Reachability analysis of first-order definable pushdown systems (= pushdown systems in sets with atoms)

Sławomir Lasota University of Warsaw

joint work with Lorenzo Clemente

builds on previous joint work with: Mikołaj Bojańczyk, Bartek Klin, Joanna Ochremiak, Szymon Toruńczyk

Computability in Europe, Bucharest, 2015.07.02

• Re-interpreting models of computation in FO definable sets

- Re-interpreting models of computation in FO definable sets
- FO definable PDA

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Fix a countably infinite relational structure $\mathbb A$ over a finite vocabulary, and call it atoms.

Fix a countably infinite relational structure $\mathbb A$ over a finite vocabulary, and call it atoms.

atoms	atom automorphisms
equality atoms (A, =)	all bijections

Fix a countably infinite relational structure $\mathbb A$ over a finite vocabulary, and call it atoms.

atoms	atom automorphisms
equality atoms (A, =)	all bijections
total order atoms (Q, <)	monotonic bijections

Fix a countably infinite relational structure $\mathbb A$ over a finite vocabulary, and call it atoms.

atoms	atom automorphisms
equality atoms (A, =)	all bijections
total order atoms (Q, <)	monotonic bijections
dense-time atoms (Q, <, +1)	monotonic bijections preserving integer differences

Fix a countably infinite relational structure $\mathbb A$ over a finite vocabulary, and call it atoms.

atoms	atom automorphisms
equality atoms (A, =)	all bijections
total order atoms (Q, <)	monotonic bijections
dense-time atoms (Q, <, +1)	monotonic bijections preserving integer differences
•••	•••

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples:

 $x_1 = x_2 \neq x_3 \vee x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1 + 1 + 1$

invariant under action of automorphisms

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples: $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1+1+1$ $x_1 < x_2 < 7$ invariant under action of {7}-automorphisms

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples: $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1+1+1$ $x_1 < x_2 < 7$ invariant under action of {7}-automorphisms

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples: $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1+1+1$ $x_1 < x_2 < 7$ invariant under action of {7}-automorphisms

FO definable sets are finite disjoint unions of such sets.

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples: $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1+1+1$ $x_1 < x_2 < 7$ invariant under action of {7}-automorphisms

FO definable sets are finite disjoint unions of such sets.

Example: { $(x_1, x_2, x_3) : x_1 < x_2 \le x_3$ } \cup { $(x_1, x_2) : x_1 \ne x_2$ }

Consider subsets of \mathbb{A}^n described by first-order formulas $\phi(x_1, x_2, ..., x_n)$ with constants or without constants.

Examples: $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1+1+1$ $x_1 < x_2 < 7$ invariant under action of {7}-automorphisms

FO definable sets are finite disjoint unions of such sets.

Example: { $(x_1, x_2, x_3) : x_1 < x_2 \le x_3$ } \cup { $(x_1, x_2) : x_1 \ne x_2$ }

Option: quantifier-free definable sets.

Simple idea

Relax finiteness to... FO definability

Instantiate widely accepted symbolic approach: instead of enumerating sets, represent them and process symbolically.

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q$
- I, $F \subseteq Q$

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

Acceptance defined as for classical NFA.

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

Acceptance defined as for classical NFA.

DFA:

• $\delta : Q \times A \rightarrow Q$

input alphabet: A = A

language: "exactly two different atoms appear"

states:

transitions:

initial state:

accepting states:

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$

transitions:

initial state:

accepting states:

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$ $= \{init, reject\} \cup A^1 \cup A^2$ transitions:

initial state:

accepting states:

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$ $= \{init, reject\} \cup A^1 \cup A^2$ transitions:

initial state: init

accepting states: \mathbb{A}^2

initial state: init accepting states: \mathbb{A}^2

initial state: init accepting states: \mathbb{A}^2

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$ = {init, reject} $\cup A^1 \cup A^2$ transitions: $\delta: Q \times A \rightarrow Q$ $\delta(\text{init, a}) = (a)$ a atom $\delta((a), b) = (ab)$ a ≠ b if in state (a), atom $b \neq a$ is read, goto state (ab) initial state: init \mathbb{A}^2 accepting states:

