Reachability analysis

first-order definable pushdown systems

(= pushdown systems in sets with atoms)

Sławomir Lasota University of Warsaw

joint work with Lorenzo Clemente
builds on previous joint work with:
Mikołaj Bojańczyk, Bartek Klin, Joanna Ochremiak, Szymon Toruńczyk

Computability in Europe, Bucharest, 2015.07.02

Outline

Outline

- Re-interpreting models of computation in FO definable sets

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Atoms

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it atoms.

Atoms are a parameter in the following.

Atoms

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it atoms.

Atoms are a parameter in the following.

atoms	atom automorphisms
equality atoms $(\mathbb{A},=)$	all bijections

Atoms

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it atoms.

Atoms are a parameter in the following.

atoms	atom automorphisms
equality atoms $(\mathbb{A},=)$	all bijections
total order atoms $(\mathbb{Q},<)$	monotonic bijections

Atoms

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it atoms.

Atoms are a parameter in the following.

atoms	atom automorphisms
equality atoms $(\mathbb{A},=)$	all bijections
total order atoms $(\mathbb{Q},<)$	monotonic bijections
dense-time atoms $(\mathbb{Q},<,+1)$	monotonic bijections preserving integer differences

Atoms

Fix a countably infinite relational structure \mathbb{A} over a finite vocabulary, and call it atoms.

Atoms are a parameter in the following.

atoms	atom automorphisms
equality atoms $(\mathbb{A},=)$	all bijections
total order atoms $(\mathbb{Q},<)$	monotonic bijections
dense-time atoms $(\mathbb{Q},<,+1)$	monotonic bijections preserving integer differences
\ldots	\ldots

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{X} 2 \neq \mathrm{X} 3 \vee \mathrm{X} 1 \neq \mathrm{X} 2=\mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \leq \mathrm{X} 1+1+1
\end{aligned}
$$

1invariant under action of automorphisms

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with-constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{x} 2 \neq \mathrm{x} 3 \vee \mathrm{x} 1 \neq \mathrm{x} 2=\mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \leq \mathrm{x} 1+1+1
\end{aligned}
$$

invariant under action of automorphisms
$\mathrm{x} 1<\mathrm{x} 2<7 \quad$ invariant under action of $\{7\}$-automorphisms

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with-constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{X} 2 \neq \mathrm{X} 3 \vee \mathrm{X} 1 \neq \mathrm{X} 2=\mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \leq \mathrm{X} 1+1+1
\end{aligned}
$$

invariant under action of automorphisms $x_{1}<x_{2}<7 \quad$ invariant under action of $\{7\}$-automorphisms

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{X} 2 \neq \mathrm{X} 3 \vee \mathrm{X} 1 \neq \mathrm{X} 2=\mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \leq \mathrm{X} 1+1+1
\end{aligned}
$$

1invariant under action of automorphisms $x_{1}<x_{2}<7 \quad$ invariant under action of $\{7\}$-automorphisms

FO definable sets are finite disjoint unions of such sets.

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{x} 2 \neq \mathrm{x} 3 \vee \mathrm{x} 1 \neq \mathrm{x} 2=\mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \leq \mathrm{x} 1+1+1
\end{aligned}
$$

invariant under action of automorphisms $x_{1}<x_{2}<7 \quad$ invariant under action of $\{7\}$-automorphisms

FO definable sets are finite disjoint unions of such sets.
Example:
different dimensions

$$
\{(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3): \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3\} \cup\{(\mathrm{x} 1, \mathrm{x} 2): \mathrm{x} 1 \neq \mathrm{x} 2\}
$$

FO definable sets

Consider subsets of \mathbb{A}^{n} described by first-order formulas $\phi(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$ with constants or without constants.

Examples:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{x} 2 \neq \mathrm{x} 3 \vee \mathrm{x} 1 \neq \mathrm{x} 2=\mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3 \leq \mathrm{x} 1+1+1
\end{aligned}
$$

invariant under action of automorphisms $x_{1}<x_{2}<7 \quad$ invariant under action of $\{7\}$-automorphisms

FO definable sets are finite disjoint unions of such sets.
Example:
different dimensions

$$
\{(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3): \mathrm{x} 1<\mathrm{x} 2 \leq \mathrm{x} 3\} \cup\{(\mathrm{x} 1, \mathrm{x} 2): \mathrm{x} 1 \neq \mathrm{x} 2\}
$$

Option: quantifier-free definable sets.

