Automata with timed atoms

Sławomir Lasota
University of Warsaw

joint work with Mikołaj Bojańczyk and Lorenzo Clemente

Infinity 2015, Bengaluru

FO-definable automata

Sławomir Lasota
University of Warsaw

joint work with Mikołaj Bojańczyk and Lorenzo Clemente

Infinity 2015, Bengaluru

FO-definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

Plan

- Motivation

Plan

- Motivation
- FO-definable NFA
- Motivation
- FO-definable NFA
- FO-definable PDA
- Motivation
- FO-definable NFA
- FO-definable PDA
- The core problem: equations over sets of integers

Time domain

- reals
- rationals
- integers

discrete time
choice of time domain is fine

Time domain

- reals
- rationals
- integers

1
discrete time
dense time
any

Time domain

No restriction to non-negative!

Time domain

No restriction to non-negative!

Let input alphabet be reals

Time domain

- rationals

- integers

No restriction to non-negative!

Let input alphabet be reals
Monotonic input words :

Timed automata [Alur, Dill 1990]

Timed automata [Alur, Dill 1990]
 with uninitialized clocks ? ?

Timed automata [Plur, Dill 1990]

Timed automata [Alur, Dill 1990]

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

Timed automata [Alur, Dill 1990]

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

Timed automata [Alur, Dill 1990]

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

Timed automata [Alur, Dill 1990]

the automaton accepts words $t_{1} t_{2} t_{3} \in R^{3}$ such that

Deterministic timed automata don't minimize

Deterministic timed automata don't minimize

Deterministic timed automata don't minimize

1 or 2

Towards timed pushdown automata

Towards timed pushdown automata

- timed automata [Alur, Dill 1990]

Towards timed pushdown automata

finite stack alphabet

- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]

Towards timed pushdown automata

- timed automata [Alur, Dill 1990]
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- clocks can be pushed onto stack
- the emptiness problem EXPTIME-complete

Towards timed pushdown automata

- timed automata [Alur, Dill 1990]
- pushdown timed automata [Bouajjani, Echahed, Robbana 1994]
- dense-timed pushdown automata [Abdulla, Atig, Stenman 2012]
- recursive timed automata
[Trivedi, Wojtczak 2010], [Benerecetti, Minopoli, Peron 2010]
- clocks can be pushed onto stack
- the emptiness problem EXPTIME-complete

Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively equivalent to pushdown timed automata.

Dense-timed PDA collapse

Theorem 1: [Clemente, L. 2015]
Dense-timed pushdown automata are expressively equivalent to pushdown timed automata.

An accidental combination of

- stack discipline
- monotonicity of time
- syntactic restrictions

FO-definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

FO-definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

- do not invent a new definition

FO-definable sets

offer a right setting for timed models of computation, like timed automata, or timed pushdown automata.

- do not invent a new definition
- re-interpret a classical definition in FO-definable sets, with finiteness relaxed to Orbit-finiteness

In search of lost definition

- Motivation
- FO-definable NFA
- FO-definable PDA
- The core problem: equations over sets of integers

In search of lost definition

- Motivation

NFA re-interpreted in FO-definable sets

- FO-definable NFA
- FO-definable PDA
- The core problem: equations over sets of integers

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

Timed automata are register automata

[Bojańczyk, L. 2012]

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}_{-\mathrm{c}_{1}<2}$ iff $\mathrm{c}_{1}<\mathrm{t}<\mathrm{C}_{1}+2$

Timed automata are register automata

[Bojańczyk, L. 2012]

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}-\mathrm{c}_{1}<2$ iff $\mathrm{c}_{1}<\mathrm{t}<\mathrm{c}_{1}+2$

Timed automata are register automata

[Bojańczyk, L. 2012]

the only modifications of a clock: $c:=t$

the guards use the structure $(\mathrm{R},<,+1)$
e.g. $0<\mathrm{t}_{-\mathrm{C} 1}<2$ iff $\mathrm{C}_{1}<\mathrm{t}<\mathrm{C}_{1}+2$

$\mathrm{FO}(<,+1)$-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

FO-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

FO-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

$\mathrm{FO}(<,+1)=\mathrm{QF}(<,+1)=$

FO-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n-tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

$$
\mathrm{FO}(<,+1)=\mathrm{QF}(<,+1)=\bigvee_{\text {finite }} \underbrace{\bigwedge_{\text {finite }} x_{i}-x_{j} \in I}_{\text {zone }}
$$