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$ = {init, reject} $\cup \mathbb{A}^1 \cup \mathbb{A}^2$ transitions: $\delta: Q \times A \rightarrow Q$ $\delta(\text{init}, a) = (a)$ a atom $\delta((a), b) = (ab)$ a ≠ b $\delta((a), b) = (a)$ a = b

initial state: init accepting states: \mathbb{A}^2

input alphabet: A = Alanguage: "exactly two different atoms appear" number of registers may vary from one location to another states: $Q = A^0 \cup A^0 \cup A^1 \cup A^2$ = {init, reject} $\cup A^1 \cup A^2$ transitions: $\delta: Q \times A \rightarrow Q$ $\delta(\text{init}, a) = (a)$ a atom $\delta((a), b) = (ab)$ a ≠ b $\delta((a), b) = (a)$ a = b $\delta((ab), c) = reject$ $c \neq a, b$

initial state: init

accepting states: \mathbb{A}^2

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

• number of registers may vary from one control state to another
Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom
- arbitrary FO constraints on register valuations and transitions

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom
- arbitrary FO constraints on register valuations and transitions
- instead of (finite set) \times A, disjoint union A U A U ...

FO definable Turing machines

[Bojańczyk, Klin, L., Toruńczyk 2013] [Klin, L., Ochremiak, Toruńczyk 2014]

- tape alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q \times A \times \{ \leftarrow, \rightarrow, \downarrow \}$
- I, $F \subseteq Q$

FO definable Turing machines

[Bojańczyk, Klin, L., Toruńczyk 2013] [Klin, L., Ochremiak, Toruńczyk 2014]

- tape alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q \times A \times \{ \leftarrow, \rightarrow, \downarrow \}$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

FO definable Turing machines

[Bojańczyk, Klin, L., Toruńczyk 2013] [Klin, L., Ochremiak, Toruńczyk 2014]

- tape alphabet A
- states Q
- transitions $\delta \subseteq Q \times A \times Q \times A \times \{ \leftarrow, \rightarrow, \downarrow \}$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

Acceptance defined as for classical Turing machines.

Finite presentation

FO definable NFA, Turing machines, PDA, etc. can be finitely presented.

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times S^*$
- I, $F \subseteq Q$

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times S^*$
- I, $F \subseteq Q$

FO definable sets instead of finite ones

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times S^{\leq n}$
- I, $F \subseteq Q$

FO definable sets

instead of finite ones

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times S^{\leq n}$
- I, $F \subseteq Q$

FO definable sets

instead of finite ones

Acceptance defined as for classical PDA, e.g. configurations = $Q \times S^*$

input alphabet: A = Q
language: "ordered palindromes"
states:
stack alphabet:

transitions:

initial state: accepting state:

input alphabet: A = Q
language: "ordered palindromes"
states: Q = {init, finish, acc}
stack alphabet:
transitions:

input alphabet: A = Qlanguage: "ordered palindromes" states: $Q = \{init, finish, acc\}$ stack alphabet: $S = Q \cup \{\bot\}$ transitions:

if in state init, \perp is topmost on the stack and atom a is read, stay in state init and push a on the stack

input alphabet:	$A = \mathbb{Q}$			
language:	"ordered palindromes"			
states: stack alphabet: transitions:	$Q = \{\text{init, finish, acc}\}$ $S = Q \cup \{\bot\}$ $\delta \subseteq Q \times S \times (A \cup \{\varepsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2)$			
	init, ⊥, a init, b, c	init, a⊥ init, cb	a atom b < c	

input alphabet: A = Q"ordered palindromes" language: $Q = \{init, finish, acc\}$ states: stack alphabet: $S = \mathbb{Q} \cup \{\bot\}$ transitions: $\delta \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2)$ init, ⊥, a init, a⊥ a atom init, cb init, b, c b < c init, b, ε finish, b b atom

finish, e

b atom

initial state:	init
accepting state:	acc

init, b, ε

<mark>init</mark> , ⊥, a	init, a⊥	a atom
init, b, c	init, cb	b < c
init, b, ε	finish, b	b atom
init, b, ε	finish, ε	b atom
finish, b, c	finish, ε	b = c