Simple idea

Relax finiteness to... FO definability

Instantiate widely accepted symbolic approach: instead of enumerating sets, represent them and process symbolically.

FO definable NFA

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable NFA

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

FO definable NFA

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \underline{\mathrm{Q}}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

Acceptance defined as for classical NFA.

FO definable NFA

[Bojańczyk, Klin, L. 2011, 2014]

- alphabet A
- states Q
- transitions $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

Acceptance defined as for classical NFA.
DFA:

- $\delta: \underline{Q} \times \mathrm{A} \rightarrow \mathrm{Q}$
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"
states:
transitions:
initial state:
accepting states:
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"
number of registers may vary
from one location to another
states: $\quad Q=\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}$
transitions:
initial state:
accepting states:
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"
number of registers may vary
from one location to another

$$
\text { states: } \quad \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions:
initial state:
accepting states:
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"
number of registers may vary
from one location to another

$$
\text { states: } \quad \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions:
initial state: init
accepting states: \mathbb{A}^{2}
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"
number of registers may vary
from one location to another

$$
\text { states: } \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions: $\delta: Q \times \mathrm{A} \rightarrow \mathrm{Q}$
initial state: init
accepting states: \mathbb{A}^{2}
input alphabet: $\mathrm{A}=\mathbb{A}$
language: "exactly two different atoms appear"

$$
\text { states: } \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions: $\delta: Q \times \mathrm{A} \rightarrow \mathrm{Q}$

$$
\delta(\text { init }, a)=(a) \quad \text { a atom }
$$

if in state init atom a is read, goto state (a)
initial state: init
accepting states: \mathbb{A}^{2}
input alphabet: $A=\mathbb{A}$
language: "exactly two different atoms appear"

$$
\text { states: } \quad \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions: $\quad \delta: Q \times A \rightarrow Q$

$$
\begin{array}{ll}
\delta(\text { init }, a)=(a) & \text { a atom } \\
\delta((a), b)=(a b) & a \neq b
\end{array}
$$

if in state (a), atom
$b \neq a$ is read, goto state (ab)
initial state: init
accepting states: \mathbb{A}^{2}
input alphabet: $A=\mathbb{A}$
language: "exactly two different atoms appear"

$$
\text { states: } \quad \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions: $\quad \delta: Q \times A \rightarrow Q$

$$
\begin{array}{ll}
\delta(\text { init }, a)=(a) & \text { a atom } \\
\delta((a), b)=(a b) & a \neq b \\
\delta((a), b)=(a) & a=b
\end{array}
$$

initial state: init
accepting states: \mathbb{A}^{2}
input alphabet: $A=\mathbb{A}$
language: "exactly two different atoms appear"

$$
\text { states: } \quad \begin{aligned}
Q & =\mathbb{A}^{0} \cup \mathbb{A}^{0} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2} \\
& =\{\text { init, reject }\} \cup \mathbb{A}^{1} \cup \mathbb{A}^{2}
\end{aligned}
$$

transitions: $\quad \delta: Q \times A \rightarrow Q$

$$
\begin{array}{ll}
\delta(\text { init }, a)=(a) & a \text { atom } \\
\delta((a), b)=(a b) & a \neq b \\
\delta((a), b)=(a) & a=b \\
\delta((a b), c)=\text { reject } & c \neq a, b
\end{array}
$$

initial state: init
accepting states: \mathbb{A}^{2}

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom
- arbitrary FO constraints on register valuations and transitions

Register automata?

Over equality atoms, FO definable NFA slightly generalize register automata (aka finite-memory automata) of [Francez, Kaminsky 1994]:

- number of registers may vary from one control state to another
- alphabet letters may contain more than one atom
- arbitrary FO constraints on register valuations and transitions
- instead of (finite set) $\times \mathbb{A}$, disjoint union $\mathbb{A} \cup \mathbb{A} \cup \ldots$

FO definable Turing machines

- tape alphabet A
- states Q
- transitions $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable Turing machines

[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

- tape alphabet A
- states Q
- transitions $\delta \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \underline{\mathrm{Q}} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

FO definable Turing machines

[Bojańczyk, Klin, L., Toruńczyk 2013]
[Klin, L., Ochremiak, Toruńczyk 2014]

- tape alphabet A
- states Q
- transitions $\delta \subseteq \mathrm{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{A} \times\{\leftarrow, \rightarrow, \downarrow\}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

Acceptance defined as for classical Turing machines.