FO-definable sets

$\mathrm{FO}(<,+1)$ formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ defines a subset of n -tuples of reals, for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv \exists x_{3}\left(x_{1}<x_{3} \wedge x_{2}=x_{3}+3\right)
$$

$$
\mathrm{FO}(<,+1)=\mathrm{QF}(<,+1)=\bigvee_{\text {finite }} \underbrace{\bigwedge_{\text {finite }} x_{i}-x_{j} \in I}_{\text {zone }}
$$

for instance

$$
\phi\left(x_{1}, x_{2}\right) \equiv x_{1}+3<x_{2} \quad \equiv \quad x_{2}-x_{1} \in(3, \infty)
$$

FO-definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \underline{\mathrm{Q}}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO-definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \underline{\mathrm{Q}}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO-definable NFA

- alphabet A

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right)
\end{array}
$$

- transitions $\delta \subseteq Q \times A \times Q$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO-definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

FO-definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Runs, acceptance, language recognized, etc. are defined exactly as for classical NFA!

FO-definable NFA

- alphabet A
- states Q
- transitions $\delta \subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$
definable in $\mathrm{FO}(<,+1)$

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right) \\
\phi_{\delta}\left(x_{1}, \ldots, x_{m+n+m}\right) \\
\phi_{I}\left(x_{1}, \ldots, x_{m}\right), \phi_{F}\left(x_{1}, \ldots, x_{m}\right)
\end{array}
$$

Runs, acceptance, language recognized, etc. are defined exactly as for classical NFA!

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $\left(1^{1 / 3}, 3\right)$ are in the same orbit.

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $(1 / 3,3)$ are in the same orbit.

Example:

$$
x_{1}+3<x_{2} \equiv x_{2}-x_{1} \in(3, \infty) \quad \text { orbit-infinite }
$$

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $(1 / 3,3)$ are in the same orbit.

Example:

$$
\begin{array}{ll}
x_{1}+3<x_{2} \equiv x_{2}-x_{1} \in(3, \infty) & \text { orbit-infinit } \\
x_{1}+3<x_{2} \leq x_{1}+7 \equiv x_{2}-x_{1} \in(3,7] & \text { orbit-finite }
\end{array}
$$

Orbit-finiteness

Automorphisms π of ($\mathrm{R},<,+1$) act on a definable set thus splitting it into orbits.

For instance, $(-1,1 / 3)$ and $\left(3,4^{1 / 3}\right)$ and $(1 / 3,3)$ are in the same orbit.

Example:

$$
\begin{array}{ll}
x_{1}+3<x_{2} \equiv x_{2}-x_{1} \in(3, \infty) & \text { orbit-infinit } \\
x_{1}+3<x_{2} \leq x_{1}+7 \equiv x_{2}-x_{1} \in(3,7] & \text { orbit-finite }
\end{array}
$$

An FO-definable set is orbit-finite iff
it is defined using bounded intervals only

Register automata are FO-definable NFA

Register automata are FO-definable NFA

states: $Q=\{\perp\} \cup\left\{c_{1} \in R\right\} \cup\left\{\left(c_{1}, c_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$

Register automata are FO-definable NFA

states: $\mathrm{Q}=\{\perp\} \cup\left\{\mathrm{c}_{1} \in \mathrm{R}\right\} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$ $\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$

Register automata are FO-definable NFA

states: $\mathrm{Q}=\{\perp\} \cup\left\{\mathrm{c}_{1} \in \mathrm{R}\right\} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$
$\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{C}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}^{\prime}=\mathrm{t}\right\} \quad \cup$

Register automata are FO-definable NFA

states: $\mathrm{Q}=\{\perp\} \cup\left\{\mathrm{c}_{1} \in \mathrm{R}\right\} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$
$\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{C}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}{ }^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\} \cup
$$

Register automata are FO-definable NFA

states: $\mathrm{Q}=\{\perp\} \cup\left\{\mathrm{c}_{1} \in \mathrm{R}\right\} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$
$\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+1=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c} 0+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}{ }^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\begin{aligned}
& \left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\} \cup \\
& \left\{\left(\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right), \mathrm{t}, \mathrm{~T}\right):\left(2<\mathrm{t}-\mathrm{c}_{1}<3\right) \wedge\left(\mathrm{t}-\mathrm{c}_{2}=1 \vee \mathrm{t}-\mathrm{c}_{2}=2\right)\right\}
\end{aligned}
$$

