
Computability in Europe, Bucharest, 2015.07.02

joint work with Lorenzo Clemente

builds on previous joint work with:
Mikołaj Bojańczyk, Bartek Klin, Joanna Ochremiak, Szymon Toruńczyk

Sławomir Lasota
University of Warsaw

1

Reachability analysis
of

first-order definable pushdown systems
(= pushdown systems in sets with atoms)

Outline

2

Outline

• Re-interpreting models of computation in FO definable sets

2

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

2

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

2

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

2

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

• Ill-behaved case: time atoms

2

Atoms
Fix a countably infinite relational structure A over a finite vocabulary,
and call it atoms.

Atoms are a parameter in the following.

3

Atoms
Fix a countably infinite relational structure A over a finite vocabulary,
and call it atoms.

Atoms are a parameter in the following.

atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

... ...

3

Atoms
Fix a countably infinite relational structure A over a finite vocabulary,
and call it atoms.

Atoms are a parameter in the following.

atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

... ...

3

Atoms
Fix a countably infinite relational structure A over a finite vocabulary,
and call it atoms.

Atoms are a parameter in the following.

atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

... ...

3

Atoms
Fix a countably infinite relational structure A over a finite vocabulary,
and call it atoms.

Atoms are a parameter in the following.

atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

... ...

3

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

An

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

An

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

}invariant under action
of automorphisms

An

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

x₁ < x₂ < 7 invariant under action of {7}-automorphisms

}invariant under action
of automorphisms

An

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

x₁ < x₂ < 7 invariant under action of {7}-automorphisms

}invariant under action
of automorphisms

An

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

FO definable sets are finite disjoint unions of such sets.

x₁ < x₂ < 7 invariant under action of {7}-automorphisms

}invariant under action
of automorphisms

An

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

FO definable sets are finite disjoint unions of such sets.

Example:
{ (x₁, x₂, x₃) : x₁ < x₂ ≤ x₃ } ∪ { (x₁, x₂) : x₁ ≠ x₂ }

x₁ < x₂ < 7 invariant under action of {7}-automorphisms

}invariant under action
of automorphisms

An

different dimensions

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

FO definable sets

4

Consider subsets of described by first-order formulas
φ(x₁, x₂, ..., xn) with constants or without constants.

FO definable sets are finite disjoint unions of such sets.

Example:
{ (x₁, x₂, x₃) : x₁ < x₂ ≤ x₃ } ∪ { (x₁, x₂) : x₁ ≠ x₂ }

x₁ < x₂ < 7 invariant under action of {7}-automorphisms

}invariant under action
of automorphisms

Option: quantifier-free definable sets.

An

different dimensions

x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Relax finiteness to... FO definability

5

Instantiate widely accepted symbolic approach: instead of
enumerating sets, represent them and process symbolically.

Simple idea

FO definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

6

[Bojańczyk, Klin, L. 2011, 2014]

FO definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

6

}FO definable sets
instead of finite ones

[Bojańczyk, Klin, L. 2011, 2014]

FO definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

6

}FO definable sets
instead of finite ones

[Bojańczyk, Klin, L. 2011, 2014]

Acceptance defined as for classical NFA.

FO definable NFA

• alphabet A

• states Q

• transitions δ ⊆ Q × A × Q

• I, F ⊆ Q

6

}FO definable sets
instead of finite ones

DFA:
• δ : Q × A → Q

[Bojańczyk, Klin, L. 2011, 2014]

Acceptance defined as for classical NFA.

language:

7

"exactly two different atoms appear"

input alphabet: A = A

states:

transitions:

accepting states:

equality atoms (A, =)

initial state:

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

states:

transitions:

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state:

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

states:

transitions:

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state:

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

states:

transitions:

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

δ : Q × A → Q

states:

transitions:

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

δ : Q × A → Q

states:

transitions:

δ(init, a) = (a) a atom
δ((a), b) = (ab) a ≠ b
δ((a), b) = (a) a = b
δ((ab), c) = reject c ≠ a, b

