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• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

I.  Intro
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Reachability problem in Petri nets

configuration  :  places → N       Nd 

step relation between configurations

Decision problem: 

given
• Petri net
• source configuration
• target configuration

check if there is a sequence of steps
(run) from source to target

Petri net:

Coverability

≥ target

places and 
transitions



target↑
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Reachability problem in Petri nets
Coverability

configuration graph: configurations and steps

source
target

Reachability: is there a path (run) from source to target ?

Coverability: is there a path (run) from source to target↑ ?
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• core verification problem

• equivalent to many other problems in concurrency, process 
algebra, logic, language theory, linear algebra, etc 

Why is it important?
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EXPSPACE lower bound [Lipton TR Yale U]1976

EXPSPACE algorithm for coverability [Rackoff TCS]1978

decidability of coverability [Karp, Miller JCSS]1969

(incomplete) decidability of reachability [Sacerdote, Tenney STOC]1977

decidability of reachability [Mayr STOC]1981
decidability of reachability - simplified proof [Kosaraju STOC]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert TCS]1992

decidability of reachability by Presburger invariants [Leroux POPL]2011
upper bound F𝜔3 [Leroux, Schmitz LICS]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz LICS]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki STOC]2019 }gap

huge complexity gap!

Part II
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2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz LICS]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki STOC]2019 }gap

super-TOWER lower bound [Czerwiński, L., Orlikowski ICALP]2021

Ackermannian lower bound F𝜔 [Czerwiński, Orlikowski FOCS] [Leroux FOCS]2021

improved and simplified Ackermannian lower bound F𝜔 [L. STACS]2021

222
…2}n

222…2}2n

gap closed!

Part III
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Fast growing functions and induced complexity classes

A1(n)   =  2n     

Ai+1(n) =  Ai  ◦ Ai ◦  … ◦ Ai(1)  =  Ai
n(1)     {n

A2(n) =  2n

A3(n) =  tower(n)

            =

A4(n) =  …

22
2
… 2}n

Fi   = ⋃       DTIME(Ai ◦ Aj1 ◦…◦ Ajm) 

          j1 … jm < i 

A𝜔(n)   =  An(n)     Ackermann function

F2 = DTIME(2O(n))

F3 = TOWER
…

F𝜔 = ACKERMANN 
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I.  Intro 
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation
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Many faces of Petri nets

• vector addition systems with states (VASS):

• counter programs without zero-tests:• Petri nets:

p q

x

z

y

• vector addition systems

• counter automata without zero-tests

• multiset rewriting

• …

Part II

Part III
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VASS

• dimension d
• finite set of control states Q
• finite set of transitions of the form:

                         a                effect of transition 
           q                          p          q, p  ∈  Q 

                                                   a  ∈  Zd

• configurations  (q, v) = q(v)  ∈  Q × Nd 

• step relation:

                    q(v)  ⟶  p(v+a)               

• reachability relation: 

                    q(v)  ⟶*  p(w)               

two different graphs!
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Petri nets  ⇆  VASS

• vector addition systems with states (VASS):

• Petri nets:

p q

x

z

y

p

x y

split every transition

into input and output:

p

x y

then add one more “global” place
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Counter programs without zero-tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example: initially:  x’ = x = y = 0

finally:  x' = 0    x = 100    y = 200

no zero tests

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n
nondeterminism
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Counter programs  →  VASS

• vector addition systems with states (VASS):

• counter programs without zero-tests:

• dimension       :=  number of counters

• control states  :=  control locations

• transitions       :=  commands
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Counter programs with zero-tests

otherwise abort

zero test command:

Example:

counter programs 
with zero-tests are 
Turing complete
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I.  Intro 
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation
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configuration graph:

source

configuration tree:

source

Petri nets  or  VASS
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source

if          =          then  stop generating the tree

coverability tree:

≤

if          <          then  replace increased coordinates by 𝜔

domination

( 2, 1,  6,  3 )  ≤  ( 2,  3,  7,  3 )

increased

( 2,  𝜔,  𝜔,  3 )

Petri nets  or  VASS

“backward jump”
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≤              for some i < j.

Dickson’s Lemma:  every infinite sequence of configurations 

admits a domination:

1        2        3      ….

i                    j                 

Petri nets  or  VASSdomination

≤
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source

Coverability tree

Theorem:    Coverability tree is finite. 

