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Many faces of Petr1 nets

* Petr1 nets | Petri 1962 ]

* vector addition systems VAS [Karp, Miller 1969]

* vector addition systems with states VASS [Hopcroft, Pansiot 1979]
* automata with counters without zero tests

* counter programs without zero tests

* multiset rewriting
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a sequence of commands of the form:
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(
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(

zero? X continue if counter x equals 0) abort it x=0
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Counter programs

a sequence of commands of the form:

x +=1
-1 decrement counter x) <

(
(

goto L or L' (jump to either line L or line L’)\
(

zero? x

continue if counter x equals 0) abort it x=0
except for the very last command which 1s of the:form:\

mcrement counter X) counters are nonnegative

otherwise abort

halt if x;,...,x, =0 (terminate provided all

the listed counters are zerN

Example: —
. x' 4= 100 \ mitially all counters 0:

. goto 5 or 3 x =x=y=0

. goto 2 ex0 t€°
. halt 1%" X = 0. RO finally:

/x‘=0 x =100 y =200
\
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Minsky machines

the conditional jump of Minsky machines

if x = 0 then goto L else x —= 1

is simulated by counter program with zero tests:

1
2
3: goto L
4



Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
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halt if x' = 0.

O 0 ©




Many faces of Petr1 nets

counter program without zero tests:
1: X' += 100
2: goto 5 or 3
3 x+=1 X —=1 y+=2
4: goto 2
5: halt if x' = 0.

Petri net:

100




Many faces of Petr1 nets

counter program without zero tests:
x" += 100

goto 5 or 3

x+=1 X —=1 y+=2

goto 2
halt if x' = 0.

Petri net:

100




Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100



Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100



Many faces of Petr1 nets

counter program without zero tests:
x' += 100

goto 5 or 3

x+=1 X —=1 y+=2
goto 2

halt if x' = 0.

Petri net:

100

mitially one token here




Many faces of Petr1 nets

counter program without zero tests:
x" += 100

goto 5 or 3

x+=1 X —=1 y+=2 /

goto 2
halt if x' = 0.

halt requires no token here

Petri net:

100

mitially one token here




Many faces of Petr1 nets

counter program without zero tests:

1: X += 100

2: to 5 3 .

3. g(:_guloru/ _ L9 halt requires no token here
S T y = /and one token there

4: goto 2

5. halt if x¥’ = 0.

Petri net:

100

mitially one token here
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Reachability and coverability

Reachability problem: given a counter program without zero tests
x' += 100

goto 5 or 3
x+=1 x —=1

goto 2
halt if X' = 0.

can it terminate (execute its halt command)?

Coverability problem: given a counter program without zero tests

. x 4= 100 with trivial halt command

X
_I_
|
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|
|
—

can it terminate (reach its halt command)?
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TOWER(n) = 2%

n times

Theorem: The reachability problem for Petri nets 1s TOWER-hard

Theorem: The reachability problem 1s h-EXPSPACE-hard for
® counter programs without zero tests with h+13 counters
e VASS of dimension h+13
e VAS of dimension h+16
e Petri nets with h+16 places
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Computing large numbers ... or long shortest runs

[Mayr, Meyer 1981]: Petr1 net of size O(n) can weakly compute
Ackermann(n) = Fp(n) = Fn(n)

has the longest run of length Ackermann(n)

[Lipton 1976]: Petr1 net of size O(n2) can exactly compute 22"

has the shortest run of length 22

We prove that Petri net of size O(n) can exactly compute TOWER(n)
has the shortest run of length TOWER/(n)
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* proves reachability harder than coverability and henceforth
refutes long-standing EXPSPACE-completness conjecture

* plethora of problems admit reduction to/from reachability, e.g.:
* non-emptiness of data automata
* logics over data words
* fragments of linear logic

e process calculi

* solvability of linear equations with ordered data

* makes obsolete previously known TOWER lower bounds for:
* branching VASS

e pushdown VASS
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let’s embark on the prootf...
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LLoop programs

x' += 100

goto 5 or 3
X+=1 X —=1 y+=2
goto 2

halt if ¥’ = 0.
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LLoop programs

1: X' += 100
2:| goto 5 or 3
ifx+=1 X —=1 y+=2
4:| goto 2
5: halt if x' = 0.
x" += 100
loop

x+=1 X —=1 y+=2

halt if x' = 0.
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EXPSPACE lower bound for coverability

. . 21 . .
e simulation of 2 -bounded counter machine with zero tests

e subroutine Dec,, t

nat

decrements a counter exactly 2

n

times

* for every simulated counter introduce a shadow counter, initiate to

x =0 g =922

®¢ maintain 1nvariant

A

* zero test: Dec, X

X+ X = 22"

Dec,, x

* how to implement Dec,, ?