Finite presentation

FO definable NFA, Turing machines, PDA, etc. can be finitely presented.

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \underline{Q} \times \mathrm{S} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times \mathrm{S}^{*}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \mathrm{Q} \times \mathrm{S} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times \mathrm{S}^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \mathrm{Q} \times \mathrm{S} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times \mathrm{S}^{\leq n}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

FO definable sets instead of finite ones

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \underline{Q} \times S \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times \mathrm{S}^{\leq n}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Acceptance defined as for classical PDA, e.g. configurations $=Q \times S^{*}$
input alphabet: $\quad A=\mathbb{Q}$
language: "ordered palindromes"
states:
stack alphabet:
transitions:
initial state:
accepting state:
input alphabet: $\quad A=Q$
language: "ordered palindromes"

$$
\text { states: } \quad Q=\{\text { init, finish, acc }\}
$$

stack alphabet:
transitions:
initial state: init
accepting state: acc
input alphabet: $\quad A=Q$
language: "ordered palindromes"

$$
\begin{aligned}
\text { states: } & Q=\{\text { init, finish, acc }\} \\
\text { stack alphabet: } & S=Q \cup\{\perp\} \\
\text { transitions: } &
\end{aligned}
$$

initial state: init
accepting state: acc
input alphabet: $\quad A=Q$
language: "ordered palindromes"
states: $Q=\{$ init, finish, acc $\}$
stack alphabet: $\quad S=Q \cup\{\perp\}$
transitions: $\quad \delta \subseteq Q \times S \times(A \cup\{\varepsilon\}) \times Q \times\left(S^{0} \cup S^{1} \cup S^{2}\right)$
initial state: init
accepting state: acc
input alphabet: $\mathrm{A}=\mathrm{Q}$
language: "ordered palindromes"

$$
\begin{aligned}
\text { states: } & Q=\{\text { init, finish, acc }\} \\
\text { stack alphabet: } & S=Q \cup\{\perp\} \\
\text { transitions: } & \delta \subseteq Q \times S \times(A \cup\{\varepsilon\}) \times Q \times\left(S^{0} \cup S^{1} \cup S^{2}\right)
\end{aligned}
$$

$$
\text { init, } \perp \text {, a init, } \mathrm{a} \perp \quad \text { a atom }
$$

if in state init, \perp is topmost on the stack and atom a is read, stay in state init and push a on the stack
initial state: init
accepting state: acc
input alphabet: $\quad A=Q$
language: "ordered palindromes"

$$
\begin{aligned}
& \text { states: } \mathrm{Q}=\{\text { init, finish, acc }\} \\
& \text { stack alphabet: } \mathrm{S}=\mathrm{Q} \cup\{\perp\} \\
& \text { transitions: } \delta \subseteq \mathrm{Q} \times \mathrm{S} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times\left(\mathrm{S}^{0} \cup \mathrm{~S}^{1} \cup \mathrm{~S}^{2}\right) \\
& \text { init, } \perp \text {, a } \\
& \text { init, } \mathrm{a} \perp \\
& \text { a atom } \\
& \text { init, } \mathrm{c} \\
& \text { init, } \mathrm{cb} \\
& \mathrm{~b}<\mathrm{c}
\end{aligned}
$$

initial state: init
accepting state: acc
input alphabet: $\quad A=Q$
language: "ordered palindromes"

states:	$\mathrm{Q}=\{$ init, finish, acc $\}$
stack alphabet:	$\mathrm{S}=\mathrm{Q} \cup\{\perp\}$
transitions:	$\delta \subseteq \mathrm{Q} \times \mathrm{S} \times(\mathrm{A} \cup\{\varepsilon\}) \times \mathrm{Q} \times\left(\mathrm{S}^{0} \cup \mathrm{~S}^{1} \cup \mathrm{~S}^{2}\right)$
	init, \perp, a
	init, $\mathrm{a} \perp$
$\mathrm{init}, \mathrm{b}, \mathrm{c}$	a atom
	init, cb
$\mathrm{init}, \mathrm{b}, \varepsilon$	finish, b
	init, b, ε
	finish, ε

