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• Petri nets [Petri 1962]

• vector addition systems VAS  [Karp, Miller 1969]

• vector addition systems with states VASS  [Hopcroft, Pansiot 1979]

• automata with counters without zero tests

• counter programs without zero tests

• multiset rewriting

• …

Many faces of Petri nets
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Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

Example:
initially all counters 0:
x’ = x = y = 0

finally:
x' = 0    x = 100    y = 200

no zero tests

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0
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Minsky machines

the conditional jump of Minsky machines

is simulated by counter program with zero tests:
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Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

initially one token here

halt requires no token here
and one token there
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Reachability and coverability

Reachability problem: given a counter program without zero tests

can it terminate (execute its halt command)? 

Coverability problem: given a counter program without zero tests
with trivial halt command

can it terminate (reach its halt command)? 

configuration 

reachability

control-state 

reachability



�7

1970

1980

1990

2000

2010



�7

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981

1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

}KLMST 
decomposition



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009

}KLMST 
decomposition



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST 
decomposition



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST 
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST 
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019



�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST 
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019
TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019



�7
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EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982
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decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST 
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019
TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }F3…F𝜔 gap
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TOWER lower bound

Theorem:  The reachability problem for Petri nets is TOWER-hard

Theorem:  The reachability problem is h-EXPSPACE-hard for
• counter programs without zero tests with h+13 counters
• VASS of dimension h+13
• VAS of dimension h+16
• Petri nets with h+16 places
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[Mayr, Meyer 1981]:  Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]:  Petri net of size O(n2) can exactly compute

has the shortest run of length

has the shortest run of length

has the longest run of length Ackermann(n)

… or long shortest runs
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Is the lower bound relevant?

• proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

• plethora of problems admit reduction to/from reachability, e.g.:
• non-emptiness of data automata
• logics over data words
• fragments of linear logic
• process calculi
• solvability of linear equations with ordered data

• makes obsolete previously known TOWER lower bounds for:
• branching VASS
• pushdown VASS
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let’s embark on the proof…
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EXPSPACE lower bound for coverability

• simulation of         -bounded counter machine with zero tests

• subroutine             that decrements a counter exactly          times

• for every simulated counter introduce a shadow counter, initiate to     

• maintain invariant 

• zero test: 

• how to implement             ?

or aborts
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• iterated squaring

• subroutine                that decrements     exactly      times,

• the code of                        :
or aborts

Implementation of           : 

iterated exactly
             times
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EXPSPACE lower bound for coverability

TOWER lower bound for reachability
• key idea: compute a pair of numbers with ratio        due to 

iterated factorial:

• simulation of        -bounded counter program with zero tests
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• introduce shadow counters and initiate them to at most R:

•                replace by 

•                 replace by 

•                 replace by 

• extend halt:

forward invariant 

backward invariant 

the construction 

doesn’t depend on R

exactly R iterations}
exactly R iterations}

Using ratio R to simulate R-bounded counter program P 
with zero tests

=

exactly R iterations}

violation punished at the end
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Computing and using ratio

counter program without zero tests 
that computes ratio R

R-bounded counter program with zero tests 
which is simulated using ratio R

{ counter program
without zero tests

• extend halt:

merged halts of A and P
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• ratio 3:

• we define a counter program that, using ratio R, 
computes ratio R!

• and self-compose it sufficiently many times:

�19

How to compute ratio?

factorial amplifier}

hece the amplifier can use 
R-bounded zero-tested 
counters
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