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

if in state init atom a is
read, goto state (a)

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

δ : Q × A → Q

states:

transitions:

δ(init, a) = (a) a atom
δ((a), b) = (ab) a ≠ b
δ((a), b) = (a) a = b
δ((ab), c) = reject c ≠ a, b

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

if in state (a), atom
b ≠ a is read, goto
state (ab)

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

δ : Q × A → Q

states:

transitions:

δ(init, a) = (a) a atom
δ((a), b) = (ab) a ≠ b
δ((a), b) = (a) a = b
δ((ab), c) = reject c ≠ a, b

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

language:

7

Q = A⁰ ∪ A⁰ ∪ A¹ ∪ A²
 = {init, reject} ∪ A¹ ∪ A²

"exactly two different atoms appear"

input alphabet: A = A

δ : Q × A → Q

states:

transitions:

δ(init, a) = (a) a atom
δ((a), b) = (ab) a ≠ b
δ((a), b) = (a) a = b
δ((ab), c) = reject c ≠ a, b

accepting states:

equality atoms (A, =)

number of registers may vary
from one location to another

initial state: init

A²

Over equality atoms, FO definable NFA slightly generalize register
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

equality atoms (A, =)

8

Register automata?

• number of registers may vary from one control state to another

Over equality atoms, FO definable NFA slightly generalize register
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

equality atoms (A, =)

8

Register automata?

• number of registers may vary from one control state to another
• alphabet letters may contain more than one atom

Over equality atoms, FO definable NFA slightly generalize register
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

equality atoms (A, =)

8

Register automata?

• number of registers may vary from one control state to another
• alphabet letters may contain more than one atom
• arbitrary FO constraints on register valuations and transitions

Over equality atoms, FO definable NFA slightly generalize register
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

equality atoms (A, =)

8

Register automata?

• number of registers may vary from one control state to another
• alphabet letters may contain more than one atom
• arbitrary FO constraints on register valuations and transitions

• instead of (finite set) × A, disjoint union A ∪ A ∪ ...

Over equality atoms, FO definable NFA slightly generalize register
automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

equality atoms (A, =)

8

Register automata?

FO definable Turing
machines

• tape alphabet A

• states Q

• transitions δ ⊆ Q × A × Q × A × {←,→,↓}

• I, F ⊆ Q

9

[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

FO definable Turing
machines

• tape alphabet A

• states Q

• transitions δ ⊆ Q × A × Q × A × {←,→,↓}

• I, F ⊆ Q

9

}FO definable sets
instead of finite ones

[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

FO definable Turing
machines

• tape alphabet A

• states Q

• transitions δ ⊆ Q × A × Q × A × {←,→,↓}

• I, F ⊆ Q

Acceptance defined as for classical Turing machines.

9

}FO definable sets
instead of finite ones

[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

Finite presentation

10

FO definable NFA, Turing machines, PDA, etc.
can be finitely presented.

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

• Ill-behaved case: time atoms

11

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × (A∪{ε}) × Q × S*

• I, F ⊆ Q

12

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × (A∪{ε}) × Q × S*

• I, F ⊆ Q

12

}FO definable sets
instead of finite ones

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × (A∪{ε}) × Q × S*

• I, F ⊆ Q

12

}FO definable sets
instead of finite ones

≤n

FO-definable PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × (A∪{ε}) × Q × S*

• I, F ⊆ Q

Acceptance defined as for classical PDA, e.g. configurations = Q × S*

12

}FO definable sets
instead of finite ones

≤n

language:

13

"ordered palindromes"

input alphabet: A = Q

states:
stack alphabet:

transitions:

accepting state:
initial state:

total order atoms (Q, <)

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

total order atoms (Q, <)

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

if in state init, ⊥ is
topmost on the stack
and atom a is read,
stay in state init and
push a on the stack

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

language:

