
Wojciech Czerwiński
Sławomir Lasota

The reachability problem
for Petri nets

is not elementary

University of Warsaw

RP’19, Brussels, 2019.09.11

�1

University of Bordeaux

Jerome Leroux
Filip MazowieckiRanko Lazic

University of Warwick

Wojciech Czerwiński
Sławomir Lasota

The reachability problem
for Petri nets

is not elementary

University of Warsaw

RP’19, Brussels, 2019.09.11

�1

University of Bordeaux

Jerome Leroux
Filip MazowieckiRanko Lazic

University of Warwick

but the proof is so:)

Wojciech Czerwiński
Sławomir Lasota

The reachability problem
for Petri nets

is not elementary

University of Warsaw

RP’19, Brussels, 2019.09.11

�1

University of Bordeaux

Jerome Leroux
Filip MazowieckiRanko Lazic

University of Warwick

but the proof is so:)

crash course in counter

programming

(without zero tests)

�2

• Petri nets [Petri 1962]

• vector addition systems VAS [Karp, Miller 1969]

• vector addition systems with states VASS [Hopcroft, Pansiot 1979]

• automata with counters without zero tests

• counter programs without zero tests

• multiset rewriting

• …

Many faces of Petri nets

�3

Counter programs

a sequence of commands of the form:

counters are nonnegative

�3

Counter programs

a sequence of commands of the form:

counters are nonnegative

abort if x=0

�3

Counter programs

a sequence of commands of the form:

counters are nonnegative

otherwise abort

abort if x=0

�3

Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0

�3

Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

Example:

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0

�3

Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

Example:
initially all counters 0:
x’ = x = y = 0

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0

�3

Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

Example:
initially all counters 0:
x’ = x = y = 0

finally:
x' = 0 x = 100 y = 200

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0

�3

Counter programs

a sequence of commands of the form:

except for the very last command which is of the form:

Example:
initially all counters 0:
x’ = x = y = 0

finally:
x' = 0 x = 100 y = 200

no zero tests

counters are nonnegative

otherwise abort

otherwise abort

abort if x=0

�4

Minsky machines

the conditional jump of Minsky machines

is simulated by counter program with zero tests:

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

initially one token here

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

initially one token here

halt requires no token here

�5

Many faces of Petri nets
counter program without zero tests:

Petri net:

1 2 3 4 5

x’ x y

100 -1 2

initially one token here

halt requires no token here
and one token there

�6

Reachability and coverability

Reachability problem: given a counter program without zero tests

can it terminate (execute its halt command)?

�6

Reachability and coverability

Reachability problem: given a counter program without zero tests

can it terminate (execute its halt command)?

Coverability problem: given a counter program without zero tests
with trivial halt command

can it terminate (reach its halt command)?

�6

Reachability and coverability

Reachability problem: given a counter program without zero tests

can it terminate (execute its halt command)?

Coverability problem: given a counter program without zero tests
with trivial halt command

can it terminate (reach its halt command)?

configuration

reachability

control-state

reachability

�7

1970

1980

1990

2000

2010

�7

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981

1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

}KLMST
decomposition

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009

}KLMST
decomposition

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019
TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

�7

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

first upper bound F𝜔3 [Leroux, Schmitz]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019
TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }F3…F𝜔 gap

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

Theorem: The reachability problem is h-EXPSPACE-hard for

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

Theorem: The reachability problem is h-EXPSPACE-hard for
• counter programs without zero tests with h+13 counters

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

Theorem: The reachability problem is h-EXPSPACE-hard for
• counter programs without zero tests with h+13 counters
• VASS of dimension h+13

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

Theorem: The reachability problem is h-EXPSPACE-hard for
• counter programs without zero tests with h+13 counters
• VASS of dimension h+13
• VAS of dimension h+16

�8

TOWER lower bound

Theorem: The reachability problem for Petri nets is TOWER-hard

Theorem: The reachability problem is h-EXPSPACE-hard for
• counter programs without zero tests with h+13 counters
• VASS of dimension h+13
• VAS of dimension h+16
• Petri nets with h+16 places

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]: Petri net of size O(n2) can exactly compute

We prove that Petri net of size O(n) can exactly compute

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]: Petri net of size O(n2) can exactly compute

We prove that Petri net of size O(n) can exactly compute

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]: Petri net of size O(n2) can exactly compute

has the shortest run of length

… or long shortest runs

We prove that Petri net of size O(n) can exactly compute

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]: Petri net of size O(n2) can exactly compute

has the shortest run of length

has the shortest run of length

… or long shortest runs

We prove that Petri net of size O(n) can exactly compute

�9

Computing large numbers

[Mayr, Meyer 1981]: Petri net of size O(n) can weakly compute

 Ackermann(n) = F𝜔(n) = Fn(n)

[Lipton 1976]: Petri net of size O(n2) can exactly compute

has the shortest run of length

has the shortest run of length

has the longest run of length Ackermann(n)

… or long shortest runs

�10

Is the lower bound relevant?

