
The reachability problem for Petri nets

ACPN 2023, Toruń, 2023-09-05
1

Sławomir Lasota
University of Warsaw

2

I. Intro
II. Decidability
III. F𝜔 -hardness

3

• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

I. Intro

4

Reachability problem in Petri nets

configuration : places → N Nd

step relation between configurations

Decision problem:

given
• Petri net
• source configuration
• target configuration

check if there is a sequence of steps
(run) from source to target

Petri net:

Coverability

≥ target

places and
transitions

target↑

5

Reachability problem in Petri nets
Coverability

configuration graph: configurations and steps

source
target

Reachability: is there a path (run) from source to target ?

Coverability: is there a path (run) from source to target↑ ?

6

• core verification problem

• equivalent to many other problems in concurrency, process
algebra, logic, language theory, linear algebra, etc

Why is it important?

7

EXPSPACE lower bound [Lipton TR Yale U]1976

EXPSPACE algorithm for coverability [Rackoff TCS]1978

decidability of coverability [Karp, Miller JCSS]1969

(incomplete) decidability of reachability [Sacerdote, Tenney STOC]1977

decidability of reachability [Mayr STOC]1981
decidability of reachability - simplified proof [Kosaraju STOC]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert TCS]1992

decidability of reachability by Presburger invariants [Leroux POPL]2011
upper bound F𝜔3 [Leroux, Schmitz LICS]2015

Ackermannian upper bound F𝜔 [Leroux, Schmitz LICS]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki STOC]2019 }gap

huge complexity gap!

Part II

8

2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz LICS]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki STOC]2019 }gap

super-TOWER lower bound [Czerwiński, L., Orlikowski ICALP]2021

Ackermannian lower bound F𝜔 [Czerwiński, Orlikowski FOCS] [Leroux FOCS]2021

improved and simplified Ackermannian lower bound F𝜔 [L. STACS]2021

222
…2}n

222…2}2n

gap closed!

Part III

9

Fast growing functions and induced complexity classes

A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n(1) {n

A2(n) = 2n

A3(n) = tower(n)

 =

A4(n) = …

22
2
… 2}n

Fi = ⋃ DTIME(Ai ◦ Aj1 ◦…◦ Ajm)

 j1 … jm < i

A𝜔(n) = An(n) Ackermann function

F2 = DTIME(2O(n))

F3 = TOWER
…

F𝜔 = ACKERMANN

10

I. Intro
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

11

Many faces of Petri nets

• vector addition systems with states (VASS):

• counter programs without zero-tests:• Petri nets:

p q

x

z

y

• vector addition systems

• counter automata without zero-tests

• multiset rewriting

• …

Part II

Part III

12

VASS

• dimension d
• finite set of control states Q
• finite set of transitions of the form:

 a effect of transition
 q p q, p ∈ Q

 a ∈ Zd

• configurations (q, v) = q(v) ∈ Q × Nd

• step relation:

 q(v) ⟶ p(v+a)

• reachability relation:

 q(v) ⟶* p(w)

two different graphs!

13

Petri nets ⇆ VASS

• vector addition systems with states (VASS):

• Petri nets:

p q

x

z

y

p

x y

split every transition

into input and output:

p

x y

then add one more “global” place

14

Counter programs without zero-tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example: initially: x’ = x = y = 0

finally: x' = 0 x = 100 y = 200

no zero tests

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n
nondeterminism

15

Counter programs → VASS

• vector addition systems with states (VASS):

• counter programs without zero-tests:

• dimension := number of counters

• control states := control locations

• transitions := commands

16

Counter programs with zero-tests

otherwise abort

zero test command:

Example:

counter programs
with zero-tests are
Turing complete

17

I. Intro
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

18

configuration graph:

source

configuration tree:

source

Petri nets or VASS

19

source

if = then stop generating the tree

coverability tree:

≤

if < then replace increased coordinates by 𝜔

domination

(2, 1, 6, 3) ≤ (2, 3, 7, 3)

increased

(2, 𝜔, 𝜔, 3)

Petri nets or VASS

“backward jump”

20

≤ for some i < j.