                     Coverable configurations  =  (coverability tree) ↓

Petri nets  or  VASS

Question:    What can be read out from coverability tree?
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I.  Intro 
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation
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VASS

• dimension d
• finite set of control states Q
• finite set of transitions T of the form:

                         a                effect of transition 

           q                          p               q, p  ∈  Q         a  ∈  Zd

• source q(v),  target  p(w)  ∈  Q × Nd      q, p  distinct 

• one variable per transition in T, to represent the number of its applications
• for each control state, an equation

                          nr of incoming transitions  =  nr of outgoing transitions

         except for  p, q …

Example:        x + z + 1  =  x + y 

                               y + u  =  u + z + 1

Characteristic equation
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VASS

Example:        x + z + 1  =  x + y 

                               y + u  =  u + z + 1
source q(2, 0, 2),   
target  p(1, 1, 0)  ∈  Q × N3  

• d equations:

                          total sum of effects  =  w - v

                          -x + 2u  =  -1 

                               x - u  =   1 

                                   -z  =  -2

           q                          p               q, p  ∈  Q         a  ∈  Zd

• source q(v),  target  p(w)  ∈  Q × Nd      q, p  distinct 

• one variable per transition in T, to represent the number of its applications
• for each control state, an equation

                          nr of incoming transitions  =  nr of outgoing transitions

         except for  p, q …



Lemma:      Characteristic equation has a solution in N

                              iff
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           q(v)  ⟶*  p(w)               

State equation vs reachability

                     q(v)  ⤑* p(w)               
pseudo-run 
pseudo-configurations Zd

run
configurations Nd

Question:    Does  q(v)  ⤑* p(w)   imply  q(v)  ⟶*  p(w) ?  

True?strongly connected solution in N 

Fact:           Characteristic equation has a solution in N

                                if
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I.  Intro

II.  Decidability

• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement
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Reachability problem for VASS

q(v)
q’(v’)

Given
• VASS
• source q(v) 
• target q’(v’)

decide if  q(v)  ⟶*  q’(v’) 

• dimension d
• finite set of control states Q
• finite set of transitions T of the form:

                         a        
           q                       p          q, p  ∈  Q    a  ∈  Zdreachability 

instance
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Decomposition algorithm

reachability 
instance

if perfect answer positively

reachability 
instance

reachability 
instance

reachability 
instance … reachability 

instance

if perfect answer positively

reachability 
instance

reachability 
instance … reachability 

instance

if perfect answer positively

…

if perfect answer positively

if perfect answer positively

if perfect answer positively

if perfect answer positivelyif perfect answer positively

…
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II.  Decidability
• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement
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Perfectness: sufficient condition for reachability

Question:    Does  q(v)  ⤑* p(w)   imply  q(v)  ⟶*  p(w) ?  
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(𝜣1)   For every m,  q(v)  ⤑*  q’(v’)  using every transition  ≥ m times        unboundedness 

Perfectness

(𝜣1)  ⇒  VASS is strongly connected

source q(2, 0, 2) 
target  q’(1, 1, 0)  

Example:

✔q’
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(𝜣1)   For every m,  q(v)  ⤑*  q’(v’)  using every transition  ≥ m times        unboundedness 

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                              q(v)  ⟶*  q(v + 𝜟)                                                     forward pumpability       
                     q’(v’ + 𝜟’) ⟶*  q’(v’)                                                       backward pumpability

source q(2, 0)

source q(2, 0, 2)

Examples:

(2, 0)(2, 0)
(0, 2) (0, 2)

(2, 1)
(4, 0)(4, 0)

(3, 1) (3, 1)

✔

✘

Perfectness

                             q(v)  ⟶*  q(v + 𝜟)                                                     forward pumpability
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Perfectness: sufficient condition for reachability

Lemma:  (𝜣1) ∧ (𝜣2)   ⇒   q(v)  ⟶*  q’(v’). 

Proof:  

Choose sufficiently large n

q(v) q’(v’)

q(v + n𝜟) q’(v’ + n𝜟’)

q’(v’ + n𝜟)

𝜣2 𝜣2

𝜣1

Claim:   q’(𝜟)  ⤑*  q’(𝜟’).                                        

q’(v’ + (n-1)𝜟  +  𝜟’)

q’(v’ + 𝜟  +  (n-1)𝜟’)
…

Claim                                        

Claim                                        

Claim                                        

(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                            q(v)  ⟶*  q(v + 𝜟)                                                          
                   q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  
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Proof:

Claim:   q’(𝜟)  ⤑*  q’(𝜟’).                                        