13
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Implementation of Dec,,:

* iterated squaring

n times ntir\nes
((22)2.“)2 _ 2525 _ 22”

. ,I: . .
* subroutine Dec; x; that decrements X; exactly 22 times, 2 =1...n

L or aborts

® the code of Dec; 1 X;ji1:

loop
i +=1 X —=1
loop
Yi += v, — 1 iterated exactly
>A(z'—|—1 —= 1 Xi+1 += 1 221+1 times
Dec; y;

Decz- Xi -

14
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Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

* X 4+= 1replaceby x+=1 x-—=1
e x —=1 replace by X —= 1 x+4=1

e zero? X replace by loop

X += X —=1
d =1
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loop
x—=1 x+4=1
d =1
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e x =1 replace by x —= 1 X += forward invariant
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d =1
c——=1
loop
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Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

(only for zero-tested counters)

® x 4= 1replaceby x+=1 X -—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop
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Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

loop
X4=1 §+=1 (only for zero-tested counters)
d—=1 |b—=1

c—=1

* X 4+= 1replaceby x+=1 x-—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop

X += X —=1
d—=1

C ——

loop
Xx—=1 x+4=1
d—=1

backward invariant
e extend halt: halt if ....d = 0. d=c-R
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Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c¢c- R with zero tests

introduce shadow counters and initiate them to at most R:

loop
x+=1 y+=1 exactly R iterations
d—1 [b—=1

c—=1

* X 4+= 1replaceby x+=1 x-—=1

e x —=1 replace by x—=1 x4=1

forward invariant

= X+X< Randd>c-R
e zero? X replace by loop

x+=1 X —= 1 3exactly R iterations
d =1

C ——=

loop
x —= 1 % += 1 gexactly R iterations
d =1

backward invariant
e extend halt: halt if ....d = 0. d=c-R
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Using ratio R to simulate R-bounded counter program P
b=R ¢c>0 d=c-R

with zero tests
introduce shadow counters and initiate them to at most R:

exactly R iterations

X
+
|
—_ | =
o<
+
IRl
[ Y

* X += 1 replace by X += 1 x—=1

e X —= 1 replaceby x —=1 x+=1 forward invariant
7 x+x<Randd>c-R
e zero? X replace by loop
x+=1 X —= 1 3exactly R iterations
d—=1

A

x —= 1 % += 1 gexactly R iterations
1

v’lo\auon . .
backward 1invariant

d=c-R
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* X += 1 replace by X += 1 x—=1

e X —= 1 replaceby x —=1 x+=1 forward invariant
7 X+x=ZRandd>c-R
e zero? X replace by loop
x+=1 X —= 1 3exactly R iterations
d—=1

A

x —= 1 % += 1 gexactly R iterations
1

v’lo\auon . .
backward 1invariant
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b=R c¢>0

d=c-R

® x += 1 replace by X += 1

e X —= 1 replace by x —=

introduce shadow counters and initiate them to at most R:

Using ratio R to simulate R-bounded counter program P

with zero tests

loop
X4=1 y4=1
d—=1 |b—=1
c—=1

exactly R iterations

e zero? X replace by loop

forward 1nvariant
X+XxZZRandd>c- R

= 1 3 exactly R iterations
d =1

c——=1

loop
x —= 1 % += 1 gexactly R iterations
d =1

c—=1

v’lo\auon . .
backward 1invariant

d=c-R
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Computing and using ratio

A > P
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which 1s simulated using ratio R
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Computing and using ratio

counter program
without zero tests

>

counter program without zero tests R-bounded counter program with zero tests
that computes ratio R which 1s simulated using ratio R

r — merged halts of 4 and V
o extend halt: haltif .. .d = 0.

oo, —
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How to compute ratio?
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How to compute ratio?

® ratio 3:
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How to compute ratio? PSS

® ratio 3: 1. b+= 3
2:c+=1 d+= 3
3: loop
4: c+=1 d+= 3
5. halt.

* we define a counter program that, using ratio R, : :
prog J factorial amplifier

computes ratio R!
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n times

How to compute ratio? PSS
3m = (3.