initial state: init
accepting state: acc
input alphabet: $\quad A=Q$
language: "ordered palindromes"

states:	$\underline{Q}=\{$ init, finish, acc $\}$		
stack alphabet: transitions:	$\mathrm{S}=\mathrm{Q} \cup\{\perp\}$		
	init, \perp, a	init, $\mathrm{a} \perp$	a atom
	init, b, c	init, cb	$\mathrm{b}<\mathrm{c}$
	init, b, ع	finish, b	b atom
	init, b, ع	finish, ε	b atom
	finish, b, c	finish, ε	$\mathrm{b}=\mathrm{c}$

initial state: init
accepting state: acc
input alphabet: $\mathrm{A}=\mathrm{Q}$
language: "ordered palindromes"

$$
\text { states: } Q=\{\text { init, finish, acc }\}
$$

stack alphabet: $\quad S=Q \cup\{\perp\}$
transitions: $\quad \delta \subseteq \underline{Q} \times S \times(A \cup\{\varepsilon\}) \times Q \times\left(S^{0} \cup S^{1} \cup S^{2}\right)$

init, \perp, a	init, $\mathrm{a} \perp$	a atom
init, b, c	init, cb	$\mathrm{b}<\mathrm{c}$
init, b, ε	finish, b	b atom
init, b, ε	finish, ε	b atom
finish, b, c	finish, ε	$\mathrm{b}=\mathrm{c}$
finish, \perp, ε	acc, ε	

initial state: init
accepting state: acc

Pushdown register automata?

Over equality atoms, FO definable PDA slightly generalize pushdown register automata of [Murawski, Ramsay, Tzevelekos 2014], exactly like FO definable NFA slightly generalize register automata.

FO-definable context-free grammars

- symbols S
- terminal symbols $\mathrm{A} \subseteq \mathrm{S}$
- an initial symbol
- $\rho \subseteq(\mathrm{S}-\mathrm{A}) \times \mathrm{S}^{*}$

FO definable sets
instead of finite ones

Questions

Questions

- are context-free grammars as expressive as PDA?

Questions

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?

Questions

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?
- is reachability problem decidable for PDA?

Questions

Under what assumptions on atoms:

- are context-free grammars as expressive as PDA?
- is equivalence of two PDAs decidable?
- is reachability problem decidable for PDA?

Expressiveness

Theorem: [Bojańczyk, Klin, L. 2014]
The following models recognize the same languages:

- FO definable context-free grammars
- FO definable PDA
- FO definable prefix rewriting systems, when \mathbb{A} is oligomorphic

Equivalence-checking

Theorem: [Murawski, Ramsay, Tzevelekos 2015]
Bisimulation equivalence is undecidable for FO definable PDA over equality atoms.

Reachability

Assumption: From now on assume that FO satisfiability problem in \mathbb{A} is decidable.

Given: an FO formula over the vocabulary of \mathbb{A}
Question: is the formula satisfiable in \mathbb{A} ?

Reachability

Assumption: From now on assume that FO satisfiability problem in \mathbb{A} is decidable.

Given: an FO formula over the vocabulary of A
Question: is the formula satisfiable in \mathbb{A} ?

This is necessary but far not enough!
Fact: The reachability problem for FO definable NFA over dense-time atoms $(\mathbb{Q},<,+1)$ is undecidable.

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Atom automorphisms

atoms	atom automorphisms
equality atoms $(\mathbb{A},=)$	all bijections
total order atoms $(\mathbb{Q},<)$	monotonic bijections
dense-time atoms $(\mathbb{Q},<,+1)$	monotonic bijections preserving integer differences
discrete-time atoms $(\mathbb{Z},<,+1)$	translations
equivalence atoms $(\mathbb{A}, \mathrm{R},=)$	equivalence-preserving bijections
random graph $(\mathbb{V}, \mathrm{E},=)$	random graph automorphisms
\ldots	

Orbits

Atom automorphisms π act on \mathbb{A}^{n} thus splitting it into orbits.

Orbits

Atom automorphisms π act on \mathbb{A}^{n} thus splitting it into orbits.

Examples:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{x} 2 \neq \mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2<\mathrm{x} 3 \\
& \mathrm{x} 1<\mathrm{x} 2=\mathrm{x} 3<\mathrm{x} 1+1
\end{aligned}
$$

Orbits

Atom automorphisms π act on \mathbb{A}^{n} thus splitting it into orbits.

