The reachability problem
for Petr1 nets
1s not elementary

Wojciech Czerwiriski Jerome Leroux
Stawomir Lasota Ranko Lazic Filip Mazowiecki
University of Warsaw University of Warwick University of Bordeaux

RP’19, Brussels, 2019.09.11

1

The reachability problem
for Petr1 nets
1s not elementary

but the proof 1s so:)

Wojciech Czerwiriski Jerome Leroux
Stawomir Lasota Ranko Lazic Filip Mazowiecki
University of Warsaw University of Warwick University of Bordeaux

RP’19, Brussels, 2019.09.11

1

Wojciech Czerwiriski Jerome Leroux
Stawomir Lasota Ranko Lazic Filip Mazowiecki
University of Warsaw University of Warwick University of Bordeaux

RP’19, Brussels, 2019.09.11

1

Many faces of Petr1 nets

* Petr1 nets | Petri 1962]

* vector addition systems VAS [Karp, Miller 1969]

* vector addition systems with states VASS [Hopcroft, Pansiot 1979]
* automata with counters without zero tests

* counter programs without zero tests

* multiset rewriting

Counter programs

a sequence of commands of the form:

X += 1 (increment counter x) counters are nonnegative
—= 1 (decrement counter x)

goto L or L (jump to either line L or line L')

zero? x (continue if counter x equals 0)

Counter programs

a sequence of commands of the form:

X += 1 (increment counter x) counters are nonnegative
—= 1 (decrement counter x) <«

goto L or I (jump to either line L or line L’)\

zero? X (continue if counter x equals 0) abort it x=0

Counter programs

a sequence of commands of the form:

X += 1 (increment counter x) counters are nonnegative
—=1 (decrement counter x) <«

goto L or I (jump to either line L or line L’)\

zero? x (

continue if counter x equals 0) 4\abort if x=0

otherwise abort

Counter programs

a sequence of commands of the form:

X += 1 (increment counter X) counters are nonnegative
—= 1 (decrement counter x) <«

goto L or I (jump to either line L or line L’)\

zero? x (

continue if counter x equals 0) abort it x=0
except for the very last command which 1s of the:form:\

otherwise abort

halt if x;,...,x, =0 (terminate provided all

the listed counters are zerm

otherwise abort

Counter programs

a sequence of commands of the form:

X += 1 increment counter X) counters are nonnegative

—= 1 decrement counter x) «—

(
(

goto L or L' (jump to either line L or line L')\
(

zero? x

continue if counter x equals 0) abort it x=0
except for the very last command which 1s of thelbrm\

otherwise abort

halt if x;,...,x, =0 (terminate provided all

the listed counters are zero)

Example: otherwise abort

x' += 100

goto 5 or 3

X+=1 X —=1 y+=2
goto 2
halt if x' = 0.

Counter programs

a sequence of commands of the form:

x +=1
—— 1 decrement counter x) «—

(
(

goto L or L' (jump to either line L or line L')\
(

zero? x

continue if counter x equals 0) abort it x=0
except for the very last command which 1s of thelbrm\

mcrement counter X) counters are nonnegative

otherwise abort

halt if x;,...,x, =0 (terminate provided all
the listed counters are zero)

Example: —
. x' 4= 100 \ mitially all counters 0:

goto 5 or 3 x =x=y=0
X+=1 X —=1 y+=2

goto 2
halt if x' = 0.

otherwise abort

Counter programs

a sequence of commands of the form:

X += 1 increment counter X) counters are nonnegative

—= 1 decrement counter x) «—

(
(

goto L or L' (jump to either line L or line L’)\
(

zero? X continue if counter x equals 0) abort it x=0
except for the very last command which 1s of the:form:\

otherwise abort

halt if x;,...,x, =0 (terminate provided all

the listed counters are zerN

otherwise abort

Example: —
. x' 4= 100 \ mitially all counters 0:

1

2: goto 5 or 3 x =x=y=0
3 x+=1 X —=1 y+=2

4: goto 2 £l

D: S

° /_
halt if X' = 0. /X'=O x =100 y =200
\

3

Counter programs

a sequence of commands of the form:

x +=1
-1 decrement counter x) <

(
(

goto L or L' (jump to either line L or line L’)\
(

zero? x

continue if counter x equals 0) abort it x=0
except for the very last command which 1s of the:form:\

mcrement counter X) counters are nonnegative

otherwise abort

halt if x;,...,x, =0 (terminate provided all

the listed counters are zerN

Example: —
. x' 4= 100 \ mitially all counters 0:

. goto 5 or 3 x =x=y=0

. goto 2 ex0 t€°
. halt 1%" X = 0. RO finally:

/x‘=0 x =100 y =200
\

3

Ot = W N =
X
+
|
><\
|

otherwise abort

Minsky machines

the conditional jump of Minsky machines

if x = 0 then goto L else x —= 1

is simulated by counter program with zero tests:

1
2
3: goto L
4

Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

O 0 ©

Many faces of Petr1 nets

counter program without zero tests:
1: X' += 100
2: goto 5 or 3
3 x+=1 X —=1 y+=2
4: goto 2
5: halt if x' = 0.