 $\begin{array}{ll} \text{input alphabet:} & A = \mathbb{Q} \\\\ & \text{language:} & \text{"ordered palindromes"} \\\\ & \text{states:} & Q = \{\text{init, finish, acc}\} \\\\ & \text{stack alphabet:} & S = \mathbb{Q} \cup \{\bot\} \\\\ & \text{transitions:} & \delta \subseteq Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times Q \times (S^0 \cup S^1 \cup S^2) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \in Q \times S \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \in Q \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \in Q \cup \{\epsilon\} \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \times (A \cup \{\epsilon\}) \\\\ & \text{index} \to (A \cup \{\epsilon\}) \\\\ & \text{i$

init, ⊥, a	init, a⊥	a atom
init, b, c	init, cb	b < c
init, b, ε	finish, b	b atom
init, b, ε	finish, ε	b atom
finish, b, c	finish, ε	b = c
<mark>finish</mark> , ⊥, ε	acc, e	

Pushdown register automata?

Over equality atoms, FO definable PDA slightly generalize pushdown register automata of [Murawski, Ramsay, Tzevelekos 2014], exactly like FO definable NFA slightly generalize register automata.

FO-definable context-free grammars

- symbols S
- terminal symbols $A \subseteq S$
- an initial symbol
- $\rho \subseteq (S-A) \times S^*$

FO definable sets instead of finite ones

• are context-free grammars as expressive as PDA?

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?
- is reachability problem decidable for PDA?

Under what assumptions on atoms:

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?
- is reachability problem decidable for PDA?

Expressiveness

Theorem: [Bojańczyk, Klin, L. 2014] The following models recognize the same languages:

- FO definable context-free grammars
- FO definable PDA
- FO definable prefix rewriting systems, when \mathbb{A} is oligomorphic

Equivalence-checking

Theorem: [Murawski, Ramsay, Tzevelekos 2015] Bisimulation equivalence is undecidable for FO definable PDA over equality atoms.

Reachability

Assumption: From now on assume that FO satisfiability problem in A is decidable.

Given: an FO formula over the vocabulary of A Question: is the formula satisfiable in A ?

Reachability

Assumption: From now on assume that FO satisfiability problem in A is decidable.

Given: an FO formula over the vocabulary of A Question: is the formula satisfiable in A ?

This is necessary but far not enough!

Fact: The reachability problem for FO definable NFA over dense-time atoms (\mathbb{Q} , <, +1) is undecidable.

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Atom automorphisms

atoms	atom automorphisms	
equality atoms (A, =)	all bijections	
total order atoms (Q, <)	monotonic bijections	
dense-time atoms (Q, <, +1)	monotonic bijections preserving integer differences	
discrete-time atoms (Z, <, +1)	translations	
equivalence atoms (A, R, =)	equivalence-preserving bijections	
random graph (V, E, =)	random graph automorphisms	
•••	•••	

Orbits

Atom automorphisms π act on \mathbb{A}^n thus splitting it into orbits.

Orbits

Atom automorphisms π act on \mathbb{A}^n thus splitting it into orbits.

Examples:

 $x_1 = x_2 \neq x_3$ $x_1 < x_2 < x_3$ $x_1 < x_2 = x_3 < x_1+1$
Orbits

Atom automorphisms π act on \mathbb{A}^n thus splitting it into orbits.