Folding of a pseudo-run a:  F(a) ∈  NT 

Effect of a pseudo-run a:     E(a) ∈  Zd

                                                                            𝛂
Observation:   Given pseudo-runs  q(_ )         𝛃         q’(_ )  such that F(𝛂) - F(𝛃) ≥  1, 

                          there is a pseudo-run               𝛄         q’(_ )  such that F(𝛄) = F(𝛂) - F(𝛃)                    

                                  𝛂

(𝜣1)   ⇒   q(v)          𝛃          q’(v’)  such that F(𝛂) - F(𝛃)  arbitrarily large
                                                                         F(𝛂) - F(𝛃) - F(𝚷) - F(𝚷’)  ≥  1 
                                                                         F(𝛂)  - F(𝚷 𝛃 𝚷’)                  ≥  1

By Observation,  q’(_ )        𝛄    such that F(𝛄) = F(𝛂) - F(𝛃) - F(𝚷) - F(𝚷’)

                                                                    E(𝛄) = E(𝛂) - E(𝛃) - E(𝚷) - E(𝚷’)  = 

                                                                                                                0                      -    𝜟                -    (  - 𝜟’ )   =  𝜟’ - 𝜟 

(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                 𝚷:              q(v)  ⟶*  q(v + 𝜟)                                                          
                 𝚷’:    q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  
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II.  Decidability
• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement
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Decomposition algorithm

reachability 
instance

if perfect answer positively

reachability 
instance

reachability 
instance

reachability 
instance … reachability 

instance

if perfect answer positively

reachability 
instance

reachability 
instance … reachability 

instance

if perfect answer positively

…

if perfect answer positively

if perfect answer positively

if perfect answer positively

if perfect answer positivelyif perfect answer positively

Question:  Is  (𝜣1) ∧ (𝜣2)  decidable?
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(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                        q(v)  ⟶*  q(v + 𝜟)                                                          
               q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  Question:  How to decide  (𝜣2) ?

Using coverability tree!

Question:  How to decide  (𝜣1) ?
Using characteristic equation!

               z - y  =  1 
               x - u  =  1 
               z - x  =  2

source q(2, 0, 2) 
target  p(1, 1, 0)  

Example:

               z - y  =  0 
               x - u  =  0 
               z - x  =  0

homogeneous system:

✔

0

✘

Decidability of (𝜣1) ∧ (𝜣2)
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(𝜣2) fails:

(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                        q(v)  ⟶*  q(v + 𝜟)                                                          
               q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  

there exists m  s.t.  every configuration reachable from q(v) 
                               has some coordinate < m

m

m

q(v) 

m

m

q(v) 

computable - how?

due to coverability tree

there exists m  s.t.  every run from q(v)  
                               has some coordinate < m

⇒

Refinement
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reachability 
instance I

I with coordinate 
1 bounded by m 

I with coordinate 
2 bounded by m … I with coordinate 

d bounded by m 

(𝜣2) fails:

Refinement

there exists m  s.t.  every run from q(v)  
                               has some coordinate < m
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(𝜣1) fails:

(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                        q(v)  ⟶*  q(v + 𝜟)                                                          
               q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  

there exists m  s.t.  every pseudo-run q(v)   ⤑*  q’(v’) 
                               uses some transition < m times 

computable, using a bound on 
minimal solutions 
of state equation

reachability 
instance I

I(t, 0) …I(t, 1) I(t, m-1) …I(u, 0) …I(u, 1) I(u, m-1)

T = {t, u,  …}

I - t t I - t t … t I - t
(t appears k times) 

I(t, k)  := some cheating here!reachability 
instance I
t  ∈ T,    k < m

are these instances smaller?

Refinement
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(𝜣1) fails:

(𝜣1)   For every m,  q(v)  ⤑*  q’(v’) 
           using every transition  ≥ m times        

(𝜣2)   For some 𝜟, 𝜟’   ≥  1,
                        q(v)  ⟶*  q(v + 𝜟)                                                          
               q’(v’ + 𝜟’) ⟶*  q’(v’)                                                  

there exists m  s.t.  every pseudo-run q(v)   ⤑*  q’(v’) 
                               uses some transition < m times 

I - t t I - t t … t I - t
(t appears k times) 

reachability 
instance I

is this instance smaller?

Refinement

is this an instance at all?