Petri net:

100

Many faces of Petr1 nets

counter program without zero tests:
x" += 100

goto 5 or 3

x+=1 X —=1 y+=2

goto 2
halt if x' = 0.

Petri net:

100

Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100

Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100

Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100

mitially one token here

Many faces of Petr1 nets

counter program without zero tests:
x" += 100

goto 5 or 3

x+=1 X —=1 y+=2 /

goto 2
halt if x' = 0.

halt requires no token here

Petri net:

100

mitially one token here

Many faces of Petr1 nets

counter program without zero tests:

1: X += 100

2: to 5 3 .

3. g(:_guloru/ _ L9 halt requires no token here
S T y = /and one token there

4: goto 2

5. halt if x¥’ = 0.

Petri net:

100

mitially one token here

Reachability and coverability

Reachability problem: given a counter program without zero tests
x" += 100

x+=1 X —=1 y+=2

goto 2
halt if X' = 0.

can it terminate (execute its halt command)?

Reachability and coverability

Reachability problem: given a counter program without zero tests
x' += 100

goto 5 or 3

X+=1 xX —=1 y+=2

goto 2
halt if X' = 0.

can it terminate (execute its halt command)?

Coverability problem: given a counter program without zero tests

. x 4= 100 with trivial halt command

U = W N =
X
|

; |
><\
|
|
[
<<
|
|
DO

can it terminate (reach its halt command)?

Reachability and coverability

Reachability problem: given a counter program without zero tests
x' += 100

goto 5 or 3
x+=1 x —=1

goto 2
halt if X' = 0.

can it terminate (execute its halt command)?

Coverability problem: given a counter program without zero tests

. x 4= 100 with trivial halt command

X
I
|
><\
|
|
—

can it terminate (reach its halt command)?

1970 @

1980 @

1990 @

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1930 @

1990 @

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]

1930 @

1990 @

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 4+ (incomplete) decidability of reachability [Sacerdote, Tenney |

1930 @

1990 @

2000 @

2010 @

1969 ——
1970 @

1976 —1—
1977 ——
1978 ——

1980 @

1990 @

2000 @

2010 @

decidability of coverability [Karp, Miller]

EXPSPACE lower bound [Lipton]
(incomplete) decidability of reachability [Sacerdote, Tenney |
EXPSPACE algorithm for coverability [Rackoff]

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1990 @

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju]

1990 @

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju]

1990 @
1992 —+ decidability of reachability - refined data structure [Lambert]

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

1990 @
1992 —+ decidability of reachability - refined data structure [Lambert]

2000 @

2010 @

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

1990 @
1992 —+ decidability of reachability - refined data structure [Lambert]

2000 @

2009 vy decidability of reachability by Presburger invariants [Leroux]
2010

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

1990 @
1992 —+ decidability of reachability - refined data structure [Lambert]

2000 @

2009 — decidability of reachability by Presburger invariants [Leroux]

2010 @ : . - . .
2011 —+ decidability of reachability without KLMST decomposition [Leroux]

1969 —+ decidability of coverability [Karp, Miller]
1970 @

1976 —+ EXPSPACE lower bound [Lipton]
1977 — (incomplete) decidability of reachability [Sacerdote, Tenney |
1978 — EXPSPACE algorithm for coverability [Rackoff]

1980 @
1981 —+ decidability of reachability [Mayr]

1982 — decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

1990 @
1992 —+ decidability of reachability - refined data structure [Lambert]

2000 @

2009 — decidability of reachability by Presburger invariants [Leroux]

2010 @ : . - . .
2011 —+ decidability of reachability without KLMST decomposition [Leroux]

2015 —— first upper bound Fg3 [Leroux, Schmitz]

1969 —

1970 @

1976 —
1977 —
1978 —

1930 @

1981 —
1982 —

1990 @

1992 —

2000 @

2009 —

2010 @

2011 —
20156 —
2019 —

decidability of coverability [Karp, Miller]

EXPSPACE lower bound [Lipton]
(incomplete) decidability of reachability [Sacerdote, Tenney |
EXPSPACE algorithm for coverability [Rackoff]

decidability of reachability [Mayr]

decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

decidability of reachability - refined data structure [Lambert]

decidability of reachability by Presburger invariants [Leroux]
decidability of reachability without KLMST decomposition [Leroux]

first upper bound Fg3 [Leroux, Schmitz]

Ackermannian upper bound F¢ [Leroux, Schmitz]

7

1969 —

1970 @

1976 —
1977 —
1978 —

1930 @

1981 —
1982 —

1990 @

1992 —

2000 @

2009 —

2010 @

2011 —
20156 —
2019 —

2019 —

decidability of coverability [Karp, Miller]