13

Q = {init, finish, acc}

"ordered palindromes"

input alphabet: A = Q

δ ⊆ Q × S × (A ∪ {ε}) × Q × (S⁰ ∪ S¹ ∪ S²)

states:
stack alphabet:

transitions:

init, ⊥, a init, a⊥ a atom
init, b, c init, cb b < c
init, b, ε finish, b b atom
init, b, ε finish, ε b atom
finish, b, c finish, ε b = c
finish, ⊥, ε acc, ε

accepting state:
initial state: init

acc

total order atoms (Q, <)

S = Q ∪ {⊥}

Over equality atoms, FO definable PDA slightly generalize pushdown
register automata of [Murawski, Ramsay, Tzevelekos 2014], exactly
like FO definable NFA slightly generalize register automata.

equality atoms (A, =)

14

Pushdown register automata?

orbit-finite	 set	 of	 symbols	 S

FO-definable context-free grammars

• symbols S

• terminal symbols A ⊆ S

• an initial symbol

• ρ ⊆ (S−A)×S*

15

}FO definable sets
instead of finite ones

orbit-finite	 set	 of	 symbols	 S

Questions

16

orbit-finite	 set	 of	 symbols	 S

Questions

16

• are context-free grammars as expressive as PDA?

orbit-finite	 set	 of	 symbols	 S

Questions

16

• are context-free grammars as expressive as PDA?

• is equivalence of two PDAs decidable?

orbit-finite	 set	 of	 symbols	 S

Questions

16

• are context-free grammars as expressive as PDA?

• is equivalence of two PDAs decidable?

• is reachability problem decidable for PDA?

orbit-finite	 set	 of	 symbols	 S

Questions

16

Under what assumptions on atoms:

• are context-free grammars as expressive as PDA?

• is equivalence of two PDAs decidable?

• is reachability problem decidable for PDA?

orbit-finite	 set	 of	 symbols	 S

Expressiveness

17

Theorem: [Bojańczyk, Klin, L. 2014]
 The following models recognize the same languages:
• FO definable context-free grammars
• FO definable PDA
• FO definable prefix rewriting systems,
when A is oligomorphic

orbit-finite	 set	 of	 symbols	 S

Equivalence-checking

18

Theorem: [Murawski, Ramsay, Tzevelekos 2015]
 Bisimulation equivalence is undecidable for
 FO definable PDA over equality atoms.

orbit-finite	 set	 of	 symbols	 S

Reachability

19

Assumption: From now on assume that FO satisfiability problem in A
is decidable.

Given: an FO formula over
 the vocabulary of A

Question: is the formula
 satisfiable in A ?

orbit-finite	 set	 of	 symbols	 S

Reachability

19

Fact: The reachability problem for FO definable NFA over
dense-time atoms (Q, <, +1) is undecidable.

Assumption: From now on assume that FO satisfiability problem in A
is decidable.

This is necessary but far not enough!

Given: an FO formula over
 the vocabulary of A

Question: is the formula
 satisfiable in A ?

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

• Ill-behaved case: time atoms

20

Atom automorphisms

21

atoms atom automorphisms

equality atoms (A, =) all bijections

total order atoms (Q, <) monotonic bijections

dense-time atoms (Q, <, +1) monotonic bijections
 preserving integer differences

discrete-time atoms (Z, <, +1) translations

equivalence atoms (A, R, =) equivalence-preserving bijections

random graph (V, E, =) random graph automorphisms

... ...

Orbits

π
π

π

Atom automorphisms π act on thus splitting it into orbits.An

22

Orbits

Examples:
x₁ = x₂ ≠ x₃
x₁ < x₂ < x₃

π
π

π

Atom automorphisms π act on thus splitting it into orbits.An

22

x₁ < x₂ = x₃ < x₁+1

Orbits

Examples:
x₁ = x₂ ≠ x₃
x₁ < x₂ < x₃

π
π

π

Atom automorphisms π act on thus splitting it into orbits.An

22

Non-examples:
x₁ = x₂ ≠ x₃ ∨ x₁ ≠ x₂ = x₃
x₁ < x₂ ≤ x₃

x₁ < x₂ = x₃ < x₁+1 x₁ < x₂ ≤ x₃ ≤ x₁+1+1

Oligomorphic structures

23

Oligomorphic structures

23

A relational structure A is oligomorphic
if

Oligomorphic structures

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

Oligomorphic structures

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

Oligomorphic structures

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

Oligomorphic structures

Q² has 3 orbits:

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

Oligomorphic structures

Q² has 3 orbits:

• { (x, y) : x < y }
• { (x, y) : x = y }
• { (x, y) : x > y }

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite.