Dickson’s Lemma: every infinite sequence of configurations

admits a domination:

1 2 3 ….

i j

Petri nets or VASSdomination

≤

21

source

Coverability tree

Theorem: Coverability tree is finite.

 Coverable configurations = (coverability tree) ↓

Petri nets or VASS

Question: What can be read out from coverability tree?

22

I. Intro
• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

23

VASS

• dimension d
• finite set of control states Q
• finite set of transitions T of the form:

 a effect of transition

 q p q, p ∈ Q a ∈ Zd

• source q(v), target p(w) ∈ Q × Nd q, p distinct

• one variable per transition in T, to represent the number of its applications
• for each control state, an equation

 nr of incoming transitions = nr of outgoing transitions

 except for p, q …

Example: x + z + 1 = x + y

 y + u = u + z + 1

Characteristic equation

24

VASS

Example: x + z + 1 = x + y

 y + u = u + z + 1
source q(2, 0, 2),
target p(1, 1, 0) ∈ Q × N3

• d equations:

 total sum of effects = w - v

 -x + 2u = -1

 x - u = 1

 -z = -2

 q p q, p ∈ Q a ∈ Zd

• source q(v), target p(w) ∈ Q × Nd q, p distinct

• one variable per transition in T, to represent the number of its applications
• for each control state, an equation

 nr of incoming transitions = nr of outgoing transitions

 except for p, q …

Lemma: Characteristic equation has a solution in N

 iff

25

 q(v) ⟶* p(w)

State equation vs reachability

 q(v) ⤑* p(w)
pseudo-run
pseudo-configurations Zd

run
configurations Nd

Question: Does q(v) ⤑* p(w) imply q(v) ⟶* p(w) ?

True?strongly connected solution in N

Fact: Characteristic equation has a solution in N

 if

26

I. Intro

II. Decidability

• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

27

Reachability problem for VASS

q(v)
q’(v’)

Given
• VASS
• source q(v)
• target q’(v’)

decide if q(v) ⟶* q’(v’)

• dimension d
• finite set of control states Q
• finite set of transitions T of the form:

 a
 q p q, p ∈ Q a ∈ Zdreachability

instance

28

Decomposition algorithm

reachability
instance

if perfect answer positively

reachability
instance

reachability
instance

reachability
instance … reachability

instance

if perfect answer positively

reachability
instance

reachability
instance … reachability

instance

if perfect answer positively

…

if perfect answer positively

if perfect answer positively

if perfect answer positively

if perfect answer positivelyif perfect answer positively

…

29

II. Decidability
• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

30

Perfectness: sufficient condition for reachability

Question: Does q(v) ⤑* p(w) imply q(v) ⟶* p(w) ?

31

(𝜣1) For every m, q(v) ⤑* q’(v’) using every transition ≥ m times unboundedness

Perfectness

(𝜣1) ⇒ VASS is strongly connected

source q(2, 0, 2)
target q’(1, 1, 0)

Example:

✔q’

32

(𝜣1) For every m, q(v) ⤑* q’(v’) using every transition ≥ m times unboundedness

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟) forward pumpability
 q’(v’ + 𝜟’) ⟶* q’(v’) backward pumpability

source q(2, 0)

source q(2, 0, 2)

Examples:

(2, 0)(2, 0)
(0, 2) (0, 2)

(2, 1)
(4, 0)(4, 0)

(3, 1) (3, 1)

✔

✘

Perfectness

 q(v) ⟶* q(v + 𝜟) forward pumpability

33

Perfectness: sufficient condition for reachability

Lemma: (𝜣1) ∧ (𝜣2) ⇒ q(v) ⟶* q’(v’).

Proof:

Choose sufficiently large n

q(v) q’(v’)

q(v + n𝜟) q’(v’ + n𝜟’)

q’(v’ + n𝜟)

𝜣2 𝜣2

𝜣1

Claim: q’(𝜟) ⤑* q’(𝜟’).

q’(v’ + (n-1)𝜟 + 𝜟’)

q’(v’ + 𝜟 + (n-1)𝜟’)
…

Claim

Claim

Claim

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟)
 q’(v’ + 𝜟’) ⟶* q’(v’)

34

Proof:

Claim: q’(𝜟) ⤑* q’(𝜟’).