EXPSPACE lower bound [Lipton]
(incomplete) decidability of reachability [Sacerdote, Tenney |
EXPSPACE algorithm for coverability [Rackoff]

decidability of reachability [Mayr]

decidability of reachability - simplified proof [Kosaraju] KLMST

decomposition

decidability of reachability - refined data structure [Lambert]

decidability of reachability by Presburger invariants [Leroux]
decidability of reachability without KLMST decomposition [Leroux]

first upper bound Fg3 [Leroux, Schmitz]

Ackermannian upper bound F¢ [Leroux, Schmitz]

TOWER lower bound F3 [Czerwinski, L., Lazic, Leroux, Mazowiecki |
7

1969 —

1970 @

1976 —
1977 —
1978 —

1930 @

1981 —
1982 —

1990 @

1992 —

2000 @

2009 —

2010 @

2011 —
20156 —
2019 —

2019 —

decidability of coverability [Karp, Miller]

EXPSPACE lower bound [Lipton]
(incomplete) decidability of reachability [Sacerdote, Tenney |
EXPSPACE algorithm for coverability [Rackoff]

decidability of reachability [Mayr]
decidability of reachability - simplified proof [Kosaraju]

decidability of reachability - refined data structure [Lambert]

decidability of reachability by Presburger invariants [Leroux]
decidability of reachability without KLMST decomposition [Leroux]

first upper bound Fg3 [Leroux, Schmitz]

Ackermannian upper bound F¢ [Leroux, Schmitz]

TOWER lower bound F3 [Czerwinski, L., Lazic, Leroux, Mazow1eck1]
7

KLMST

decomposition

} ...Fw gap

TOWER lower bound

TOWER(n) = 22°°

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

TOWER lower bound

TOWER(n) = 22°°

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for

TOWER lower bound

TOWER(n) = 22°°

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for

® counter programs without zero tests with h+13 counters

TOWER lower bound

TOWER(n) = 22°°

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for

® counter programs without zero tests with h+13 counters

e VASS of dimension h+13

TOWER lower bound

TOWER(n) = 22°°

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for
® counter programs without zero tests with h+13 counters
e VASS of dimension h+13
e VAS of dimension h+16

TOWER(n) = 2%

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for
® counter programs without zero tests with h+13 counters
e VASS of dimension h+13
e VAS of dimension h+16
e Petri nets with h+16 places

Computing large numbers

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

Computing large numbers

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22

Computing large numbers

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22

We prove that Petri net of size O(n) can exactly compute TOWER(n)

Computing 1arge numbers ... or long shortest runs

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22

has the shortest run of length 22

We prove that Petri net of size O(n) can exactly compute TOWER(n)

Computing large numbers ... or long shortest runs

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22

has the shortest run of length 22

We prove that Petri net of size O(n) can exactly compute TOWER(n)
has the shortest run of length TOWER/(n)

Computing large numbers ... or long shortest runs

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

has the longest run of length Ackermann(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22"

has the shortest run of length 22

We prove that Petri net of size O(n) can exactly compute TOWER(n)
has the shortest run of length TOWER/(n)

Is the lower bound relevant?

10

Is the lower bound relevant?

* proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

10

* proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

* plethora of problems admit reduction to/from reachability, e.g.:
* non-emptiness of data automata
* logics over data words
* fragments of linear logic

e process calculi

* solvability of linear equations with ordered data

10

* proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

* plethora of problems admit reduction to/from reachability, e.g.:
* non-emptiness of data automata
* logics over data words
* fragments of linear logic

e process calculi

* solvability of linear equations with ordered data

* makes obsolete previously known TOWER lower bounds for:
* branching VASS

e pushdown VASS

10

let’s embark on the prootf...

11

LLoop programs

x' += 100

goto 5 or 3
X+=1 X —=1 y+=2
goto 2

halt if ¥’ = 0.

12

LLoop programs

1: X' += 100
2:| goto 5 or 3
ifx+=1 X —=1 y+=2
4:| goto 2
5: halt if x' = 0.
x" += 100
loop

x+=1 X —=1 y+=2

halt if x' = 0.

12

EXPSPACE lower bound for coverability

13

EXPSPACE lower bound for coverability

. : AL . .
e simulation of 2 -bounded counter machine with zero tests

13

EXPSPACE lower bound for coverability

. . 21 . .
e simulation of 2 -bounded counter machine with zero tests

e subroutine Dec,, t

nat

decrements a counter exactly 2

n

times

13

EXPSPACE lower bound for coverability

. . 21 . .
e simulation of 2 -bounded counter machine with zero tests

e subroutine Dec,, t

nat

decrements a counter exactly 2

n

times

13

or aborts

EXPSPACE lower bound for coverability

. . 21 . .
e simulation of 2 -bounded counter machine with zero tests

e subroutine Dec,, that|{decrements a counter exactly 2

n

times

* for every simulated counter introduce a shadow counter, initiate to

x =10

A n
K = 22

13

or aborts

EXPSPACE lower bound for coverability

. . AL . .
e simulation of 2 -bounded counter machine with zero tests
T

e subroutine Dec,, that|decrements a counter exactly 2° times

* for every simulated counter introduce a shadow counter, initiate to
A mn
x =0 X = 27