® ratio 3: 1: b+=3
2 i: t=1 d+=3 hece the amplifier can use
3: loop R-bounded zero-tested
4 c+=1 d+= 3 counters
5. halt.

* we define a counter program that, using ratio R, : :
prog J factorial amplifier

computes ratio R!

n compositions

— N
e and self-compose it suthciently many times: ((As> F)> F)> - F
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counter program that, using

Factorial ampliﬁer - the 1dea ratio R, computes ratio R!
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counter program that, using

Factorial ampliﬁer - the idea ratio R, computes ratio R!

= R

DN | o

B
R—1

— DN
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Factorial amplifier - the 1dea

2 3
1 2
1: 1 += X += y +=
2: loop
3: X+=1 y+=1
4: loop
5 loop
6: x —=1 x +=i+1
7 loop
8: X —=1 x4+
a zero test—9%—_ | +=
10: zero? i
11: loop
12: Xt —=Hi s —=—1]
13: halt if y =0

20

counter program tha‘g, using
ratio R, computes ratio R!



counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

A
R—1

mitially

equalR\/ =] xa—
a Zero test—&-\ | = 1

10: zero? i

11: loop

12: X —=1 y——=1
13: halt if y =20
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counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

A
R—1

further
———7€ero tests

mitially

equalR\/ =] xa—
a Zero test—&-\ | = 1

10: zero? i

11: loop

12: X —=1 y——=1
13: halt if y =0
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counter program that, using

Factorial amplifier - the 1dea ratio R, computes ratio R!

B
R—1

: further
B — z€ero tests
° ° ° 6:
1n1t1ally e loop
equal R \/ 1 x4—
a zero testﬁ&\ I+ 1
10: zero? i
11: loop ,
12: Xt —=Hi s —=—1] TO;FP_ !
13: halt if y =20 i—=1 i'+4=1 X +=1
zero? |
loop
i —=1 i4=1
zero? i

20



counter program that usmg

Factorlal amphﬁer - the 1dea ratio R, computes ratio R!
3 R _ .
1 2 o R—-1
: loop
Li14+=1 x+4= 1‘ .y.—l—.z.l — iSE="1 e —— 1]
9 lOOp nondeterministic 1nit zero? i
: _ _ loop
3: X += 1 Yy —+= 1 // ; _:m
4: loop zero? i turther
5 loop — __——zero tests
o 6: —= i X' +=i+1
1n1t1ally e loop
equal R = _ « 4= 1
a Zero test
10: zero7|
11: loop
X =1
12: X — l
oop
13: haltify:O i—=1 i'+4=1 X +=1
zero? |
loop
i —=1 i4+=1
zero? i

20



Factorial amplifier - the 1dea

counter program tha‘g, using
ratio R, computes ratio R!

3 R P
1 2 R—1
_ loop
Li14+=1 x+4= 1‘ _y.—l—.z.l — iSE="1 e —— 1]
9. lOOp nondeterministic 1nit zero? i
3: X —|—: 1 y —|—: 1 //IOOiI/) __m
4: loo_p zero? i further
5. loop _——7ero tests
.  — , — 1 ° . ° I
. e & X—=1 X +=1+1 weak multiplication by E
1n1t1aﬂy 7. loop |
SV
a zero test—9~_ | 1y 1
10: zero? i
11: loop ,
12: X —=1 y—=1 ;(O(jp: !
13: halt if y =20 i—=1 i'+4=1 X +=1
zero? i
loop
=1 i+=1
zero? i’
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Factorial amplifier - the 1dea

counter program tha‘g, using
ratio R, computes ratio R!

3 R P
1 2 R—-1
_ loop
Li14+=1 x+4= 1‘ _y.—l—.z.l — iSE="1 e —— 1]
9 loop nondeterministic 1nit zero? i
=1 i4+=1
4: loop zero? i further
5- loop —zero tests
0 —_— / — . . . |
. e : Xx—=1 x+=1i+l weak multlphcatlon by E
1n1t1aﬂy 7. loop i
cqual R T Ty e
a zero test—9%—_ 1 ¢ 1
10: zero? i
11: [loop /
12: X —=1 y—=1 ;(O;r: !
13: |halt if y =10 i—=1 i'+4=1 X +=1
testsif x >y - R ffig? !
=1 i4=1
zero? i
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Factorial amplifier - the 1dea

mitially
equal R

counter program tha‘g, using
ratio R, computes ratio R!