Register automata are FO-definable NFA

states: $\mathrm{Q}=\{\perp\} \cup\left\{\mathrm{c}_{1} \in \mathrm{R}\right\} \cup\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \in \mathrm{R} \times \mathrm{R}: 0<\mathrm{c}_{2}-\mathrm{c}_{1}<2\right\} \cup\{T\}$
$\phi_{\mathrm{Q}}\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{C}_{2}\right) \equiv \mathrm{c}_{0}=\mathrm{c}_{1}=\mathrm{c}_{2} \vee \mathrm{c}_{0}+1=\mathrm{C}_{1}=\mathrm{c}_{2} \vee \mathrm{c} 0+2=\mathrm{c}_{1}<\mathrm{C}_{2}<\mathrm{c}_{1}+2 \vee \mathrm{c}_{0}+3=\mathrm{c}_{1}=\mathrm{c}_{2}$
transitions: $\delta=\left\{\left(\perp, \mathrm{t}^{\prime}, \mathrm{c}_{1}\right): \mathrm{c}_{1}{ }^{\prime}=\mathrm{t}\right\} \quad \cup$

$$
\left.\begin{array}{l}
\left\{\left(\mathrm{c}_{1}, \mathrm{t},\left(\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}\right)\right): 0<\mathrm{t}-\mathrm{c}_{1}<2 \wedge \mathrm{c}_{1}=\mathrm{c}_{1}^{\prime} \wedge \mathrm{c}_{2}^{\prime}=\mathrm{t}\right\} \cup
\end{array}\right\}, \begin{aligned}
& \left\{\left(\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right), \mathrm{t}, \mathrm{~T}\right):\left(2<\mathrm{t}-\mathrm{c}_{1}<3\right) \wedge\left(\mathrm{t}-\mathrm{c}_{2}=1 \vee \mathrm{t}-\mathrm{c}_{2}=2\right)\right\}
\end{aligned}
$$

$\phi_{\delta}\left(\mathrm{c} 0, \mathrm{C} 1, \mathrm{C} 2, \mathrm{t}, \mathrm{co}^{\prime}, \mathrm{Cl}^{\prime}, \mathrm{C}_{2}{ }^{\prime}\right) \equiv \ldots$

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata
[Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata [Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata [Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another
- the input needs not be monotonic (but can be enforced to be)

Timed automata vs. FO-definable NFA

FO-definable NFA are like updatable timed automata [Bouyer, Duford, Fleury 2000], but:

- in every location, clock valuations are restricted by an orbit-finite constraint (invariant)
- number of clocks may vary from one location to another
- the input needs not be monotonic (but can be enforced to be)
- alphabet letters may be a tuples of timestamps

Timed automata vs. FO-definable NFA

FO-definable NFA

timed automata
 with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks

Timed automata vs. FO-definable NFA

Timed automata vs. FO-definable NFA

deterministic FO-definable NFA

deterministic timed automata

with uninitialized clocks
minimal automata for languages of deterministic timed automata
with uninitialized clocks

closed under
minimization

FO-definable DFA do minimize

 [Bojańczyk, L. 2012]
deterministic FO-definable NFA

deterministic timed automata
with uninitialized clocks
minimal automata for languages of deterministic timed automata
with uninitialized clocks

FO-definable DFA do minimize

[Bojańczyk, L. 2012]

$$
0<\mathrm{C}_{2}-\mathrm{C}_{1}<2
$$

deterministic FO-definable NFA
deterministic timed automata
with uninitialized clocks
minimal automata for languages

FO-definable DFA do minimize

[Bojańczyk, L. 2012]

$$
0<\mathrm{C}_{2}-\mathrm{C}_{1}<2
$$

deterministic FO-definable NFA
deterministic timed automata with uninitialized clocks
minimal automata for languages

$$
0<\mathrm{C}_{2}-\mathrm{C}_{1}<=1
$$

Presburger NFA
 [Bojańczyk, L. 2012]

Minimization holds also if $\mathrm{FO}(<,+1)$ is replaced by $\mathrm{FO}(<,+)$

In search of lost definition

- Motivation
- FO-definable NFA
- FO-definable PDA
- The core problem: equations over sets of integers

In search of lost definition

- Motivation
- FO-definable NFA

PDA re-interpreted in

- FO-definable PDA

FO-definable sets

- The core problem: equations over sets of integers

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S J
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \underline{\mathrm{Q}} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

$$
\begin{array}{r}
\phi_{A}\left(x_{1}, \ldots, x_{n}\right) \\
\phi_{Q}\left(x_{1}, \ldots, x_{m}\right) \\
\phi_{S}\left(x_{1}, \ldots, x_{k}\right)
\end{array}
$$

$$
\phi_{\text {push }}\left(x_{1}, \ldots, x_{m+n+m+k}\right)
$$

$$
\phi_{\mathrm{pop}}\left(x_{1}, \ldots, x_{m+k+n+m}\right)
$$

$$
\phi_{I}\left(x_{1}, \ldots, x_{m}\right), \phi_{F}\left(x_{1}, \ldots, x_{m}\right)
$$

FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- pop $\subseteq \underline{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Acceptance defined as for classical PDA.