®¢ maintain invariant or aborts

X+ X = 22"

13

EXPSPACE lower bound for coverability

. . AL . .
e simulation of 2 -bounded counter machine with zero tests
T

e subroutine Dec,, that|{decrements a counter exactly 2° times

* for every simulated counter introduce a shadow counter, initiate to
A mn
x =0 X = 27

®¢ maintain invariant or aborts

X+ X = 22"

A

e zerotest: Dec, X Dec, X

13

EXPSPACE lower bound for coverability

. . 21 . .
e simulation of 2 -bounded counter machine with zero tests

e subroutine Dec,, t

nat

decrements a counter exactly 2

n

times

* for every simulated counter introduce a shadow counter, initiate to

x =0 g =922

®¢ maintain 1nvariant

A

* zero test: Dec, X

X+ X = 22"

Dec,, x

* how to implement Dec,, ?

13

or aborts

Implementation of Dec,,:

14

Implementation of Dec,,:

* iterated squaring

n times n times
_ A\

((22)2'“)2 _ 22~2°...'2 _ 22”

14

Implementation of Dec,,:

* iterated squaring

n times n times
((22)2.“)2 _ 2525 _ 22”

. ,I: . .
e subroutine Dec; x; that decrements X; exactly 22 times, 2 =1...n

L or aborts

14

Implementation of Dec,,:

* iterated squaring

n times ntir\nes
((22)2.“)2 _ 2525 _ 22”

. ,I: . .
* subroutine Dec; x; that decrements X; exactly 22 times, 2 =1...n

L or aborts

® the code of Dec; 1 X;ji1:

loop
i +=1 X —=1
loop
Yi += v, — 1 iterated exactly
>A(z'—|—1 —= 1 Xi+1 += 1 221+1 times
Dec; y;

Decz- Xi -

14

EXPSPACE lower bound for coverability

156

EXPSPACE lower bound for coverability

o | key idea: compute exactly 22" due to iterated squaring:

n times n times
AL

((22)2.“)2 _ 2222 _ 22”

16

EXPSPACE lower bound for coverability

o | key idea: compute exactly 22" due to iterated squaring:

n times ntir\nes
242 2 2.9.....9 . on
(22)2..)?% = 2 = 2

. . n °
e simulation of 22 -bounded counter program with zero tests

16

EXPSPACE lower bound for coverability

o | key idea: compute exactly 22" due to iterated squaring:

n times n times
~— /7 -\ N\
((22)2.“)2 _ 2222 _ 22”

. . n °
e simulation of 22 -bounded counter program with zero tests

TOWER lower bound for reachability

16

EXPSPACE lower bound for coverability

o | key idea: compute exactly 22" due to iterated squaring:

n times ntir\nes
242 2 2.2.....92 . AL
(2%..)2 = 2 = 2

. . n °
e simulation of 22 -bounded counter program with zero tests

TOWER lower bound for reachability

¢ | key idea: compute a pair of numbers with ratio 3!"" due to

iterated factorial:

n times

s = (3D

16

EXPSPACE lower bound for coverability

o | key idea: compute exactly 22" due to iterated squaring:

n times ntir\nes
242 2 2.9.....9 . on
(22)2..)?% = 2 = 2

. . n °
e simulation of 22 -bounded counter program with zero tests

TOWER lower bound for reachability

¢ | key idea: compute a pair of numbers with ratio 3!"" due to

iterated factorial:

n times

s = (3.)]

e simulation of 3!"-bounded counter program with zero tests

16

Using ratio R to simulate R-bounded counter program P
with zero tests

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

16

Using ratio R to simulate R-bounded counter program P

with zero tests

Let R - fixed positive integer.
Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:
loop
X+=1 x-—=1
d =1

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

X+X< Randd>c-R

loop
X+=1 x—=1
d =1

c —= 1.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

X+X< Randd>c R

loop
X4+=1 %x—=1 at most R 1iterations
d =1

c —= 1.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

X+X< Randd>c R

loop
X4+=1 %x—=1 at most R 1iterations
d =1

c —= 1.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

Xx+xXx< Randd>c-R forward invariant

loop
X4+=1 %x—=1 at most R 1iterations
d =1

c —= 1.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

Xx+xXx< Randd>c-R forward invariant

loop
X4+=1 %x—=1 at most R 1iterations
d =1

c —= 1.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

Xx+xXx< Randd>c-R forward invariant

loop
X4+=1 %x—=1 at most R 1iterations
d =1

c —= 1.

d=c- R
implied by halt if ...,d = 0.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

Xx+xXx< Randd>c-R forward invariant

loop
t] . .
X4+=1 %x—=1 Smott R iterations
d =1
c —= 1.

d=c- R
implied by halt if ...,d = 0.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

Xx+xXx< Randd>c-R forward invariant

loop
t] . .
X4+=1 %x—=1 Smott R iterations
d =1
c —= 1.

d=c-R backward invariant

implied by halt if ...,d = 0.