Examples:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{X} 2 \neq \mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2<\mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2=\mathrm{X} 3<\mathrm{X} 1+1
\end{aligned}
$$

Non-examples:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{X} 2 \neq \mathrm{X} 3 \vee \mathrm{X} 1 \neq \mathrm{X} 2=\mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \\
& \mathrm{X} 1<\mathrm{X} 2 \leq \mathrm{X} 3 \leq \mathrm{X} 1+1+1
\end{aligned}
$$

Oligomorphic structures

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every $\mathrm{n}, \mathbb{A}^{n}$ is orbit-finite, i.e. splits into finitely many orbits.

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every $\mathrm{n}, \mathbb{A}^{n}$ is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every n, \mathbb{A}^{n} is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: $(\mathrm{Q},<)$

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every n, \mathbb{A}^{n} is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: $(\mathbb{Q},<) \quad Q^{2}$ has 3 orbits:

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every n, \mathbb{A}^{n} is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: $(\mathrm{Q},<)$
Q^{2} has 3 orbits:

- $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}\}$
- $\{(x, y): x=y\}$
- $\{(x, y): x>y\}$

Oligomorphic structures

A relational structure \mathbb{A} is oligomorphic if
for every n, \mathbb{A}^{n} is orbit-finite, i.e. splits into finitely many orbits.

As a consequence, FO definable sets are orbit-finite.

Example: $(\mathrm{Q},<)$
Q^{2} has 3 orbits:

- $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}\}$
- $\{(x, y): x=y\}$
- $\{(x, y): x>y\}$

Q^{3} has 13 orbits

Homogeneous structures

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
if

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
if
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, s)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, \leq)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, \leq)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, \leq)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, \leq)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, \leq)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of A extends to an automorphism of the whole structure.

Example: (Q, s)

Homogeneous structures

A relational structure \mathbb{A} is homogeneous
every isomorphism of finite induced substructures of \mathbb{A} extends to an automorphism of the whole structure.

Example: (Q, s)

Theorem: [Freisse 1953]
A homogeneous structure is uniquely determined by its finite induced substructures (age).

Homogeneous structures

Homogeneous structures

equality atoms $(\mathbb{A},=)$
total order atoms $(\mathbb{Q},<)$
dense-time atoms $(\mathbb{Q},<,+1)$

Homogeneous structures

equality atoms $(\mathbb{A},=)$
total order atoms $(\mathbb{Q},<)$
dense-time atoms $(\mathbb{Q},<,+1)$

Homogeneous structures

equality atoms $(\mathbb{A},=)$
total order atoms $(\mathbb{Q},<)$
dense-time atoms $(\mathbb{Q},<,+1)$
diserete-time atoms $(\mathbb{Z},<,+1)$

Homogeneous structures

equality atoms $(\mathbb{A},=)$
total order atoms $(\mathbb{Q},<)$
dense-time atoms $(\mathbb{Q},<,+1)$
diserete-time atoms $(\mathbb{Z},<,+1)$
equivalence atoms
universal (random $)$ graph
universal partial order
universal directed graph
universal tournament
\ldots

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination

Homogeneous is oligomorphic

Theorem: Every homogeneous relational structure is oligomorphic

Proof:

Theorem: Homogeneous = oligomorphic + quantifier elimination
Corollary: When \mathbb{A} is a homogeneous structure, FO definable = quantifier-free definable

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Assumptions and simplifications

Assumptions and simplifications

From now on assume that

- FO satisfiability in \mathbb{A} is decidable
- A is oligomorphic

Assumptions and simplifications

From now on assume that

- FO satisfiability in \mathbb{A} is decidable
- \mathbb{A} is oligomorphic

Ignore input alphabet:

$$
\rho\left(q, s, q^{\prime}, s^{\prime} s^{\prime \prime}\right) \quad \text { iff } \exists a \rho\left(q, s, a, q^{\prime}, s^{\prime} s^{\prime \prime}\right) \vee\left(q, s, \varepsilon, q^{\prime}, s^{\prime} s^{\prime \prime}\right)
$$