Example: (Q, <)

Oligomorphic structures

Q² has 3 orbits:

• { (x, y) : x < y }
• { (x, y) : x = y }
• { (x, y) : x > y }

Q³ has 13 orbits

23

A relational structure A is oligomorphic
if

for every n, is orbit-finite, i.e. splits into finitely many orbits.An

As a consequence, FO definable sets are orbit-finite.

24

Homogeneous structures

A relational structure A is homogeneous
if

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

A relational structure A is homogeneous
if

every isomorphism of finite induced substructures of A
extends to an automorphism of the whole structure.

Example: (Q, ≤)

24

Homogeneous structures

Theorem: [Freisse 1953]
A homogeneous structure is
uniquely determined by its
finite induced substructures
(age).

25

Homogeneous structures

25

Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

dense-time atoms (Q, <, +1)

discrete-time atoms (Z, <, +1)

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament

...

25

Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

dense-time atoms (Q, <, +1)

discrete-time atoms (Z, <, +1)

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament

...

25

Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

dense-time atoms (Q, <, +1)

discrete-time atoms (Z, <, +1)

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament

...

25

Homogeneous structures

equality atoms (A, =)

total order atoms (Q, <)

dense-time atoms (Q, <, +1)

discrete-time atoms (Z, <, +1)

equivalence atoms

universal (random) graph

universal partial order

universal directed graph

universal tournament

...

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

26

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

26

Proof:

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

26

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

26

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination

Corollary: When A is a homogeneous structure,
FO definable = quantifier-free definable

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

• Ill-behaved case: time atoms

27

28

Assumptions and simplifications

28

From now on assume that
• FO satisfiability in A is decidable
• A is oligomorphic

Assumptions and simplifications

28

From now on assume that
• FO satisfiability in A is decidable
• A is oligomorphic

Ignore input alphabet:
ρ(q, s, q’, s’s’’) iff ∃a ρ(q, s, a, q’, s’s’’) ∨ (q, s, ε, q’, s’s’’)

Assumptions and simplifications

28

From now on assume that
• FO satisfiability in A is decidable
• A is oligomorphic

Ignore input alphabet:
ρ(q, s, q’, s’s’’) iff ∃a ρ(q, s, a, q’, s’s’’) ∨ (q, s, ε, q’, s’s’’)

Wlog. assume that transitions of PDA partition into:

push ⊆ Q × S × Q × S² and
pop ⊆ Q × S × Q

Assumptions and simplifications

29

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

• FO definable PDA B, with states Q and stack alphabet S

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B: Q × S*

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B: Q × S*
• FO-definable NFA A with states Q and input alphabet S

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B: Q × S*
• FO-definable NFA A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

Theorem: Pre*(regular set) is regular for FO definable PDA,
 and may be effectively computed

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B: Q × S*
• FO-definable NFA A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }

Theorem: Reachability problem for FO definable PDA is decidable

29

Oligomorphic atoms: decidability

Theorem: Pre*(regular set) is regular for FO definable PDA,
 and may be effectively computed

Corollary: Configuration-to-configuration reachability of
 FO definable PDA is decidable

• FO definable PDA B, with states Q and stack alphabet S
• Configurations of B: Q × S*
• FO-definable NFA A with states Q and input alphabet S
• L(A) = { (q, w) : A accepts w from state q }