16

Using ratio R to simulate R-bounded counter program P
with zero tests

Let R - fixed positive integer.

Suppose some 3 counters b, ¢, d are initially set nondeterministically to:

b=R ¢c>0 d=c-R| ratioR

How to simulate R-bounded counter program with zero tests?

The idea:

x+x< Randd>c-R forward invariant
Xx+xXx< Randd>c-R forward invariant

loop
t] . .
X4+=1 %x—=1 Smott R iterations
d =1
c —= 1.

d=c-R backward invariant

implied by halt if ...,d = 0.

16

Using ratio R to simulate R-bounded counter program P

b=R ¢c>0 d=c¢c- R with zero tests

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests

¢ ntroduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests

¢ ntroduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests
introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

¢ X 4= 1replaceby x+=1 x—=1

e x —=1 replace by Xx —=1 x+4+=1

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

* X 4+= 1replaceby x+=1 x-—=1
e x —=1 replace by X —= 1 x+4=1

e zero? X replace by loop

X += X —=1
d =1

C ——=

loop
x—=1 x+4=1
d =1

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests

¢ ntroduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

® x 4= 1replaceby x+=1 X -—=1
e X —= 1 replaceby x —=1 X +=

e zero? X replace by loop

d =1

c—=1

loop
Xx—=1 XxX+4=1
d =1

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests

¢ ntroduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

® x 4= 1replaceby x+=1 X -—=1

e x =1 replace by x —= 1 X += forward invariant
XxX+x< Randd>c-R
e zero? X replace by loop
XxX+=1 x-—=1
d =1
c——=1
loop
Xx—=1 x+=1
d =1

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

® x 4= 1replaceby x+=1 X -—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop

e extend halt: halt ifd = 0.

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

loop
X4=1 §+=1 (only for zero-tested counters)
d—=1 |b—=1

c—=1

* X 4+= 1replaceby x+=1 x-—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop

X += X —=1
d—=1

C ——

loop
Xx—=1 x+4=1
d—=1

backward invariant
e extend halt: halt ifd = 0. d=c-R

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

loop
x+=1 y+=1 exactly R iterations
d—1 [b—=1

c—=1

* X 4+= 1replaceby x+=1 x-—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop

x+=1 X —= 1 3exactly R iterations
d =1

C ——=

loop
x —= 1 % += 1 gexactly R iterations
d =1

backward invariant
e extend halt: halt ifd = 0. d=c-R

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests
introduce shadow counters and initiate them to at most R:

exactly R iterations

X
+
|
—_ | =
o<
+
IRl
[Y

* X += 1 replace by X += 1 x—=1

e X —= 1 replaceby x —=1 x+=1 forward invariant
7 x+x<Randd>c-R
e zero? X replace by loop
x+=1 X —= 1 3exactly R iterations
d—=1

A

x —= 1 % += 1 gexactly R iterations
1

v’lo\auon . .
backward 1invariant

d=c-R

17

Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests
introduce shadow counters and initiate them to at most R:

exactly R iterations

X
+
|
—_ | =
o<
+
IRl
[Y

* X += 1 replace by X += 1 x—=1

e X —= 1 replaceby x —=1 x+=1 forward invariant
7 X+x=ZRandd>c-R
e zero? X replace by loop
x+=1 X —= 1 3exactly R iterations
d—=1

A

x —= 1 % += 1 gexactly R iterations
1

v’lo\auon . .
backward 1invariant

d=c-R

17

b=R c¢>0

d=c-R

® x += 1 replace by X += 1

e X —= 1 replace by x —=

introduce shadow counters and initiate them to at most R:

Using ratio R to simulate R-bounded counter program P

with zero tests

loop
X4=1 y4=1
d—=1 |b—=1
c—=1

exactly R iterations

e zero? X replace by loop

forward 1nvariant
X+XxZZRandd>c- R

= 1 3 exactly R iterations
d =1

c——=1

loop
x —= 1 % += 1 gexactly R iterations
d =1

c—=1

v’lo\auon . .
backward 1invariant

d=c-R

17

Computing and using ratio

A > P

18

Computing and using ratio

ADPj

R-bounded counter program with zero tests
which 1s simulated using ratio R

18

Computing and using ratio

A>P7

counter program without zero tests R-bounded counter program with zero tests
that computes ratio R which 1s simulated using ratio R

18

Computing and using ratio

counter program
without zero tests

>

counter program without zero tests R-bounded counter program with zero tests
that computes ratio R which 1s simulated using ratio R

18

Computing and using ratio

counter program
without zero tests

>

counter program without zero tests R-bounded counter program with zero tests
that computes ratio R which 1s simulated using ratio R

r — merged halts of 4 and V
o extend halt: haltif .. .d = 0.

oo, —

18

How to compute ratio?