x —=1

further
_——7ero tests

x' +=

3 R P
1 2 R-1
_ loop
11 4+=1 x—l—zl. _y.—l—.z.l i—=1 i4=1
2: [loop nondeterministic 1nit zero? |
4: lOO_p zero? i’
5 loop
6. X w._isgxact "
‘ | - J.uea-k—multlphcatlon by =
7: oop !
\8\ X/ —— 1 X + \
a zero test—9~_ | 1y 1
10: zero? i
11: |loop ,
12: X —=1 y—= ;(ij:
13: |halt if y =10 i —= =1
testsif x >y - R ff;g? !
=1 i4+=1
zero? i
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. . . counter program thot oy
Factorlal amphﬁer ~ the 1dea ratio R - he {actoma\?
but where 1s t
ﬁﬂe)
3 R
1 2 R—-1
: loop
11 4+=1 x—l—zl. _y.—l—.z.l i—=1 i'4=1 x—-—=1
2:|loop nondeterministic 1nit zero? i
_ _ _ loop
3: X + 1 Yy + 1 / 7 _:ﬂm
4: loop zero? i further
5 loop — —zero tests
6: — | 4= 0=¢ xact i+1
. e ‘ X—=1 X 7=/1 J.uea-k—multlphcatlon by T
1n1t1aﬂy 7. loop i
cqual R o Ly e
a zero test—9%—_ 1 ¢ 1
10: zero? |
11: |loop /
12: x—=1i y—=1 ;(ij:
13: |halt if y =0 i ——= i =1 x 4=
testsif x >y - R lz:;g? i
=1 j4=1
zero? i
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Factorial amplifier - the 1dea

mitially
equal R

1:

~J

i =1

X +=1

y +=1

fine, but

-

X += 1

.|1oop nondeterministic 1nit

y =1

—

— % [loop

oo

10:
11:
12:

13:

; ~ X T 1

xact

halt if y =10

testsif x >y - R

20

counter program tho+

ratio P N h
where 18t ©

loop

= " +=1

factof.la‘? j

x —=1

zero? |
IOOp ‘\
=1 i+=1

zero? 1

further
_——7ero tests

~aceale multiplication by E
|

X +=1
loop

i—=1 +=1
zero? |
loop

=1 =1
zero? i

x 4= 1



counter program that, using

Factorial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!
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Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

Li4=1 x4=1 y+4+=1 b4=1 c+4+=1 d+4=1

2: loop

3 X+=1 y+4+=1 c+=1 d+=1 loop

4: loop b—=1 b +=1
5 loop loop

6: c—=i c4+=1 4  b’ —=1 b+i=1
7 loop at most b times <body>

8 x—=1i d-—=1i X 4+=i+1

9: loop

10: b—=1 b 4+=i+1

11: loop

12: by —=1 b+=1

13: loop

14: ¢ =1 c+=1

L5 loop at most b times

16: X —=1 x4=1 d+=1

17: | +=1

18: zero? i

19: loop

20: X—=1 y—=1

21: halt if y =10
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Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

invariant
i+=1 x4=1 y4=1 b+=1 c+=1 d+=1 d = c.b
2: loop
3 X+=1 y4+4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5 loop loop
6: c—=i c4+=1 4  b’ —=1 b+i=1
7 loop at most b times <body>
8 x—=1i d-—=1i X +=i+1
9: loop
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+=1
13: loop
14: ¢ =1 c+=1
L5 loop at most b times
16: X —=1 x4=1 d+=1
17: | +=1
18: zero? i
19: loop
20: X—=1 y—=1

21: halt if y =10
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Factorial amplhifier b=R! ¢>0 d=c-R!

counter program tha’g, using
ratio R, computes ratio R!

invariant
i4=1 x4+=1 y+4+=1 b4=1 c+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop — 1 b’ +=1
5 loop loop
6: c—=i d+=1 4  b’ —=1 bt+=1
1 loop at most b times <body>
8 x—=1i d-—=1i X 4+=i+1
9: loop
10: b—=1 b+=i+1
11: loop
12: by —=1 b+=1
13: loop
14: cd—=1 c+=1
L5 loop at most b times
16: X —=1 x4=1 d+=1
17: I +=1
18: zero? i
19: loop
20: X—=1 y—=1