Theorem: Reachability problem for FO definable PDA is decidable

No proof idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

No proof idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

Outcome: δ’(p, s, q) in NFA A iff (p, s) →* (q, ε) in PDA B

No proof idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

(p, s, q) ∈ forced(δ’) iff
PDA B has a push transition
(p, s, q₂, s₂s₁) such that
(q₂, s₂, q₁), (q₁, s₁, q) ∈ δ’,
for some q₁ ∈ Q

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

p

q

s

q₂

q₁
s₂

s₁

Outcome: δ’(p, s, q) in NFA A iff (p, s) →* (q, ε) in PDA B

No proof idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

(p, s, q) ∈ forced(δ’) iff
PDA B has a push transition
(p, s, q₂, s₂s₁) such that
(q₂, s₂, q₁), (q₁, s₁, q) ∈ δ’,
for some q₁ ∈ Q

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

p

q

s

q₂

q₁
s₂

s₁

computable due to
decidability of
FO satisfiability

Outcome: δ’(p, s, q) in NFA A iff (p, s) →* (q, ε) in PDA B

No proof idea!

30

Saturate transitions δ ⊆ Q × S × Q of NFA A:

(p, s, q) ∈ forced(δ’) iff
PDA B has a push transition
(p, s, q₂, s₂s₁) such that
(q₂, s₂, q₁), (q₁, s₁, q) ∈ δ’,
for some q₁ ∈ Q

δ’ := δ ∪ pop
repeat

δ’ := δ ∪ forced(δ’)
until forced(δ’) ⊆ δ’

p

q

s

q₂

q₁
s₂

s₁

computable due to
decidability of
FO satisfiability

termination due to
oligomorphicity!

Outcome: δ’(p, s, q) in NFA A iff (p, s) →* (q, ε) in PDA B

31

From now on assume that

• the induced substructure problem for A is decidable
• A is homogeneous

Given: a finite relational structure
 over the vocabulary of A

Question: is the structure an
induced substructure of A ?
(Does the structure belong to
age of A ?)

Further assumptions

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

Complexity is:

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

Complexity is:
• dependent on the complexity of the induced substructure

problem for A

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

Complexity is:
• dependent on the complexity of the induced substructure

problem for A
• polynomial in the size of input

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

Complexity is:
• dependent on the complexity of the induced substructure

problem for A
• polynomial in the size of input
• exponential in the dimension of input

greatest number n of vars
φ(x₁, x₂, ..., xn)

32

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is
 EXPTIME-complete, roughly speaking

Complexity is:
• dependent on the complexity of the induced substructure

problem for A
• polynomial in the size of input
• exponential in the dimension of input

Corollary: Reachability problem for FO definable PDA is
 fixed-parameter tractable wrt. the dimension

greatest number n of vars
φ(x₁, x₂, ..., xn)

33

Theorem: [Murawski, Ramsay, Tzevelekos 2014]
Reachability problem for pushdown register automata is
EXPTIME-complete.

33

Theorem: [Murawski, Ramsay, Tzevelekos 2014]
Reachability problem for pushdown register automata is
EXPTIME-complete.

We generalize EXPTIME-completeness to arbitrary homogeneous
atoms whose induced substructure problem is in polynomial time.

34

Arbitrarily high complexity

Theorem: Even when A is homogeneous, the reachability problem for
 FO definable PDA can have arbitrary high complexity.

35

Highlights

35

Highlights
We proposed no new algorithm, but re-implemented an existing one!

35

Highlights

The result applies to various structures of atoms:
• equality atoms
• total-order atoms
• equivalence atoms (A, R, =), isomorphic to the wreath product

(A, =) ⊗ (A, =)

• nested equality atoms (A, R₁, R₂, R₃, ..., =)
• ...

but not to time atoms!

We proposed no new algorithm, but re-implemented an existing one!

35

Highlights

The result applies to various structures of atoms:
• equality atoms
• total-order atoms
• equivalence atoms (A, R, =), isomorphic to the wreath product

(A, =) ⊗ (A, =)

• nested equality atoms (A, R₁, R₂, R₃, ..., =)
• ...

but not to time atoms!