19

3"

n times

How to compute ratio?

® ratio 3:

CU
e
=)
o
T

19

How to compute ratio? PSS

® ratio 3: 1. b+= 3
2:c+=1 d+= 3
3: loop
4: c+=1 d+= 3
5. halt.

* we define a counter program that, using ratio R, : :
prog J factorial amplifier

computes ratio R!

19

n times

How to compute ratio? PSS
3m = (3.

® ratio 3: 1: b+=3
2 ;: t=1 d+=3 hece the amplifier can use
3: loop R-bounded zero-tested
4 c+=1 d+= 3 counters
5. halt.

* we define a counter program that, using ratio R, : :
prog J factorial amplifier

computes ratio R!

19

n times

How to compute ratio? PSS
3m = (3.

® ratio 3: 1: b+=3
2 i: t=1 d+=3 hece the amplifier can use
3: loop R-bounded zero-tested
4 c+=1 d+= 3 counters
5. halt.

* we define a counter program that, using ratio R, : :
prog J factorial amplifier

computes ratio R!

n compositions

— N
e and self-compose it suthciently many times: ((As> F)> F)> - F

19

counter program that, using

Factorial ampliﬁer - the 1dea ratio R, computes ratio R!

20

counter program that, using

Factorial ampliﬁer - the idea ratio R, computes ratio R!

= R

DN | o

B
R—1

— DN

20

Factorial amplifier - the 1dea

2 3
1 2
1: 1 += X += y +=
2: loop
3: X+=1 y+=1
4: loop
5 loop
6: x —=1 x +=i+1
7 loop
8: X —=1 x4+
a zero test—9%—_ | +=
10: zero? i
11: loop
12: Xt —=Hi s —=—1]
13: halt if y =0

20

counter program tha‘g, using
ratio R, computes ratio R!

counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

A
R—1

mitially

equalR\/ =] xa—
a Zero test—&-\ | = 1

10: zero? i

11: loop

12: X —=1 y——=1
13: halt if y =20

20

counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

A
R—1

further
———7€ero tests

mitially

equalR\/ =] xa—
a Zero test—&-\ | = 1

10: zero? i

11: loop

12: X —=1 y——=1
13: halt if y =0

20

counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

B
R—1

: further
B — z€ero tests
° ° ° 6:
1n1t1ally e loop
equal R \/ 1 x4—
a zero testﬁ&\ I+ 1
10: zero? i
11: loop ,
12: Xt —=Hi s —=—1] TO;FP_ !
13: halt if y =20 i—=1 i'+4=1 X +=1
zero? |
loop
i —=1 i4=1
zero? i

20

counter program that usmg

Factorlal amphﬁer - the 1dea ratio R, computes ratio R!
3 R _ .
1 2 o R—-1
: loop
Li14+=1 x+4= 1‘ .y.—l—.z.l — iSE="1 e —— 1]
9 lOOp nondeterministic 1nit zero? i
: _ _ loop
3: X += 1 Yy —+= 1 // ; _:m
4: loop zero? i turther
5 loop — __——zero tests
o 6: —= i X' +=i+1
1n1t1ally e loop
equal R = _ « 4= 1
a Zero test
10: zero7|
11: loop
X =1
12: X — l
oop
13: haltify:O i—=1 i'+4=1 X +=1
zero? |
loop
i —=1 i4+=1
zero? i

20

Factorial amplifier - the 1dea

counter program tha‘g, using
ratio R, computes ratio R!

3 R P
1 2 R—1
_ loop
Li14+=1 x+4= 1‘ _y.—l—.z.l — iSE="1 e —— 1]
9. lOOp nondeterministic 1nit zero? i
3: X —|—: 1 y —|—: 1 //IOOiI/) __m
4: loo_p zero? i further
5. loop _——7ero tests
. — , — 1 ° . ° I
. e & X—=1 X +=1+1 weak multiplication by E
1n1t1aﬂy 7. loop |
SV
a zero test—9~_ | 1y 1
10: zero? i
11: loop ,
12: X —=1 y—=1 ;(O(jp: !
13: halt if y =20 i—=1 i'+4=1 X +=1
zero? i
loop
=1 i+=1
zero? i’

20

Factorial amplifier - the 1dea

counter program tha‘g, using
ratio R, computes ratio R!