Assumptions and simplifications

From now on assume that

- FO satisfiability in \mathbb{A} is decidable
- \mathbb{A} is oligomorphic

Ignore input alphabet:

$$
\rho\left(q, s, q^{\prime}, s^{\prime} s^{\prime \prime}\right) \text { iff } \exists a \rho\left(q, s, a, q^{\prime}, s^{\prime} s^{\prime \prime}\right) \vee\left(q, s, \varepsilon, q^{\prime}, s^{\prime} s^{\prime \prime}\right)
$$

Wlog. assume that transitions of PDA partition into:

$$
\begin{aligned}
& \text { push } \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \underline{\mathrm{Q}} \times \mathrm{S}^{2} \text { and } \\
& \text { pop } \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \underline{\mathrm{Q}}
\end{aligned}
$$

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $\mathrm{Q} \times \mathrm{S}^{*}$

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^{*}$
- FO-definable NFA A with states Q and input alphabet S

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^{*}$
- FO-definable NFA A with states Q and input alphabet S
- $\mathrm{L}(\mathrm{A})=\{(\mathrm{q}, \mathrm{w}): A$ accepts w from state q$\}$

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^{*}$
- FO-definable NFA A with states Q and input alphabet S
- $\mathrm{L}(\mathrm{A})=\{(\mathrm{q}, \mathrm{w}): A$ accepts w from state q$\}$

Theorem: Pre*(regular set) is regular for FO definable PDA, and may be effectively computed

Oligomorphic atoms: decidability

Theorem: Reachability problem for FO definable PDA is decidable

- FO definable PDA B, with states Q and stack alphabet S
- Configurations of B: $Q \times S^{*}$
- FO-definable NFA A with states Q and input alphabet S
- $\mathrm{L}(\mathrm{A})=\{(\mathrm{q}, \mathrm{w}): A$ accepts w from state q$\}$

Theorem: Pre*(regular set) is regular for FO definable PDA, and may be effectively computed

Corollary: Configuration-to-configuration reachability of FO definable PDA is decidable

No proof idea!

Saturate transitions $\delta \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{Q}$ of NFA A:

$$
\begin{aligned}
& \delta^{\prime}:=\delta \cup \text { pop } \\
& \text { repeat } \\
& \delta^{\prime}:=\delta \cup \text { forced }\left(\delta^{\prime}\right) \\
& \text { until forced }\left(\delta^{\prime}\right) \subseteq \delta^{\prime}
\end{aligned}
$$

No proof idea!

Saturate transitions $\delta \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{Q}$ of NFA A:

$$
\begin{aligned}
& \delta^{\prime}:=\delta \cup \text { pop } \\
& \text { repeat } \\
& \quad \delta^{\prime}:=\delta \cup \text { forced }\left(\delta^{\prime}\right) \\
& \text { until forced }\left(\delta^{\prime}\right) \subseteq \delta^{\prime}
\end{aligned}
$$

Outcome: $\delta^{\prime}(\mathrm{p}, \mathrm{s}, \mathrm{q})$ in NFA A iff $(\mathrm{p}, \mathrm{s}) \rightarrow^{*}(\mathrm{q}, \varepsilon)$ in PDA B

No proof idea!

Saturate transitions $\delta \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{Q}$ of NFA A:

$$
\begin{aligned}
& \delta^{\prime}:=\delta \cup \text { pop } \\
& \text { repeat } \\
& \quad \delta^{\prime}:=\delta \cup \text { forced }\left(\delta^{\prime}\right) \\
& \text { until forced }\left(\delta^{\prime}\right) \subseteq \delta^{\prime}
\end{aligned}
$$

Outcome: $\delta^{\prime}(\mathrm{p}, \mathrm{s}, \mathrm{q})$ in NFA A iff $(\mathrm{p}, \mathrm{s}) \rightarrow^{*}(\mathrm{q}, \varepsilon)$ in PDA B
$(\mathrm{p}, \mathrm{s}, \mathrm{q}) \in \operatorname{forced}\left(\delta^{\prime}\right)$ iff PDA B has a push transition (p, s, q2, s2s1) such that $(\mathrm{q} 2, \mathrm{~s} 2, \mathrm{q} 1),(\mathrm{q} 1, \mathrm{~s} 1, \mathrm{q}) \in \delta^{\prime}$, for some $\mathrm{q}^{1} \in \mathrm{Q}$

No proof idea!