21: halt if y =10
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counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i+=1 x4=1 y4=1 b+=1 c+=1 d+=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5 loop loop
) i 4] 4  b —=1 b+=1
7: loop at most b times _ <body>
8 |_x —j d—i X 4+=i+1 weak multiplication by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: b —=1 b+=1
13: loop
14: =1 c+=1
15 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? |
19: loop
20: X—=1 y—=1

21: halt if y =10
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counter program that, using
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invariant
i4=1 x4+=1 y+4+=1 b4=1 c+=1 d+4=1 d = c-b
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3: X+=1 y4=1 c+=1 d+=1 loop
4: loop — 1 b’ +=1
55 loop loop
6: c—=1i d+4+=1 4  b'—=1 b+=1
7: loop at most b times _ <body>
8: |_x —i d—=i X 4=i+1 weak multiplication by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: =1 c+=1
15 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: X—=1 y—=1
21: |halt if y =0

testsif x >y-R
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3: X+=1 y4=1 c+=1 d+=1 loop
4: loop —=1 b +=1
5: loop loop
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exact . . . -
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counter program that, using

FaCtOrial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant

i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b—=1 b4=1
5: ]oop weak division byi loop

: 7 b —=1 b+=1
6: c—1 ¢ +=1 4  <body>
7: loop at most b times exact _
8: |_x —— ] g —= =] —x&multlphcatlon by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: c—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
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counter program that, using

FaCtOrial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4:- loo b—=1 b4=1
5: ﬁ)op Ezigglggivision byi loop
6: c—=1i d+4+=1 4  i/b_d:>1 bi= 1
7: loop at most b times exact _ —
8: |_x —— ] g —= =] —x&multlphcatlon by E
9: loop |
10: b—=1 b 4+=i+1
11: loop
12: by —=1 b+4+=1
13: loop
14: c—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d4+=1
17: I +=1
18: zero? i
19: [loop
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21: |halt if y =0

testsif x >y-R
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counter program that, using

FaCtOrial ampliﬁer b=R! ¢>0 d=c- R ratio R, computes ratio R!

invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b —=1 b +=1
5: loop S.mz(@gl('jgivision byi loop
6: c—=1i d+4+=1 4  b’ —=1 b+=1
7: loop at most b times exact _ <body>
8: [x =i d—=i X +=i+1 4&%2]4multiplication by 1
9: loop |
10: b—=1 b +=i+1 weak multiplication by j+1
11: loop
12: by —=1 b+=1
13: loop
14: d—=1 c+=1
155 loop at most b times
16: X —=1 x+4=1 d+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
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counter program that, using

FaCtOrial ampliﬁer b=R! ¢>0 d=c- R ratio R, computes ratio R!

Invariant
i4+=1 x4=1 y4=1 b+4+=1 c4+=1 d+4=1 d = c-b
2: [loop nondeterministic init
3: X+=1 y4=1 c+=1 d+=1 loop
4: loop b —=1 b +=1
5: loop S.mz(@gl('jgivision byi loop
6: c—=1i d+4+=1 4  b’ —=1 b+=1
7: loop at most b times exact _ <body>
8: [x =i d—=i X +=i+1 4&%2]4multiplication by 1
9: loop |
10: b—=1 b +=i+1 g?ei]gjgnultiplication by 41
11: loop
12: by —=1 b+=1
13: loop
14: d—=1 c+=1
155 loop at most b times
16: X —=1 x4=1 d+4+=1
17: I +=1
18: zero? i
19: [loop
20: XxX—=1 y—=1
21: |halt if y =0

testsif x >y-R
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counter program that, using

Fact()rial ampliﬁer b=R! ¢c>0 d=c-R! ratio R, computes ratio R!

1nvariant

lLi+=1 x4=1 y4=1 b+=1 c+=1 d+=1

2: [loop nondeterministic init

3: X+=1 y4+4=1 c+=1 d+=1

4: loo b — b’ +=
5: i)op Eziggﬁgivision byi loop

6: c—=1i d+4+=1 4  ilb_d:> b +=
7: loop at most b times exact _ —

8: |_x —— ] @ —= 1 = q-t1 —W%?J&multlphcatlon by E

9: loop |

10: b—=1 b +=i+1 Jugig—ex C)Enultiplication by 41

11: loop

12: by —=1 b+=1

13: loop

14: d—=1 c+=1

L5 loop at most b times

16: X —=1 x4=1 d4+=1

17: I +=1

18: zero? i

19: [loop

20: X —= | y —= 1

21: |halt if y =0

testsif x >y-R
21
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