Folding of a pseudo-run a: F(a) ∈ NT

Effect of a pseudo-run a: E(a) ∈ Zd

 𝛂
Observation: Given pseudo-runs q(_) 𝛃 q’(_) such that F(𝛂) - F(𝛃) ≥ 1,

 there is a pseudo-run 𝛄 q’(_) such that F(𝛄) = F(𝛂) - F(𝛃)

 𝛂

(𝜣1) ⇒ q(v) 𝛃 q’(v’) such that F(𝛂) - F(𝛃) arbitrarily large
 F(𝛂) - F(𝛃) - F(𝚷) - F(𝚷’) ≥ 1
 F(𝛂) - F(𝚷 𝛃 𝚷’) ≥ 1

By Observation, q’(_) 𝛄 such that F(𝛄) = F(𝛂) - F(𝛃) - F(𝚷) - F(𝚷’)

 E(𝛄) = E(𝛂) - E(𝛃) - E(𝚷) - E(𝚷’) =

 0 - 𝜟 - (- 𝜟’) = 𝜟’ - 𝜟

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 𝚷: q(v) ⟶* q(v + 𝜟)
 𝚷’: q’(v’ + 𝜟’) ⟶* q’(v’)

35

II. Decidability
• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

36

Decomposition algorithm

reachability
instance

if perfect answer positively

reachability
instance

reachability
instance

reachability
instance … reachability

instance

if perfect answer positively

reachability
instance

reachability
instance … reachability

instance

if perfect answer positively

…

if perfect answer positively

if perfect answer positively

if perfect answer positively

if perfect answer positivelyif perfect answer positively

Question: Is (𝜣1) ∧ (𝜣2) decidable?

37

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟)
 q’(v’ + 𝜟’) ⟶* q’(v’) Question: How to decide (𝜣2) ?

Using coverability tree!

Question: How to decide (𝜣1) ?
Using characteristic equation!

 z - y = 1
 x - u = 1
 z - x = 2

source q(2, 0, 2)
target p(1, 1, 0)

Example:

 z - y = 0
 x - u = 0
 z - x = 0

homogeneous system:

✔

0

✘

Decidability of (𝜣1) ∧ (𝜣2)

38

(𝜣2) fails:

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟)
 q’(v’ + 𝜟’) ⟶* q’(v’)

there exists m s.t. every configuration reachable from q(v)
 has some coordinate < m

m

m

q(v)

m

m

q(v)

computable - how?

due to coverability tree

there exists m s.t. every run from q(v)
 has some coordinate < m

⇒

Refinement

39

reachability
instance I

I with coordinate
1 bounded by m

I with coordinate
2 bounded by m … I with coordinate

d bounded by m

(𝜣2) fails:

Refinement

there exists m s.t. every run from q(v)
 has some coordinate < m

40

(𝜣1) fails:

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟)
 q’(v’ + 𝜟’) ⟶* q’(v’)

there exists m s.t. every pseudo-run q(v) ⤑* q’(v’)
 uses some transition < m times

computable, using a bound on
minimal solutions
of state equation

reachability
instance I

I(t, 0) …I(t, 1) I(t, m-1) …I(u, 0) …I(u, 1) I(u, m-1)

T = {t, u, …}

I - t t I - t t … t I - t
(t appears k times)

I(t, k) := some cheating here!reachability
instance I
t ∈ T, k < m

are these instances smaller?

Refinement

41

(𝜣1) fails:

(𝜣1) For every m, q(v) ⤑* q’(v’)
 using every transition ≥ m times

(𝜣2) For some 𝜟, 𝜟’ ≥ 1,
 q(v) ⟶* q(v + 𝜟)
 q’(v’ + 𝜟’) ⟶* q’(v’)

there exists m s.t. every pseudo-run q(v) ⤑* q’(v’)
 uses some transition < m times

I - t t I - t t … t I - t
(t appears k times)

reachability
instance I

is this instance smaller?