Saturate transitions $\delta \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{Q}$ of NFA A:

computable due to decidability of	$\delta^{\prime}:=\delta \cup$ pop repeat FO satisfiability
	until forced $\left(\delta^{\prime}\right) \subseteq \delta^{\prime} \subseteq$

Outcome: $\delta^{\prime}(\mathrm{p}, \mathrm{s}, \mathrm{q})$ in NFA A iff $(\mathrm{p}, \mathrm{s}) \rightarrow^{*}(\mathrm{q}, \varepsilon)$ in PDA B
$(\mathrm{p}, \mathrm{s}, \mathrm{q}) \in$ forced $\left(\delta^{\prime}\right)$ iff PDA B has a push transition (p, s, q2, s2s1) such that $(\mathrm{q} 2, \mathrm{~s} 2, \mathrm{q} 1),(\mathrm{q} 1, \mathrm{~s} 1, \mathrm{q}) \in \delta^{\prime}$, for some $\mathrm{q}_{1} \in \mathrm{Q}$

No proof idea!

Saturate transitions $\delta \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{Q}$ of NFA A: termination due to computable due to $\quad \delta^{\prime}:=\delta \cup$ pop oligomorphicity! decidability of FO satisfiability
repeat $\delta^{\prime}:=\delta \cup$ forced $\left(\delta^{\prime}\right)$
until forced $\left(\delta^{\prime}\right) \subseteq \delta^{\prime}$

Outcome: $\delta^{\prime}(\mathrm{p}, \mathrm{s}, \mathrm{q})$ in NFA A iff $(\mathrm{p}, \mathrm{s}) \rightarrow^{*}(\mathrm{q}, \varepsilon)$ in PDA B
$(\mathrm{p}, \mathrm{s}, \mathrm{q}) \in$ forced $\left(\delta^{\prime}\right)$ iff PDA B has a push transition (p, s, q2, s2s1) such that $(\mathrm{q} 2, \mathrm{~s} 2, \mathrm{q} 1),(\mathrm{q} 1, \mathrm{~s} 1, \mathrm{q}) \in \delta^{\prime}$, for some $\mathrm{q}^{1} \in \mathrm{Q}$

Further assumptions

From now on assume that

- the induced substructure problem for \mathbb{A} is decidable
- \mathbb{A} is homogeneous

Given: a finite relational structure over the vocabulary of A
Question: is the structure an induced substructure of \mathbb{A} ?
(Does the structure belong to age of \mathbb{A} ?)

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for \mathbb{A}

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for A
- polynomial in the size of input

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for A greatest number n of vars
- polynomial in the size of input $\phi\left(x_{1}, x_{2}, \ldots, x n\right)$
- exponential in the dimension of input

Homogeneous atoms: complexity

Theorem: Reachability problem for FO definable PDA is EXPTIME-complete, roughly speaking

Complexity is:

- dependent on the complexity of the induced substructure problem for A greatest number n of vars
- polynomial in the size of input $\phi\left(x_{1}, x 2, \ldots, x n\right)$
- exponential in the dimension of input

Corollary: Reachability problem for FO definable PDA is fixed-parameter tractable wrt. the dimension

Theorem: [Murawski, Ramsay, Tzevelekos 2014]
Reachability problem for pushdown register automata is EXPTIME-complete.

Theorem: [Murawski, Ramsay, Tzevelekos 2014] Reachability problem for pushdown register automata is EXPTIME-complete.

We generalize EXPTIME-completeness to arbitrary homogeneous atoms whose induced substructure problem is in polynomial time.

Arbitrarily high complexity

Theorem: Even when \mathbb{A} is homogeneous, the reachability problem for FO definable PDA can have arbitrary high complexity.

Highlights

Highlights

We proposed no new algorithm, but re-implemented an existing one!

Highlights

We proposed no new algorithm, but re-implemented an existing one!

The result applies to various structures of atoms:

- equality atoms
- total-order atoms
- equivalence atoms ($\mathbb{A}, \mathrm{R},=$), isomorphic to the wreath product

$$
(\mathbb{A},=) \otimes(\mathbb{A},=)
$$

- nested equality atoms ($\mathbb{A}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \ldots,=$)
but not to time atoms!

Highlights

We proposed no new algorithm, but re-implemented an existing one!

