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FO definable sets

. n .
Consider subsets of A described by first-order formulas
$(x1, x2, ..., xn)-wath-constants-or without constants.

Examples:

X1 =X2#X3V Xl #X2=X3 ) . .
Invariant under action

X1l < X2 £ X3 .
of automorphlsms

Xl <x2<x3<x1+1+1

K<< invariant under action of {7}-automorphisms

FO definable sets are finite disjoint unions of such sets.

Example: %dlfferent dlmensmns)

{ (x1, x2, x3) :x1 <x2<x35} U{ (x1,x2):x1=x2}

Option: quantifier-free definable sets.
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Simple 1dea

Relax finiteness to... FO definability

Instantiate widely accepted symbolic approach: instead of
enumerating sets, represent them and process symbolically.
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FO definable NFA

[Bojariczyk, Klin, L. 2011, 2014]

* alphabet A
* states Q FO definable sets

. instead of finite ones
e transitions 8 C Q x A x Q

. LFCQ

Acceptance defined as for classical NFA.

DFA:
* 3:0OxA—=Q
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input alphabet:

language:

states:

transitions:

if in state (a), atom
b = a1s read, goto
state (ab)

initial state:

accepting states:

A=A

equality atoms (A, =)

"exactly two different atoms appear"

O

-

number of registers may vary
from one location to another

APUAY UATU A2
LU AU A2

{1nit,

5:QxA — Q

S(init, a) =

(a)

a atom

5((a), b) -

(ab)

azb

it

A2




equality atoms (A, =)

input alphabet: A=A

language: '"exactly two ditferent atoms appear"

number of registers may vary
from one location to another

states: Q = A°UA° U AU A2
= {init, FUATU A2

transitions: 8:Q xA — Q

S(nit,a) = (a) a atom
5((a), b) = (ab) a=b
6((a), b) = (a) a =

initial state:  init

accepting states:  A?
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transitions:

initial state:
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equality atoms (A, =)
A=A

"exactly two different atoms appear"

number of registers may vary
from one location to another

O=AUA° AT U A2

-

= {init, FUATU A2
5:OxA — Q
S(nit,a) = (a) a atom

8((a),b) = (ab)  a=b

6((a), b) = (a) a =
S5((ab), c) = c# a b

it

A2
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Register automata?

Over equality atoms, FO definable NFA slightly generalize register

automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

* number of registers may vary from one control state to another
° alphabet letters may contain more than one atom
* arbitrary FO constraints on register valuations and transitions

o instead of (finite set) x A, disjoint union A U A U ...
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FO dehnable Turing

machines

[Bojariczyk, Klin, L., Toruriczyk 2013]
[Klin, L., Ochremiak, Torunczyk 2014]

* tape alphabet A

* states Q FO definable sets

+ transitions 8 CQ x A x Q x A x {<,—>, |] instead of finite ones

- LFCQ

Acceptance defined as for classical Turing machines.



Finite presentation

FO definable NFA, Turing machines, PDA, etc.
can be finitely presented.
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* Re-interpreting models of computation in FO definable sets
* FO definable PDA

* Well-behaved case: oligomorphic and homogeneous atoms
* Reachability in FO definable PDA over oligomorphic atoms

e [ll-behaved case: time atoms
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FO-definable PDA

* alphabet A

e states Q

* stack alphabet S

¢« pC QxS x(AU{e}) x Q x S*
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FO-definable PDA

* alphabet A

e states Q
FO definable sets

* stack alphabet S instead of finite ones

. pQQxSx(AU{e})xQxSSn
c L FCQ

Acceptance defined as for classical PDA, e.g. configurations = Q x S*
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total order atoms (Q, <)
input alphabet: A =0Q
language: "ordered palindromes"
states:  Q = {init, , acc}

stack alphabet: S= QU {1}
transitions: 0 C O xS x (AU {e}) x QO x (§°U St U §?)