Examples:Non-examples: $x1 = x2 \neq x3$ $x1 = x2 \neq x3 \lor x$ x1 < x2 < x3 $x1 < x2 \leq x3$

 $x_1 < x_2 = x_3 < x_1 + 1$

 $x_1 = x_2 \neq x_3 \lor x_1 \neq x_2 = x_3$ $x_1 < x_2 \leq x_3$ $x_1 < x_2 \leq x_3 \leq x_1 + 1 + 1$

A relational structure $\mathbb A$ is oligomorphic

if

A relational structure A is oligomorphic

if for every n, \mathbb{A}^n is orbit-finite, i.e. splits into finitely many orbits.

A relational structure \mathbb{A} is oligomorphic if for every n, \mathbb{A}^n is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

A relational structure A is oligomorphic if for every n, A^n is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

A relational structure A is oligomorphic if for every n, A^n is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: (\mathbb{Q} , <) \mathbb{Q}^2 has 3 orbits:

A relational structure A is oligomorphic if for every n, A^n is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

 \mathbb{Q}^2 has 3 orbits:

- { (x, y) : x < y }
- { (x, y) : x = y }
- { (x, y) : x > y }

A relational structure A is oligomorphic if for every n, A^n is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

 \mathbb{Q}^2 has 3 orbits:

- { (x, y) : x < y }
 { (x, y) : x = y }
- { (x, y) : x > y }

 \mathbb{Q}^3 has 13 orbits

A relational structure A is homogeneous

A relational structure A is homogeneous

if every isomorphism of finite induced substructures of $\mathbb A$ extends to an automorphism of the whole structure.

A relational structure A is homogeneous

if every isomorphism of finite induced substructures of $\mathbb A$ extends to an automorphism of the whole structure.

A relational structure A is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

A relational structure A is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

A relational structure \mathbb{A} is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

A relational structure A is homogeneous

```
if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.
```


A relational structure \mathbb{A} is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

A relational structure \mathbb{A} is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

A relational structure A is homogeneous

if every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (ℚ, ≤)

Theorem: [Freisse 1953]

A homogeneous structure is uniquely determined by its finite induced substructures (age).

equality atoms (A, =)

total order atoms (\mathbb{Q} , <)

dense-time atoms (\mathbb{Q} , <, +1)

equality atoms (A, =)

total order atoms (\mathbb{Q} , <)

-dense-time atoms (\mathbb{Q} , <, +1)

equality atoms (A, =)

total order atoms (\mathbb{Q} , <)

-dense-time atoms (Q, <, +1)

discrete-time atoms $(\mathbb{Z}, <, +1)$

equality atoms (A, =)

total order atoms (\mathbb{Q} , <)

-dense-time atoms (Q, <, +1)

discrete-time atoms (\mathbb{Z} , <, +1)

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament

. . .

Theorem: Every homogeneous relational structure is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination

Corollary: When A is a homogeneous structure, FO definable = quantifier-free definable

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

From now on assume that

- \bullet FO satisfiability in \mathbbm{A} is decidable
- ${\scriptstyle \bullet}$ A is oligomorphic

From now on assume that

- \bullet FO satisfiability in \mathbbm{A} is decidable
- ${\scriptstyle \bullet}$ A is oligomorphic

Ignore input alphabet: $\rho(q, s, q', s's'')$ iff $\exists a \rho(q, s, a, q', s's'') \vee (q, s, \epsilon, q', s's'')$

From now on assume that

- \bullet FO satisfiability in \mathbbm{A} is decidable
- ${\scriptstyle \bullet}$ A is oligomorphic

Ignore input alphabet: $\rho(q, s, q', s's'')$ iff $\exists a \rho(q, s, a, q', s's'') \vee (q, s, \epsilon, q', s's'')$

Wlog. assume that transitions of PDA partition into:

 $push \subseteq Q \times S \times Q \times S^2 \quad and$ $pop \quad \subseteq Q \times S \times Q$

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

• FO definable PDA B, with states Q and stack alphabet S
Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^*$

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^*$
- FO-definable NFA A with states Q and input alphabet S

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^*$
- FO-definable NFA A with states Q and input alphabet S
- L(A) = { (q, w) : A accepts w from state q }