�10

Is the lower bound relevant?

• proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

�10

Is the lower bound relevant?

• proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

• plethora of problems admit reduction to/from reachability, e.g.:
• non-emptiness of data automata
• logics over data words
• fragments of linear logic
• process calculi
• solvability of linear equations with ordered data

�10

Is the lower bound relevant?

• proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

• plethora of problems admit reduction to/from reachability, e.g.:
• non-emptiness of data automata
• logics over data words
• fragments of linear logic
• process calculi
• solvability of linear equations with ordered data

• makes obsolete previously known TOWER lower bounds for:
• branching VASS
• pushdown VASS

�11

let’s embark on the proof…

�12

Loop programs

�12

Loop programs

�13

EXPSPACE lower bound for coverability

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

or aborts

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

• for every simulated counter introduce a shadow counter, initiate to

or aborts

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

• for every simulated counter introduce a shadow counter, initiate to

• maintain invariant or aborts

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

• for every simulated counter introduce a shadow counter, initiate to

• maintain invariant

• zero test:

or aborts

�13

EXPSPACE lower bound for coverability

• simulation of -bounded counter machine with zero tests

• subroutine that decrements a counter exactly times

• for every simulated counter introduce a shadow counter, initiate to

• maintain invariant

• zero test:

• how to implement ?

or aborts

�14

Implementation of :

�14

• iterated squaring

Implementation of :

�14

• iterated squaring

• subroutine that decrements exactly times,

or aborts

Implementation of :

�14

• iterated squaring

• subroutine that decrements exactly times,

• the code of :
or aborts

Implementation of :

iterated exactly
 times

�15

EXPSPACE lower bound for coverability

• key idea: compute exactly , due to iterated squaring:

�15

EXPSPACE lower bound for coverability

• key idea: compute exactly , due to iterated squaring:

• simulation of -bounded counter program with zero tests

�15

EXPSPACE lower bound for coverability

• key idea: compute exactly , due to iterated squaring:

• simulation of -bounded counter program with zero tests

�15

EXPSPACE lower bound for coverability

TOWER lower bound for reachability

• key idea: compute exactly , due to iterated squaring:

• simulation of -bounded counter program with zero tests

�15

EXPSPACE lower bound for coverability

TOWER lower bound for reachability
• key idea: compute a pair of numbers with ratio due to

iterated factorial:

• key idea: compute exactly , due to iterated squaring:

• simulation of -bounded counter program with zero tests

�15

EXPSPACE lower bound for coverability

TOWER lower bound for reachability
• key idea: compute a pair of numbers with ratio due to

iterated factorial:

• simulation of -bounded counter program with zero tests

�16

Using ratio R to simulate R-bounded counter program P
with zero tests

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

Using ratio R to simulate R-bounded counter program P
with zero tests

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

The idea:

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

The idea:

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

The idea:

at most R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

The idea:

at most R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

at most R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

at most R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

at most R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

implied by

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

at most R iterations}exactly

Using ratio R to simulate R-bounded counter program P
with zero tests

implied by

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

backward invariant

at most R iterations}exactly

Using ratio R to simulate R-bounded counter program P
with zero tests

implied by

ratio R

�16

Let R - fixed positive integer.
Suppose some 3 counters b, c, d are initially set nondeterministically to:

How to simulate R-bounded counter program with zero tests?

forward invariant

The idea:

backward invariant

at most R iterations}exactly

Using ratio R to simulate R-bounded counter program P
with zero tests

implied by

ratio R

forward invariant

�17

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

forward invariant

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

backward invariant

(only for zero-tested counters)

Using ratio R to simulate R-bounded counter program P
with zero tests

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

backward invariant

exactly R iterations}
exactly R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

exactly R iterations}

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

backward invariant

exactly R iterations}
exactly R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

exactly R iterations}

violation punished at the end

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

backward invariant

exactly R iterations}
exactly R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

=

exactly R iterations}

violation punished at the end

�17

• introduce shadow counters and initiate them to at most R:

• replace by

• replace by

• replace by

• extend halt:

forward invariant

backward invariant

the construction

doesn’t depend on R

exactly R iterations}
exactly R iterations}

Using ratio R to simulate R-bounded counter program P
with zero tests

=

exactly R iterations}

violation punished at the end

�18

Computing and using ratio

�18

Computing and using ratio

R-bounded counter program with zero tests
which is simulated using ratio R

�18

Computing and using ratio

counter program without zero tests
that computes ratio R

R-bounded counter program with zero tests
which is simulated using ratio R

�18

Computing and using ratio

counter program without zero tests
that computes ratio R

R-bounded counter program with zero tests
which is simulated using ratio R

{ counter program
without zero tests

�18

Computing and using ratio

counter program without zero tests
that computes ratio R

R-bounded counter program with zero tests
which is simulated using ratio R

{ counter program
without zero tests

• extend halt:

merged halts of A and P

�19

How to compute ratio?