init, L, a init, al a atom
if 1n state init, L 1s

topmost on the stack

and atom a 1s read,

stay 1n state init and

push a on the stack

initial state:  init
accepting state: acc
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total order atoms (Q, <)
input alphabet: A =0Q
language: "ordered palindromes"
states:  Q = {init, , acc}

stack alphabet: S= QU {1}
transitions: 0 C O xS x (AU {e}) x QO x (§°U St U §?)

mnit, L, a nit, al a atom
nit, b, ¢ nit, cb b <c
mnit, b, € ,b b atom
nit, b, € ,e batom
, b, ¢ ,e b=c
, 1, e acg ¢

initial state:  init
accepting state: acc
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equality atoms (A, =)

Pushdown register automata?’

Over equality atoms, FO definable PDA slightly generalize pushdown
register automata of [ Murawski, Ramsay, Tzevelekos 2014], exactly
like FO definable NFA slightly generalize register automata.

14



FO-dehnable context-free grammars

e symbols S

* terminal symbols A € S FO definable sets

o instead of finite ones
 an mitial symbol

e 0 C (S-A)xS*

15
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Questions

Under what assumptions on atoms:
* are context-free grammars as expressive as PDA?
* 1s equivalence of two PDAs decidable?

* 1s reachability problem decidable for PDA?
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Expressiveness

Theorem: [Bojanczyk, Klin, L. 2014]

The following models recognize the same languages:

* FO definable context-free grammars

e FO definable PDA

* FO definable prefix rewriting systems,

when A 1s oligomorphic

17



Equivalence-checking

Theorem: [Murawski, Ramsay, Tzevelekos 2015]
Bisimulation equivalence 1s undecidable for

FO definable PDA over equality atoms.

18



Reachability

Assumption: From now on assume that FO satisfiability problem in A
is decidable.

Given: an FO formula over

the vocabulary of A

Question: 1s the formula
satisfiable in A ?
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Reachability

Assumption: From now on assume that FO satisfiability problem in A
is decidable.

Given: an FO formula over

the vocabulary of A

Question: 1s the formula
satisfiable in A ?

This 1s necessary but far not enough!

Fact: The reachability problem for FO definable NFA over

dense-time atoms (Q, <, +1) 1s undecidable.

19



* Re-interpreting models of computation in FO definable sets
* FO definable PDA

* Well-behaved case: oligomorphic and homogeneous atoms
* Reachability in FO definable PDA over oligomorphic atoms

e [ll-behaved case: time atoms
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Atom automorphisms

equality atoms (A, =) all byections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bl)ectlons

preserving integer differences

discrete-time atoms (7, <, +1) translations

equivalence atoms (A, R, =) equivalence-preserving bijections

random graph (V, E, =) random graph automorphisms

21



Orbits

Atom automorphisms t act on A thus splitting it into orbits.
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Examples:
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Orbits

. n . e o . .
Atom automorphisms xt act on A thus splitting it into orbits.

Examples: Non-examples:
X1 = X2 # X3 X1 =X2#X3V Xl #X2=1X3
X1 < X2 < X3 X1 < X2 < X3

X1 < X2 = X3 < X1+1 Xl <x2<x3<x1+1+1
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Oligomorphic structures

A relational structure A 1s oligomorphic
if

. . . . . . . .
for every n, A" is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <) Q? has 3 orbats:

*{xy :x<y|
{1y :x=y}
‘{1 xy x>y}

(3 has 13 orbaits

23
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A relational structure A 1s homogeneous
if
every 1somorphism of finite induced substructures of A

extends to an automorphism of the whole structure.

Example: (Q, <)
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o1
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every 1somorphism of finite induced substructures of A

extends to an automorphism of the whole structure.
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Homogeneous structures

A relational structure A i1s homogeneous
1t
every 1somorphism of finite induced substructures of A

extends to an automorphism of the whole structure.