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^*$
- FO-definable NFA A with states Q and input alphabet S
- L(A) = { (q, w) : A accepts w from state q }

Theorem: Pre*(regular set) is regular for FO definable PDA, and may be effectively computed

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^*$
- FO-definable NFA A with states Q and input alphabet S
- L(A) = { (q, w) : A accepts w from state q }

Theorem: Pre*(regular set) is regular for FO definable PDA, and may be effectively computed

Corollary: Configuration-to-configuration reachability of FO definable PDA is decidable

Saturate transitions $\delta \subseteq Q \times S \times Q$ of NFA A:

δ' := δ ∪ pop **repeat** δ' := δ ∪ forced(δ')**until** forced(δ') ⊆ δ'

Saturate transitions $\delta \subseteq Q \times S \times Q$ of NFA A:

δ' := δ ∪ poprepeat δ' := δ ∪ forced(δ')until forced(δ') ⊆ δ'

Outcome: $\delta'(p, s, q)$ in NFA A iff $(p, s) \rightarrow^* (q, \epsilon)$ in PDA B

Saturate transitions $\delta \subseteq Q \times S \times Q$ of NFA A:

δ' := δ ∪ poprepeat δ' := δ ∪ forced(δ')until forced(δ') ⊆ δ'

Outcome: $\delta'(p, s, q)$ in NFA A iff $(p, s) \rightarrow^* (q, \epsilon)$ in PDA B

30

(p, s, q) \in forced(δ ') iff PDA B has a push transition (p, s, q₂, s₂s₁) such that (q₂, s₂, q₁), (q₁, s₁, q) $\in \delta$ ', for some q₁ $\in Q$

Saturate transitions $\delta \subseteq Q \times S \times Q$ of NFA A:

Outcome: $\delta'(p, s, q)$ in NFA A iff $(p, s) \rightarrow^* (q, \epsilon)$ in PDA B

30

(p, s, q) \in forced(δ ') iff PDA B has a push transition (p, s, q2, s2s1) such that (q2, s2, q1), (q1, s1, q) $\in \delta$ ', for some q1 $\in Q$

Saturate transitions $\delta \subseteq Q \times S \times Q$ of NFA A:

 $\delta' := \delta \cup pop$

termination due to oligomorphicity!

computable due to decidability of FO satisfiability

repeat $\delta' := \delta \cup \text{forced}(\delta')$ until forced $(\delta') \subseteq \delta'$

Outcome: $\delta'(p, s, q)$ in NFA A iff $(p, s) \rightarrow^* (q, \epsilon)$ in PDA B

30

(p, s, q) \in forced(δ ') iff PDA B has a push transition (p, s, q2, s2s1) such that (q2, s2, q1), (q1, s1, q) $\in \delta$ ', for some q1 $\in Q$

Further assumptions

From now on assume that

- \bullet the induced substructure problem for $\mathbb A$ is decidable
- ${\scriptstyle \bullet}$ A is homogeneous

Given: a finite relational structure over the vocabulary of A Question: is the structure an induced substructure of A ? (Does the structure belong to age of A ?)

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for $\mathbb A$

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for $\mathbb A$
- polynomial in the size of input

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

 dependent on the complexity of the induced substructure problem for A greatest number n of vars

 $\phi(x_1, x_2, ..., x_n)$

- polynomial in the size of input
- exponential in the dimension of input

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

 dependent on the complexity of the induced substructure problem for A greatest number n of vars

 $\phi(x_1, x_2, ..., x_n)$

- polynomial in the size of input
- exponential in the dimension of input

Corollary: Reachability problem for FO definable PDA is fixed-parameter tractable wrt. the dimension

Theorem: [Murawski, Ramsay, Tzevelekos 2014] Reachability problem for pushdown register automata is EXPTIME-complete. Theorem: [Murawski, Ramsay, Tzevelekos 2014] Reachability problem for pushdown register automata is EXPTIME-complete.

We generalize EXPTIME-completeness to arbitrary homogeneous atoms whose induced substructure problem is in polynomial time.