Example

input alphabet: $\quad \mathrm{A}=$ reals $\uplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states:
stack alphabet:
transitions:
initial state:
accepting state:

Example

input alphabet: $\quad \mathrm{A}=$ reals $\uplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $\quad \mathrm{Q}=$ reals $\biguplus\{$ \{init, finish, acc $\}$
stack alphabet:
transitions:
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=$ reals $\biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $\quad Q=$ reals $\biguplus\{$ init, finish, acc $\}$
stack alphabet: $\quad S=$ reals $\biguplus\{\perp\}$
transitions:
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=$ reals $\biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $\quad Q=$ reals $\biguplus\{$ init, finish, acc $\}$
stack alphabet: $\quad S=$ reals $\biguplus\{\perp\}$ transitions: \quad push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$

(init, $\varepsilon, \mathrm{t}, \perp$)

(t, u, u, u)	$t<u$
$(t, u$, finish, $u)$	$t<u$

$$
\text { pop } \subseteq Q \times S \times A \times Q
$$

(finish, t, t, finish)
(finish, \perp, ε, acc)
initial state: init
accepting state: acc

Example

input alphabet: $\quad A=$ reals $\biguplus\{\varepsilon\}$
language: "ordered palindromes of even length over reals" states: $\quad Q=$ reals $\biguplus\{$ init, finish, acc $\}$
stack alphabet: $\quad S=$ reals $\uplus\{\perp\}$ transitions: \quad push $\subseteq \underline{Q} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
in state finish, pop a real (init, ε, t, \perp)

$(\mathrm{t}, \mathrm{u}, \mathrm{u}, \mathrm{u})$	$\mathrm{t}<\mathrm{u}$
$(\mathrm{t}, \mathrm{u}$, finish, u$)$	$\mathrm{t}<\mathrm{u}$

$$
\text { pop } \subseteq \underline{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}
$$

(finish, t, t, finish)
(finish, \perp, ε, acc)
initial state: init
accepting state: acc

FO-definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S

definable in $\mathrm{FO}(<,+1)$
- $\rho \subseteq \underline{Q} \times S^{*} \times \mathrm{A} \times \underline{Q} \times S^{*}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

FO-definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S

definable in $\mathrm{FO}(<,+1)$
- $\rho \subseteq \underline{Q} \times S^{\leq n} \times \mathrm{A} \times \underline{Q} \times \mathrm{S}^{\leq m}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

FO-definable prefix rewriting

- alphabet A
- states Q
- stack alphabet S

definable in $\mathrm{FO}(<,+1)$
- $\rho \subseteq \underline{Q} \times S^{\leq n} \times \mathrm{A} \times \underline{\mathrm{Q}} \times \mathrm{S}^{\leq m}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Acceptance defined as for classical prefix rewriting.

FO-definable context-free grammars

$\left.\begin{array}{l}\text { - nonterminal symbols S } \\ \text { - terminal symbols A }\end{array}\right\}$ orbit-finite

- an initial nonterminal symbol
- $\rho \subseteq \mathrm{S} \times(\mathrm{S} \biguplus \mathrm{A})^{*}$

FO-definable context-free grammars

$\left.\begin{array}{l}\text { - nonterminal symbols S } \\ \text { - terminal symbols A }\end{array}\right\}$ orbit-finite

- an initial nonterminal symbol
- $\rho \subseteq \mathrm{S} \times(\mathrm{S} \uplus \mathrm{A})^{\leq n}$

Generated language defined as for classical PDA.

Expressiveness of FO-definable models
 [Clemente, L. 2015]

Expressiveness of FO-definable models
 [Clemente, L. 2015]

Expressiveness of FO-definable models
 [Clemente, L. 2015]

Expressiveness of FO-definable models
 [Clemente, L. 2015]

Constrained FO-definable PDA?

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Constrained FO-definable PDA?

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Constrained FO-definable PDA?

- alphabet A
- states Q orbit-finite
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \underline{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Too strong restriction! Span of transitions is bounded.

Constrained FO-definable PDA?

- alphabet A
- states Q
- stack alphabet S
- $\operatorname{push} \subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Too strong restriction! Span of transitions is bounded.
For instance, such PDA do not recognize palindromes over reals.