Example: (Q, <) Theorem: [Freisse 1953]
A homogeneous structure 1s
® ‘ uniquely determined by its
T ’ finite induced substructures
® B T (age).
b
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Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

-dense-time-atoms{O,<—+1)

diserete-time-atoms{(4<—=+1)
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Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

-dense-time-atoms (O <+

diserete-ttime-atoms{(Z,<—=+1r

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament
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Homogeneous 1s oligomorphic

Theorem: Every homogeneous relational structure 1s oligomorphic
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Homogeneous 1s oligomorphic

Theorem: Every homogeneous relational structure 1s oligomorphic

Proof: ‘
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Homogeneous 1s oligomorphic

Theorem: Every homogeneous relational structure 1s oligomorphic

Proof: ‘
o\’
© "T
o—¢

Theorem: Homogeneous = oligomorphic + quantiﬁer elimination
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Homogeneous 1s oligomorphic

Theorem: Every homogeneous relational structure 1s oligomorphic

Proof: ‘

Theorem: Homogeneous = oligomorphic + quantiﬁer elimination

Corollary: When A is a homogeneous structure,
FO definable = quantifier-free definable

26



* Re-interpreting models of computation in FO definable sets
* FO dehinable PDA

* Well-behaved case: oligomorphic and homogeneous atoms
* Reachability in FO definable PDA over oligomorphic atoms

e [ll-behaved case: time atoms
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Assumptions and simplifications

From now on assume that

« FO satishability in A 1s decidable
e A 1s oligomorphic

Ignore input alphabet:

)

o(q,s, q,ss”) it dap(qg,s,a,q,ss”) v (q,s ¢ q,ss’)

Wlog. assume that transitions of PDA partition 1nto:

push C Q x S x Q x S? and
pop COxSxQ

28



Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA 1s decidable
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Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA 1s decidable
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Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA 1s decidable

* FO definable PDA B, with states Q and stack alphabet S
* Conhgurations of B: Q x S*

* FO-definable NFA A with states Q and input alphabet S
e L(A) ={ (g, w) : A accepts w from state q }

Theorem: Pre*(regular set) 1s regular for FO definable PDA,
and may be effectively computed

Corollary: Configuration-to-configuration reachability of
FO definable PDA 1s decidable
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No proof 1dea!

Saturate transitions 8 € Q x S x Q of NFA A:

& :=8 U pop
repeat

& := 8 U forced(d)
until forced(8’) C &’
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No proof 1dea!

Saturate transitions 8 € Q x S x Q of NFA A:

computable due to 6 :=6 U pop
decidability of repeat

FO satishiability & := 8 U torced(d)
until forced(6") C &’

Outcome: 8'(p, s, q) iIn NFA A ift (p,s) =% (q, &) in PDA B
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No proof 1dea!

Saturate transitions 8 € Q x S x Q of NFA A:

termination due to

computable due to 6" := 8 U pop oligomorphicity!
decidability of repeat
FO satishiability & := 8 U torced(d)

until forced(6”) C &’

Outcome: 8'(p, s, q) iIn NFA A ift (p,s) =% (q, &) in PDA B

P qz
(p, s, q) € forced(8’) 1t ® - O
PDA B has a push transition qi /
(p, s, g2, s2s1) such that S ®
(g2 s2, q1), (q1, s1, q) €6, %
for some q1 € Q ;)

30 g



Further assumptions

From now on assume that

e the induced substructure problem for A 1s decidable

e A 1s homogeneous

Given: a finite relational structure
over the vocabulary of A

Question: 1s the structure an
induced substructure of A ?

