisfiability problem in A 
is decidable.

Given: an FO formula over 
    the vocabulary of A

Question:  is the formula
  satisfiable in A ?



orbit-finite	 set	 of	 symbols	 S

Reachability
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Fact: The reachability problem for FO definable NFA over 
dense-time atoms (Q, <, +1)  is undecidable. 

Assumption:  From now on assume that FO satisfiability problem in A 
is decidable.

This is necessary but far not enough!

Given: an FO formula over 
    the vocabulary of A

Question:  is the formula
  satisfiable in A ?
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Atom automorphisms
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atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

discrete-time atoms (Z, <, +1) translations

equivalence atoms (A, R, =) equivalence-preserving bijections

random graph (V, E, =) random graph automorphisms

... ...
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Examples:  
x₁ = x₂ ≠ x₃
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π
π
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Atom automorphisms π act on       thus splitting it into orbits.An
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Non-examples:  
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

x₁ < x₂ = x₃ < x₁+1 x₁ < x₂ ≤ x₃ ≤ x₁+1+1
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Example: (Q, <)

Oligomorphic structures

Q² has 3 orbits:

• { (x, y) : x < y }
• { (x, y) : x = y }
• { (x, y) : x > y }

Q³ has 13 orbits

23

A relational structure A is oligomorphic
if

for every n,      is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite. 
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A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A 
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

Theorem: [Freisse 1953] 
A homogeneous structure is 
uniquely determined by its 
finite induced substructures 
(age).
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Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

26

Proof: 

Theorem: Homogeneous = oligomorphic + quantifier elimination

Corollary: When A is a homogeneous structure, 
FO definable = quantifier-free definable



Outline

• Re-interpreting models of computation in FO definable sets
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• Ill-behaved case: time atoms
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From now on assume that
• FO satisfiability in A is decidable
• A is oligomorphic

Ignore input alphabet:
ρ(q, s, q’, s’s’’)   iff   ∃a ρ(q, s, a, q’, s’s’’)  ∨  (q, s, ε, q’, s’s’’)

Wlog. assume that transitions of PDA partition into:

push ⊆ Q × S × Q × S²   and
pop   ⊆ Q × S × Q

Assumptions and simplifications
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Oligomorphic atoms: decidability

Theorem:  Pre*(regular set) is regular for FO definable PDA,
   and may be effectively computed

Corollary:  Configuration-to-configuration reachability of 
  FO definable PDA is decidable

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B:   Q × S*
• FO-definable NFA A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }

Theorem:  Reachability problem for FO definable PDA is decidable
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No proof  idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

(p, s, q) ∈ forced(δ’)  iff
PDA B has a push transition
(p, s, q₂, s₂s₁) such that
(q₂, s₂, q₁), (q₁, s₁, q) ∈ δ’,
for some q₁ ∈ Q

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

p

q

s

q₂

q₁
s₂

s₁

computable due to
decidability of
FO satisfiability

termination due to
oligomorphicity!

Outcome:  δ’(p, s, q)  in NFA A   iff   (p, s) →* (q, ε) in PDA B
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From now on assume that

• the induced substructure problem for A is decidable 
• A is homogeneous

Given:  a finite relational structure 
 over the vocabulary of A

Question: is the structure an 
induced substructure of  A ?
(Does the structure belong to 
age of A ?)

Further assumptions
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Homogeneous atoms: complexity

Theorem:  Reachability problem for FO definable PDA is
  EXPTIME-complete, roughly speaking

Complexity is:
• dependent on the complexity of the induced substructure 

problem for A
• polynomial in the size of input
• exponential in the dimension of input

Corollary:  Reachability problem for FO definable PDA is
  fixed-parameter tractable wrt. the dimension

greatest number n of vars
φ(x₁, x₂, ..., xn)
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Theorem: [Murawski, Ramsay, Tzevelekos 2014] 
Reachability problem for pushdown register automata is  
EXPTIME-complete.
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Theorem: [Murawski, Ramsay, Tzevelekos 2014] 
Reachability problem for pushdown register automata is  
EXPTIME-complete.

We generalize EXPTIME-completeness to arbitrary homogeneous 
atoms whose induced substructure problem is in polynomial time. 
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Arbitrarily high complexity

Theorem:  Even when A is homogeneous, the reachability problem for 
  FO definable PDA can have arbitrary high complexity.
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Highlights

The result applies to various structures of atoms:
• equality atoms
• total-order atoms
• equivalence atoms (A, R, =), isomorphic to the wreath product 

(A, =) ⊗ (A, =)

• nested equality atoms (A, R₁, R₂, R₃, ..., =)
• ...

but not to time atoms!

Potential application to infinite-state abstractions in analysis of 
recursive program.

We proposed no new algorithm, but re-implemented an existing one!



Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA 

• Well-behaved case: oligomorphic and homogeneous atoms 

• Reachability in FO definable PDA over oligomorphic atoms 

• Ill-behaved case: time atoms
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Time atoms are ill-behaved

• non-oligomorphic: Q² is orbit-infinite
• definable sets are not necessarily orbit-finite
• reachability is undecidable already for FO definable NFA

Dense-time atoms (Q, <, +1)  or  discrete-time atoms (Z, <, +1):

Fact:  A subset of Q   is orbit-finite iff it has bounded span.n

Dense-time atoms are ill-behaved:

span of (            ) is  max{            } - min{            }nt₁ ... tnt₁ ... t nt₁ ... t
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Patch for time atoms?

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

38

}FO definable}orbit-finite?

Theorem:  Reachability problem is still undecidable

This works for NFA [Bojańczyk, L. 2012], but not for PDA:
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• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*
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Another attempt

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

39

}FO definable}orbit-finite?

Too strong restriction!  Span of transitions is bounded
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Right choice: orbit-finite PDA

• alphabet A

• states Q

• stack alphabet S

• ρ  ⊆  (Q × S) × (Q × S*)

• I, F ⊆ Q

40

}FO definable

}
orbit-finite

}orbit-finite

}
orbit-finite

Theorem:  Reachability problem is in NEXPTIME

Proof idea:  Reduction to equations over sets of integers.



PDA

orbit-finite PDA

CFG
PDA with 

timeless stack

dense-timed
PDA with

uninitialized clocks
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Expressiveness

[Abdulla, Atig, Stenman 2012]



PDA

orbit-finite PDA

CFG
PDA with 

timeless stack

dense-timed
PDA with

uninitialized clocks

EXPTIME-c.

in NEXPTIME

undecidable

EXPTIME-c.
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Complexity of reachability

[Abdulla, Atig, Stenman 2012]
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thank you!

visit our blog