3 R P
1 2 R—-1
_ loop
Li14+=1 x+4= 1‘ _y.—l—.z.l — iSE="1 e —— 1]
9 loop nondeterministic 1nit zero? i
=1 i4+=1
4: loop zero? i further
5- loop —zero tests
0 —_— / — . . . |
. e : Xx—=1 x+=1i+l weak multlphcatlon by E
1n1t1aﬂy 7. loop i
cqual R T Ty e
a zero test—9%—_ 1 ¢ 1
10: zero? i
11: [loop /
12: X —=1 y—=1 ;(O;r: !
13: |halt if y =10 i—=1 i'+4=1 X +=1
testsif x >y - R ffig? !
=1 i4=1
zero? i

20

Factorial amplifier - the 1dea

mitially
equal R

counter program tha‘g, using
ratio R, computes ratio R!

x —=1

further
_——7ero tests

x' +=

3 R P
1 2 R-1
_ loop
11 4+=1 x—l—zl. _y.—l—.z.l i—=1 i4=1
2: [loop nondeterministic 1nit zero? |
4: lOO_p zero? i’
5 loop
6. X w._isgxact "
‘ | - J.uea-k—multlphcatlon by =
7: oop !
\8\ X/ —— 1 X + \
a zero test—9~_ | 1y 1
10: zero? i
11: |loop ,
12: X —=1 y—= ;(ij:
13: |halt if y =10 i —= =1
testsif x >y - R ff;g? !
=1 i4+=1
zero? i

20

. . . counter program thot oy
Factorlal amphﬁer ~ the 1dea ratio R - he {actoma\?
but where 1s t
ﬁﬂe)
3 R
1 2 R—-1
: loop
11 4+=1 x—l—zl. _y.—l—.z.l i—=1 i'4=1 x—-—=1
2:|loop nondeterministic 1nit zero? i
_ _ _ loop
3: X + 1 Yy + 1 / 7 _:ﬂm
4: loop zero? i further
5 loop — —zero tests
6: — | 4= 0=¢ xact i+1
. e ‘ X—=1 X 7=/1 J.uea-k—multlphcatlon by T
1n1t1aﬂy 7. loop i
cqual R o Ly e
a zero test—9%—_ 1 ¢ 1
10: zero? |
11: |loop /
12: x—=1i y—=1 ;(ij:
13: |halt if y =0 i ——= i =1 x 4=
testsif x >y - R lz:;g? i
=1 j4=1
zero? i

20

Factorial amplifier - the 1dea

mitially
equal R

1:

~J

i =1

X +=1

y +=1

fine, but

-

X += 1

.|1oop nondeterministic 1nit

y =1

—

— % [loop

oo

10:
11:
12:

13:

; ~ X T 1

xact

halt if y =10

testsif x >y - R

20

counter program tho+

ratio P N h
where 18t ©

loop

= " +=1

factof.la‘? j

x —=1

zero? |
IOOp ‘\
=1 i+=1

zero? 1

further
_——7ero tests

~aceale multiplication by E
|

X +=1
loop

i—=1 +=1
zero? |
loop

=1 =1
zero? i

x 4= 1

counter program that, using

Factorial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

21

Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

Li4=1 x4=1 y+4+=1 b4=1 c+4+=1 d+4=1

2: loop

3 X+=1 y+4+=1 c+=1 d+=1 loop

4: loop b—=1 b +=1
5 loop loop

6: c—=i c4+=1 4 b’ —=1 b+i=1
7 loop at most b times <body>

8 x—=1i d-—=1i X 4+=i+1

9: loop

10: b—=1 b 4+=i+1

11: loop

12: by —=1 b+=1

13: loop

14: ¢ =1 c+=1

L5 loop at most b times

16: X —=1 x4=1 d+=1

17: | +=1

18: zero? i

19: loop

20: X—=1 y—=1

21: halt if y =10

21

Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

invariant
i+=1 x4=1 y4=1 b+=1 c+=1 d+=1 d = c.b
2: loop
3 X+=1 y4+4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5 loop loop
6: c—=i c4+=1 4 b’ —=1 b+i=1
7 loop at most b times <body>
8 x—=1i d-—=1i X +=i+1
9: loop
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+=1
13: loop
14: ¢ =1 c+=1
L5 loop at most b times
16: X —=1 x4=1 d+=1
17: | +=1
18: zero? i
19: loop
20: X—=1 y—=1

21: halt if y =10

21

Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

invariant
i4=1 x4+=1 y+4+=1 b4=1 c+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop — 1 b’ +=1
5 loop loop
6: c—=i d+=1 4 b’ —=1 bt+=1
1 loop at most b times <body>
8 x—=1i d-—=1i X 4+=i+1
9: loop
10: b—=1 b+=i+1
11: loop
12: by —=1 b+=1
13: loop
14: cd—=1 c+=1
L5 loop at most b times
16: X —=1 x4=1 d+=1
17: I +=1
18: zero? i
19: loop
20: X—=1 y—=1

21: halt if y =10

21

counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i+=1 x4=1 y4=1 b+=1 c+=1 d+=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5 loop loop
) i 4] 4 b —=1 b+=1
7: loop at most b times _ <body>
8 |_x —j d—i X 4+=i+1 weak multiplication by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: b —=1 b+=1
13: loop
14: =1 c+=1
15 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? |
19: loop
20: X—=1 y—=1