Arbitrarily high complexity

Theorem: Even when A is homogeneous, the reachability problem for FO definable PDA can have arbitrary high complexity.

Highlights

We proposed no new algorithm, but re-implemented an existing one!

Highlights

We proposed no new algorithm, but re-implemented an existing one!

The result applies to various structures of atoms:

- equality atoms
- total-order atoms
- equivalence atoms (A, R, =), isomorphic to the wreath product

$$(\mathbb{A}, =) \otimes (\mathbb{A}, =)$$

- nested equality atoms (A, R1, R2, R3, ..., =)
- •

but not to time atoms!

Highlights

We proposed no new algorithm, but re-implemented an existing one!

The result applies to various structures of atoms:

- equality atoms
- total-order atoms
- equivalence atoms (A, R, =), isomorphic to the wreath product

$$(\mathbb{A}, =) \otimes (\mathbb{A}, =)$$

- nested equality atoms (A, R1, R2, R3, ..., =)
- •

but not to time atoms!

Potential application to infinite-state abstractions in analysis of recursive program.

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Fact: A subset of \mathbb{Q}^n is orbit-finite iff it has bounded span.

span of $(t_1 ... t_n)$ is max{ $t_1 ... t_n$ } - min{ $t_1 ... t_n$ }

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Fact: A subset of \mathbb{Q}^n is orbit-finite iff it has bounded span.

span of $(t_1 ... t_n)$ is max{ $t_1 ... t_n$ } - min{ $t_1 ... t_n$ }

Dense-time atoms are ill-behaved:

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Fact: A subset of \mathbb{Q}^n is orbit-finite iff it has bounded span.

span of $(t_1 ... t_n)$ is max{ $t_1 ... t_n$ } - min{ $t_1 ... t_n$ }

Dense-time atoms are ill-behaved:

• non-oligomorphic: \mathbb{Q}^2 is orbit-infinite

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Fact: A subset of \mathbb{Q}^n is orbit-finite iff it has bounded span.

span of $(t_1 ... t_n)$ is max{ $t_1 ... t_n$ } - min{ $t_1 ... t_n$ }

Dense-time atoms are ill-behaved:

- non-oligomorphic: \mathbb{Q}^2 is orbit-infinite
- definable sets are not necessarily orbit-finite

Dense-time atoms (\mathbb{Q} , <, +1) or discrete-time atoms (\mathbb{Z} , <, +1):

Fact: A subset of \mathbb{Q}^n is orbit-finite iff it has bounded span.

span of $(t_1 ... t_n)$ is max{ $t_1 ... t_n$ } - min{ $t_1 ... t_n$ }

Dense-time atoms are ill-behaved:

- non-oligomorphic: \mathbb{Q}^2 is orbit-infinite
- definable sets are not necessarily orbit-finite
- reachability is undecidable already for FO definable NFA

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times Q \times S^*$
- I, $F \subseteq Q$

FO definable

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times Q \times S^*$
- I, $F \subseteq Q$

orbit-finite?

FO definable

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times Q \times S^*$
- I, $F \subseteq Q$

This works for NFA [Bojańczyk, L. 2012], but not for PDA: **Theorem**: Reachability problem is still undecidable

Another attempt

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq Q \times S \times Q \times S^*$
- I, $F \subseteq Q$

FO definable

Another attempt

• alphabet A • states Q • stack alphabet S • $\rho \subseteq Q \times S \times Q \times S^*$ • I, $F \subseteq Q$

Too strong restriction! Span of transitions is bounded
- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq (Q \times S) \times (Q \times S^*)$
- I, $F \subseteq Q$

orbit-finite

FO definable

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq (Q \times S) \times (Q \times S^*)$ • I, F $\subseteq Q$ or officine

orbit-finite

FO definable

Theorem: Reachability problem is in NEXPTIME

Theorem: Reachability problem is in NEXPTIME

Proof idea: Reduction to equations over sets of integers.

Expressiveness

Complexity of reachability

visit our blog