       I1                      I2                      Ik               
t1 …t2 tk-1 
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I.  Intro

II.  Decidability

III. F𝜔 -hardness

• reachability and coverability
• equivalent models
• coverability tree
• state equation

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement



43

Reachability problem for counter programs

Reachability problem: given a counter program without zero tests,

can it halt?      (successfully execute its halt command)

Coverability problem: given a counter program without zero tests
with trivial halt command,

can it halt? 
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Loop programs
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III. F𝜔 -hardness
• reduction
•  multipliers and simulation of zero-tests
• amplifiers
• open questions
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counter program with 
zero-tests of size n

counter program
without zero-tests

Part  III: 
  F𝜔 -hardness of reachability

P can halt after  An(n)/2 zero-tests     iff       P’ can halt

counter programming

P P’

can it halt in An(n)/2 steps? 
can it halt? 

can it halt after An(n)/2 zero-tests? 

A𝜔(n) = An(n)

can it halt in An(n) steps? 
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III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions
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The set computed by a counter program

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)
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B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} 
RATIO(b, c, d, B)

One can compute  An(n)-multiplier of size O(n)

• b > 0 ? Hilbert’s 10th problem!

3 distinguished
counters b, c, d

B ∈ N  -  fixed positive integer
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F𝜔 -hardness of reachability

 RATIO(b, c, d, An(n))

program of size n 
with two zero-tested counters:

can halt after An(n)/2 zero-tests? 

P

P 
instrumented
using b, c, d

program without zero-tests:

An(n)-multiplier

can halt? 
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Instrumentation - simulation of zero tests

P 
instrumented
using b, c, d

zero-tested counters

• instrument increments and decrements:

• replace                 by 

• replace halt by

put x, y on 
budget c

c + x + y const

• b = An(n)
• c > 0
• d = b · c
• x = y = 0

Aim: 
simulate An(n)/2 zero-tests on x, y

halt of M
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c                      y                       x

d = b · (c + x + y)
const

c                      y                       x

c                      y                       x

c                      y                       x

• d decreases by    2 · (c + x + y)                        x = 0 initially and finally,  y preserved
• d decreases by < 2 · (c + x + y)                                                    will surely fail   

d decreases by <= 2 · (c + x + y)
b decreases by 2

Instrumentation - simulation of zero tests put x, y on 
budget c
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F𝜔 -hardness of reachability

 RATIO(b, c, d, An(n))

program of size n 
with two zero-tested counters:

can halt after An(n)/2 zero-tests? 

P

P 
instrumented
using b, c, d

program without zero-tests:

An(n)-multiplier

can halt? 

One can compute
An(n)-multiplier 
of size O(n)
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III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions
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A1-amplifier

An-amplifier                       

A2-amplifier

…

…

An(n)-multiplier A1(n)   =  2n     

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(1)  =  Ai
n

(1)     {n

An(n)-multiplier

One can compute
An(n)-multiplier 
of size O(n)
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The set computed by a counter program from a set I

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)

a set I of initial valuations

starting in I
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F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

P(b, c, d, b’, c’, d’)

halt if d=0

F : N → N  -  fixed function

starting in RATIO(b, c, d, B)
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initial valuation: all counters 0

n-multiplier

RATIO(b, c, d, n)

RATIO(b’, c’, d’, An(n))

An-amplifier

An(n)-multiplier

An-amplifier                       An(n)-multiplier

P(b, c, d, b’, c’, d’)
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• amplifier lifting:    

Ak-amplifier                            Ak+1-amplifier  

• A1-amplifier:

One can compute An-amplifier P(b, c, d, b’, c’, d’)
with 3n+2 counters, of size O(n)

A1(n)   =  2n     

Ak+1(n)  =  Ak  ◦ Ak ◦  … ◦ Ak(4)  =  Ak
n/4

(4)     {n/4

An-amplifier

A1-amplifier

An-amplifier                       

A2-amplifier

…

…

!
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Amplifier lifting

RATIO(b1, c1, d1, B)

RATIO(b2, c2, d2, Ak(B))

identity-amplifier

RATIO(b2, c2, d2, B)

RATIO(b1, c1, d1, B)

Ak-amplifier 

instrumented
using b, c, d

RATIO(b1, c1, d1, 4)
4-multiplier

A1(n)   =  2n     

Ak+1(n)  =  Ak  ◦ Ak ◦  … ◦ Ak(4)  =  Ak
n/4

(4)     {n/4

!

RATIO(b2, c2, d2, Ak+1(B))

RATIO(b, c, d, B)

Ak+1-amplifier
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III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions
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Open questions

• dimension-parametric complexity:  Fk-hardness for which dimension?

• small fixed dimension

• extensions:

• data Petri nets

• pushdown Petri nets

• branching Petri nets
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I.  Intro

II.  Decidability

III. F𝜔 -hardness

• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

thank you!