21: halt if y =10

21

counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i4=1 x4+=1 y+4+=1 b4=1 c+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop — 1 b’ +=1
55 loop loop
6: c—=1i d+4+=1 4 b'—=1 b+=1
7: loop at most b times _ <body>
8: |_x —i d—=i X 4=i+1 weak multiplication by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: =1 c+=1
15 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: X—=1 y—=1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i+=1 x4=1 y4=1 b+=1 c+=1 d+=1 d = c.b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5: loop loop
6: c—=1i d4=1 4 b’ —=1 b+i=1
1 loop at most b times <body>
exact . . . -
8: |_x — i d—=i X 4+=i+1 —x&multlphcatlon by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: b —=1 b+=1
13: loop
14: =1 c+=1
15 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: X—=1 y—=1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

FaCtOrial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant

i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b—=1 b4=1
5:]oop weak division byi loop

: 7 b —=1 b+=1
6: c—1 ¢ +=1 4 <body>
7: loop at most b times exact _
8: |_x ——] g —= =] —x&multlphcatlon by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: c—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

FaCtOrial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4:- loo b—=1 b4=1
5: ﬁ)op Ezigglggivision byi loop
6: c—=1i d+4+=1 4 i/b_d:>1 bi= 1
7: loop at most b times exact _ —
8: |_x ——] g —= =] —x&multlphcatlon by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: c—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: X —= | y ——= 1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

FaCtOrial ampliﬁer b=R! ¢>0 d=c- R ratio R, computes ratio R!

invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b —=1 b +=1
5: loop S.mz(@gl('jgivision byi loop
6: c—=1i d+4+=1 4 b’ —=1 b+=1
7: loop at most b times exact _ <body>
8: [x =i d—=i X +=i+1 4&%2]4multiplication by 1
9: loop |
10: b—=1 b +=i+1 weak multiplication by j+1
11: loop
12: by —=1 b+=1
13: loop
14: d—=1 c+=1
155 loop at most b times
16: X —=1 x+4=1 d+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

FaCtOrial ampliﬁer b=R! ¢>0 d=c- R ratio R, computes ratio R!

Invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b —=1 b +=1
5: loop S.mz(@gl('jgivision byi loop
6: c—=1i d+4+=1 4 b’ —=1 b+=1
7: loop at most b times exact _ <body>
8: [x =i d—=i X +=i+1 4&%2]4multiplication by 1
9: loop |
10: b—=1 b +=i+1 g?ei]gjgnultiplication by 41
11: loop
12: by —=1 b+=1
13: loop
14: d—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d+4+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
21

counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

1nvariant

lLi+=1 x4=1 y4=1 b+=1 c+=1 d+=1

2: [loop nondeterministic init

3: X+=1 y4+4=1 c+=1 d+=1

4: loo b — b’ +=
5: i)op Eziggﬁgivision byi loop

6: c—=1i d+4+=1 4 ilb_d:> b +=
7: loop at most b times exact _ —

8: |_x ——] @ —= 1 = q-t1 —W%?J&multlphcatlon by E

9: loop |

10: b—=1 b +=i+1 Jugig—ex C)Enultiplication by 41

11: loop

12: by —=1 b+=1

13: loop

14: d—=1 c+=1

L5 loop at most b times

16: X —=1 x4=1 d4+=1

17: I +=1

18: zero? i

19: [loop

20: X —= | y —= 1

21: |halt if y =0

testsif x >y-R
21

Future work

22

Future work

* TOWER...ACKERMANN gap F3...Fw gap

22

Future work

* TOWER...ACKERMANN gap F3...Fw gap

* improving the lower bound? TOWER amplifier?

22

* TOWER...ACKERMANN gap F3...Fw gap

* improving the lower bound? TOWER amplifier?

* better lower bounds for
* branching VASS
* pushdown VASS
e VASS with 1 zero test
 VASS with hierarchical zero tests

22

* TOWER...ACKERMANN gap F3...Fw gap

* improving the lower bound? TOWER amplifier?

* better lower bounds for
* branching VASS
* pushdown VASS
e VASS with 1 zero test
 VASS with hierarchical zero tests

e refined analysis for fixed dimension

22

* TOWER... ACKERMANN gap

* improving the lower bound? TOWER amplifier?

* better lower bounds for
* branching VASS
* pushdown VASS
e VASS with 1 zero test
 VASS with hierarchical zero tests

e refined analysis for fixed dimension

* decidability status of reachability is open for
* branching VASS
e pushdown VASS
* equality data VASS

22

F3...Fw gap

Future work

* TOWER...ACKERMANN gap F3...Fw gap

* improving the lower bound? TOWER amplifier?

* better lower bounds for
* branching VASS
* pushdown VASS
e VASS with 1 zero test
 VASS with hierarchical zero tests

e refined analysis for fixed dimension

* decidability status of reachability is op
* branching VASS
* pushdown VASS
* equality data VASS

22