Potential application to infinite-state abstractions in analysis of
recursive program.

We proposed no new algorithm, but re-implemented an existing one!

Outline

• Re-interpreting models of computation in FO definable sets

• FO definable PDA

• Well-behaved case: oligomorphic and homogeneous atoms

• Reachability in FO definable PDA over oligomorphic atoms

• Ill-behaved case: time atoms

36

37

Time atoms are ill-behaved

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

37

Time atoms are ill-behaved

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

Fact: A subset of Q is orbit-finite iff it has bounded span.n

span of () is max{ } - min{ }nt₁ ... tnt₁ ... t nt₁ ... t

37

Time atoms are ill-behaved

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

Fact: A subset of Q is orbit-finite iff it has bounded span.n

Dense-time atoms are ill-behaved:

span of () is max{ } - min{ }nt₁ ... tnt₁ ... t nt₁ ... t

37

Time atoms are ill-behaved

• non-oligomorphic: Q² is orbit-infinite

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

Fact: A subset of Q is orbit-finite iff it has bounded span.n

Dense-time atoms are ill-behaved:

span of () is max{ } - min{ }nt₁ ... tnt₁ ... t nt₁ ... t

37

Time atoms are ill-behaved

• non-oligomorphic: Q² is orbit-infinite
• definable sets are not necessarily orbit-finite

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

Fact: A subset of Q is orbit-finite iff it has bounded span.n

Dense-time atoms are ill-behaved:

span of () is max{ } - min{ }nt₁ ... tnt₁ ... t nt₁ ... t

37

Time atoms are ill-behaved

• non-oligomorphic: Q² is orbit-infinite
• definable sets are not necessarily orbit-finite
• reachability is undecidable already for FO definable NFA

Dense-time atoms (Q, <, +1) or discrete-time atoms (Z, <, +1):

Fact: A subset of Q is orbit-finite iff it has bounded span.n

Dense-time atoms are ill-behaved:

span of () is max{ } - min{ }nt₁ ... tnt₁ ... t nt₁ ... t

Patch for time atoms?

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

38

}FO definable

Patch for time atoms?

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

38

}FO definable}orbit-finite?

Patch for time atoms?

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

38

}FO definable}orbit-finite?

Theorem: Reachability problem is still undecidable

This works for NFA [Bojańczyk, L. 2012], but not for PDA:

Another attempt

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

39

}FO definable

Another attempt

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ Q × S × Q × S*

• I, F ⊆ Q

39

}FO definable}orbit-finite?

Too strong restriction! Span of transitions is bounded

Right choice: orbit-finite PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ (Q × S) × (Q × S*)

• I, F ⊆ Q

40

}FO definable}orbit-finite

Right choice: orbit-finite PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ (Q × S) × (Q × S*)

• I, F ⊆ Q

40

}FO definable

}
orbit-finite

}orbit-finite

}
orbit-finite

Right choice: orbit-finite PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ (Q × S) × (Q × S*)

• I, F ⊆ Q

40

}FO definable

}
orbit-finite

}orbit-finite

}
orbit-finite

Theorem: Reachability problem is in NEXPTIME

Right choice: orbit-finite PDA

• alphabet A

• states Q

• stack alphabet S

• ρ ⊆ (Q × S) × (Q × S*)

• I, F ⊆ Q

40

}FO definable

}
orbit-finite

}orbit-finite

}
orbit-finite

Theorem: Reachability problem is in NEXPTIME

Proof idea: Reduction to equations over sets of integers.

PDA

orbit-finite PDA

CFG
PDA with

timeless stack

dense-timed
PDA with

uninitialized clocks

41

Expressiveness

[Abdulla, Atig, Stenman 2012]

PDA

orbit-finite PDA

CFG
PDA with

timeless stack

dense-timed
PDA with

uninitialized clocks

EXPTIME-c.

in NEXPTIME

undecidable

EXPTIME-c.

42

Complexity of reachability

[Abdulla, Atig, Stenman 2012]

43

thank you!

visit our blog