Constrained FO-definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- push $\subseteq \underline{\mathrm{Q}} \times \mathrm{A} \times \mathrm{Q} \times \mathrm{S}$
- $\operatorname{pop} \subseteq \mathrm{Q} \times \mathrm{S} \times \mathrm{A} \times \mathrm{Q}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Constrained FO-definable PDA

- alphabet A
- states Q orbit-finite
- stack alphabet S
- push $\subseteq \underline{Q} \times \mathrm{A} \times \underline{\mathrm{Q}} \times \mathrm{S}$
- pop $\subseteq \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }} \times \mathrm{A} \times \mathrm{Q}$
- I, $\mathrm{F} \subseteq \mathrm{Q}$

Constrained FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
orbit-finite

- push $\subseteq \mathrm{Q} \times \mathrm{A} \times \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }}$
- pop $\subseteq \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.

Constrained FO-definable PDA

- alphabet A
- states Q
- stack alphabet S
orbit-finite

- push $\subseteq \mathrm{Q} \times \mathrm{A} \times \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }}$
- pop $\subseteq \underbrace{\mathrm{Q} \times \mathrm{S}}_{\text {orbit-finite }} \times \mathrm{A} \times \mathrm{Q}$
- $\mathrm{I}, \mathrm{F} \subseteq \mathrm{Q}$

Theorem 2: [Clemente, L. 2015]
The non-emptiness problem is in NEXPTIME.
For finite stack alphabet, EXPTIME-complete.
Fact: The model subsumes dense-timed PDA with uninitialized clocks.

Complexity of non-emptiness
 [Clemente, L. 2015]

Complexity of non-emptiness
 [Clemente, L. 2015]

Complexity of non-emptiness
 [Clemente, L. 2015]

Complexity of non-emptiness
 [Clemente, L. 2015]

Complexity of non-emptiness
 [Clemente, L. 2015]

Complexity of non-emptiness
 [Clemente, L. 2015]

- Motivation
- FO-definable NFA
- FO-definable PDA
- The core problem: equations over sets of integers

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{array}{rll}
x_{1} & = & t_{1} \\
x_{2} & =t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

The core problem

Systems of equations over sets of integers

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{array}{rll}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{array}{rll}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{array}{rlr}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
for instance:

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

The core problem

Systems of equations over sets of integers

$$
\left\{\begin{array}{rll}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

where right-hand sides use:

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
for instance:

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

What is the least solution with respect to inclusion?

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - no intersections

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

The core problem - no intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

How to solve the problem in absence of intersections?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\}
\end{array}\right.
$$

Decidable in P

The core problem - intersections

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - intersections

Given a systems of equations

$$
\left\{\begin{array}{lll}
x_{1} & = & t_{1} \\
x_{2} & = & t_{2} \\
& \cdots & \\
x_{n} & = & t_{n}
\end{array}\right.
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The problem is undecidable for unlimited intersections.
[Jeż, Okhotin 2010]

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=\left(x_{1}+\{1\} \cup x_{1}+\{-1\}\right) \cap\{1\}
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: _ \cap I, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=x_{1}+\{1\} \cup x_{1}+\{-1\} \quad \text { membership problem }
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: $\cap \mathrm{I}$, for I a finite interval?

$$
\left\{\begin{array}{l}
x_{1}=\{0\} \cup x_{2}+\{1\} \cup x_{2}+\{-1\} \\
x_{2}=\{1\}
\end{array}\right.
$$

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: $\cap \mathrm{I}$, for I a finite interval?

- NP-complete

The core problem - limited intersection

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about limited intersections: \cap I, for I a finite interval?

- NP-complete
- non-emptiness of constrained FO-definable PDA reduces to the core problem (with exponential blow-up)

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

The core problem - limited intersection

Given a systems of equations

$$
\begin{cases}x_{1} & =t_{1} \\ x_{2} & =t_{2} \\ & \cdots \\ x_{n} & =t_{n}\end{cases}
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

- decidability status open!

The core problem - limited intersection

Given a systems of equations

$$
\left\{\begin{aligned}
x_{1} & =t_{1} \\
x_{2} & =t_{2} \\
& \cdots \\
x_{n} & =t_{n}
\end{aligned}\right.
$$

- constants $\{-1\},\{0\},\{1\}$
- set union \cup
- point-wise addition +
- limited intersection \cap
decide, whether its least solution assigns a non-empty set to x_{1} ?

What about _ $\cap \mathrm{I}$, for I an arbitrary interval?

- decidability status open!
- non-emptiness of FO-definable PDA reduces to the core problem (with exponential blow-up)

Visit our blog...