• ratio 3:

�19

How to compute ratio?

• ratio 3:

• we define a counter program that, using ratio R,
computes ratio R!

�19

How to compute ratio?

factorial amplifier}

• ratio 3:

• we define a counter program that, using ratio R,
computes ratio R!

�19

How to compute ratio?

factorial amplifier}

hece the amplifier can use
R-bounded zero-tested
counters

• ratio 3:

• we define a counter program that, using ratio R,
computes ratio R!

• and self-compose it sufficiently many times:

�19

How to compute ratio?

factorial amplifier}

hece the amplifier can use
R-bounded zero-tested
counters

�20

Factorial amplifier - the idea counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

further
zero tests

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

further
zero tests

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

further
zero tests

nondeterministic init

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

weak multiplication by

further
zero tests

nondeterministic init

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

weak multiplication by

further
zero tests

tests if

nondeterministic init

initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

weak multiplication by

further
zero tests

tests if

nondeterministic init

exact
initially
equal R

counter program that, using
ratio R, computes ratio R!

�20

Factorial amplifier - the idea

a zero test

weak multiplication by

further
zero tests

tests if

nondeterministic init

exact
initially
equal R

counter program that, using
ratio R, computes ratio R!

fine, but where is the factorial?

�20

Factorial amplifier - the idea

a zero test

weak multiplication by

further
zero tests

tests if

nondeterministic init

exact
initially
equal R

counter program that, using
ratio R, computes ratio R!

fine, but where is the factorial?

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier
invariant

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

nondeterministic init

invariant

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

weak multiplication by

nondeterministic init

invariant

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

tests if

weak multiplication by

nondeterministic init

invariant

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

tests if

weak multiplication by

nondeterministic init

invariant

exact

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

tests if

weak multiplication by

weak division by

nondeterministic init

invariant

exact

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

tests if

weak multiplication by

weak division by

nondeterministic init

invariant

exact

exact

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

weak multiplication by

tests if

weak multiplication by

weak division by

nondeterministic init

invariant

exact

exact

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

weak multiplication by

tests if

weak multiplication by

weak division by

nondeterministic init

invariant

exact

exact

exact

counter program that, using
ratio R, computes ratio R!

�21

Factorial amplifier

weak multiplication by

tests if

weak multiplication by

weak division by

nondeterministic init

invariant

exact

exact

exact

�22

Future work

�22

Future work

• TOWER…ACKERMANN gap F3…F𝜔 gap

�22

Future work

• TOWER…ACKERMANN gap

• improving the lower bound? TOWER amplifier?

F3…F𝜔 gap

�22

Future work

• TOWER…ACKERMANN gap

• improving the lower bound? TOWER amplifier?

• better lower bounds for
• branching VASS
• pushdown VASS
• VASS with 1 zero test
• VASS with hierarchical zero tests

F3…F𝜔 gap

�22

Future work

• TOWER…ACKERMANN gap

• improving the lower bound? TOWER amplifier?

• better lower bounds for
• branching VASS
• pushdown VASS
• VASS with 1 zero test
• VASS with hierarchical zero tests

• refined analysis for fixed dimension

F3…F𝜔 gap

�22

Future work

• TOWER…ACKERMANN gap

• improving the lower bound? TOWER amplifier?

• better lower bounds for
• branching VASS
• pushdown VASS
• VASS with 1 zero test
• VASS with hierarchical zero tests

• refined analysis for fixed dimension

• decidability status of reachability is open for
• branching VASS
• pushdown VASS
• equality data VASS

F3…F𝜔 gap

�22

Future work

• TOWER…ACKERMANN gap

• improving the lower bound? TOWER amplifier?

• better lower bounds for
• branching VASS
• pushdown VASS
• VASS with 1 zero test
• VASS with hierarchical zero tests

• refined analysis for fixed dimension

• decidability status of reachability is open for
• branching VASS
• pushdown VASS
• equality data VASS

F3…F𝜔 gap

thank you!