(Does the structure belong to
age of A 7)
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Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA 1s
EXPTIME-complete, roughly speaking
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Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA 1s
EXPTIME-complete, roughly speaking

Complexity 1s:
° dependent on the complexity of the induced substructure
problem for A greatest number n of vars

e polynomial in the size of input $(x1, x2, ..., xn)

. exponential in the dimension of input

Corollary: Reachability problem for FO definable PDA is

hixed-parameter tractable wrt. the dimension
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Theorem: [ Murawski, Ramsay, Tzevelekos 2014]
Reachability problem for pushdown register automata 1s

EXPTIME-complete.
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Theorem: [ Murawski, Ramsay, Tzevelekos 2014]
Reachability problem for pushdown register automata 1s

EXPTIME-complete.

We generalize EXPTIME-completeness to arbitrary homogeneous
atoms whose induced substructure problem 1s in polynomial time.
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Arbitrarily high complexity

Theorem: Even when A 1s homogeneous, the reachability problem for
FO definable PDA can have arbitrary high complexity.
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Highhghts

We proposed no new algorithm, but re-implemented an existing one!
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Highhghts

We proposed no new algorithm, but re-implemented an existing one!

The result applies to various structures of atoms:
* equality atoms
e total-order atoms

« equivalence atoms (A, R, =), isomorphic to the wreath product

(A; =) ® (A) =>
 nested equality atoms (A, Ri, Re, R3, ..., =)

but not to time atoms!

Potential application to infinite-state abstractions in analysis of
recursive program.
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* Re-interpreting models of computation in FO definable sets
* FO dehinable PDA

* Well-behaved case: oligomorphic and homogeneous atoms
* Reachability in FO definable PDA over oligomorphic atoms

e [ll-behaved case: time atoms

36



Time atoms are 1ll-behaved

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):
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Time atoms are ill-behaved

Dense-time atoms (Q, <, +1) or discrete-time atoms (%, <, +1):

Fact: A subset of Q" 1s orbit-finite 1iff it has bounded span.

span of (t1...tn)1s max{ ti ... tn} - min{ t1 ... tn}

Dense-time atoms are 1ll-behaved:

« non-oligomorphic: Q? 1s orbit-infinite

* definable sets are not necessarily orbit-finite

 reachability 1s undecidable already for FO definable NFA
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Patch for time atoms?

alphabet A

states Q

stack alphabet S
PCOxSxQxS*
LFCQ

38

FO definable



Patch for time atoms?

alphabet A
orbit-finite?

states Q
stack alphabet S FO definable
pC O xSxQxS*

I)FQQ
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Patch for time atoms?

* alphabet A

e states O orbit-finite?

e stack alphabet S FO definable
° ngxSxQxS’*‘

- LFCQ

This works for NFA [Bojaniczyk, L. 2012], but not for PDA:

Theorem: Reachability problem 1s still undecidable
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Another attempt

alphabet A

states Q
FO definable

stack alphabet S
pC O xSxQxS*

LFCQ
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Another attempt

* alphabet A

e states Q bit-Linite?
OTPIHRITE FO definable
* stack alphabet S

e pCQxSxQxS*

- LFCQ

Too strong restriction! Span of transitions 1s bounded
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Right choice: orbit-finite PDA

* alphabet A

e states O orbit-finite

FO definabl
* stack alphabet S efinable

*p € (Qx8) x(QxS8%
+ LFCQ
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Right choice: orbit-finite PDA

alphabet A

states O orbit-finite

FO definabl
stack alphabet S efinable
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Right choice: orbit-finite PDA

* alphabet A
orbit-finite

e states Q

FO definabl
* stack alphabet S efinable
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e
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O
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Theorem: Reachability problem 1s in NEXPTIM]
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Right choice: orbit-finite PDA

* alphabet A

e states O orbit-finite

FO definabl
* stack alphabet S efinable

* p & (QxS)x(QxS¥)
— \u——

e
IN
O

(

911ULJ-}1QI0
PNUL-HGIO

(-

Theorem: Reachability problem 1s in NEXPTIM]

Proof idea: Reduction to equations over sets of integers.
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Expressiveness
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Complexity of reachability
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