The result applies to various structures of atoms:

- equality atoms
- total-order atoms
- equivalence atoms ($\mathbb{A}, \mathrm{R},=$), isomorphic to the wreath product

$$
(\mathbb{A},=) \otimes(\mathbb{A},=)
$$

- nested equality atoms ($\mathbb{A}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \ldots,=$)

but not to time atoms!

Potential application to infinite-state abstractions in analysis of recursive program.

Outline

- Re-interpreting models of computation in FO definable sets
- FO definable PDA
- Well-behaved case: oligomorphic and homogeneous atoms
- Reachability in FO definable PDA over oligomorphic atoms
- Ill-behaved case: time atoms

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Fact: A subset of Q^{n} is orbit-finite iff it has bounded span.
span of $\left(t_{1} \ldots t_{n}\right)$ is $\max \left\{t_{1} \ldots t_{n}\right\}-\min \left\{t_{1} \ldots t_{n}\right\}$

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Fact: A subset of Q^{n} is orbit-finite iff it has bounded span.
span of $\left(t_{1} \ldots t_{n}\right)$ is $\max \left\{t_{1} \ldots t_{n}\right\}-\min \left\{t_{1} \ldots t_{n}\right\}$

Dense-time atoms are ill-behaved:

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Fact: A subset of Q^{n} is orbit-finite iff it has bounded span.
span of $\left(t_{1} \ldots t_{n}\right)$ is $\max \left\{t_{1} \ldots t_{n}\right\}-\min \left\{t_{1} \ldots t_{n}\right\}$

Dense-time atoms are ill-behaved:

- non-oligomorphic: \mathbb{Q}^{2} is orbit-infinite

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Fact: A subset of Q^{n} is orbit-finite iff it has bounded span.
span of $\left(t_{1} \ldots t_{n}\right)$ is $\max \left\{t_{1} \ldots t_{n}\right\}-\min \left\{t_{1} \ldots t_{n}\right\}$

Dense-time atoms are ill-behaved:

- non-oligomorphic: \mathbb{Q}^{2} is orbit-infinite
- definable sets are not necessarily orbit-finite

Time atoms are ill-behaved

Dense-time atoms $(\mathbb{Q},<,+1)$ or discrete-time atoms $(\mathbb{Z},<,+1)$:

Fact: A subset of Q^{n} is orbit-finite iff it has bounded span.
span of $\left(t_{1} \ldots t_{n}\right)$ is $\max \left\{t_{1} \ldots t_{n}\right\}-\min \left\{t_{1} \ldots t_{n}\right\}$

Dense-time atoms are ill-behaved:

- non-oligomorphic: \mathbb{Q}^{2} is orbit-infinite
- definable sets are not necessarily orbit-finite
- reachability is undecidable already for FO definable NFA

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S

- $\rho \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Patch for time atoms?

- alphabet A
- states Q
- stack alphabet S

- $\rho \subseteq \underline{Q} \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

This works for NFA [Bojańczyk, L. 2012], but not for PDA:
Theorem: Reachability problem is still undecidable

Another attempt

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Another attempt

- alphabet A
- states Q
- stack alphabet S
- $\rho \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{Q} \times \mathrm{S}^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Too strong restriction! Span of transitions is bounded

Right choice: orbit-finite PDA

- alphabet A
- states Q
- stack alphabet S

- $\rho \subseteq(\underline{Q} \times \mathrm{S}) \times\left(\underline{\mathrm{Q}} \times \mathrm{S}^{*}\right)$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Right choice: orbit-finite PDA

- alphabet A
- states Q
- stack alphabet S

Right choice: orbit-finite PDA

- alphabet A
- states Q
- stack alphabet S

- $\rho \subseteq \underbrace{(Q \times S)} \times \underbrace{\left(Q \times S^{*}\right)}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}_{0}$

Theorem: Reachability problem is in NEXPTIME

Right choice: orbit-finite PDA

- alphabet A
- states Q
- stack alphabet S

- $\rho \subseteq \underbrace{(Q \times S)} \times \underbrace{\left(Q \times S^{*}\right)}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}_{0}$

$$
\begin{aligned}
& \text {. } \\
& \text { • }
\end{aligned}
$$

Theorem: Reachability problem is in NEXPTIME
Proof idea: Reduction to equations over sets of integers.

Expressiveness

Complexity of reachability

visit our blog