Refinement

is this an instance at all?

 I1 I2 Ik
t1 …t2 tk-1

42

I. Intro

II. Decidability

III. F𝜔 -hardness

• reachability and coverability
• equivalent models
• coverability tree
• state equation

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

43

Reachability problem for counter programs

Reachability problem: given a counter program without zero tests,

can it halt? (successfully execute its halt command)

Coverability problem: given a counter program without zero tests
with trivial halt command,

can it halt?

44

Loop programs

45

III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

46

counter program with
zero-tests of size n

counter program
without zero-tests

Part III:
 F𝜔 -hardness of reachability

P can halt after An(n)/2 zero-tests iff P’ can halt

counter programming

P P’

can it halt in An(n)/2 steps?
can it halt?

can it halt after An(n)/2 zero-tests?

A𝜔(n) = An(n)

can it halt in An(n) steps?

47

III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

48

The set computed by a counter program

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)

49

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

}
RATIO(b, c, d, B)

One can compute An(n)-multiplier of size O(n)

• b > 0 ? Hilbert’s 10th problem!

3 distinguished
counters b, c, d

B ∈ N - fixed positive integer

50

F𝜔 -hardness of reachability

 RATIO(b, c, d, An(n))

program of size n
with two zero-tested counters:

can halt after An(n)/2 zero-tests?

P

P
instrumented
using b, c, d

program without zero-tests:

An(n)-multiplier

can halt?

51

Instrumentation - simulation of zero tests

P
instrumented
using b, c, d

zero-tested counters

• instrument increments and decrements:

• replace by

• replace halt by

put x, y on
budget c

c + x + y const

• b = An(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate An(n)/2 zero-tests on x, y

halt of M

52

c y x

d = b · (c + x + y)
const

c y x

c y x

c y x

• d decreases by 2 · (c + x + y) x = 0 initially and finally, y preserved
• d decreases by < 2 · (c + x + y) will surely fail

d decreases by <= 2 · (c + x + y)
b decreases by 2

Instrumentation - simulation of zero tests put x, y on
budget c

53

F𝜔 -hardness of reachability

 RATIO(b, c, d, An(n))

program of size n
with two zero-tested counters:

can halt after An(n)/2 zero-tests?

P

P
instrumented
using b, c, d

program without zero-tests:

An(n)-multiplier

can halt?

One can compute
An(n)-multiplier
of size O(n)

54

III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

55

A1-amplifier

An-amplifier

A2-amplifier

…

…

An(n)-multiplier A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n

(1) {n

An(n)-multiplier

One can compute
An(n)-multiplier
of size O(n)

56

The set computed by a counter program from a set I

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)

a set I of initial valuations

starting in I

57

F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

P(b, c, d, b’, c’, d’)

halt if d=0

F : N → N - fixed function

starting in RATIO(b, c, d, B)

58

initial valuation: all counters 0

n-multiplier

RATIO(b, c, d, n)

RATIO(b’, c’, d’, An(n))

An-amplifier

An(n)-multiplier

An-amplifier An(n)-multiplier

P(b, c, d, b’, c’, d’)

59

• amplifier lifting:

Ak-amplifier Ak+1-amplifier

• A1-amplifier:

One can compute An-amplifier P(b, c, d, b’, c’, d’)
with 3n+2 counters, of size O(n)

A1(n) = 2n

Ak+1(n) = Ak ◦ Ak ◦ … ◦ Ak(4) = Ak
n/4

(4) {n/4

An-amplifier

A1-amplifier

An-amplifier

A2-amplifier

…

…

!

60

Amplifier lifting

RATIO(b1, c1, d1, B)

RATIO(b2, c2, d2, Ak(B))

identity-amplifier

RATIO(b2, c2, d2, B)

RATIO(b1, c1, d1, B)

Ak-amplifier

instrumented
using b, c, d

RATIO(b1, c1, d1, 4)
4-multiplier

A1(n) = 2n

Ak+1(n) = Ak ◦ Ak ◦ … ◦ Ak(4) = Ak
n/4

(4) {n/4

!

RATIO(b2, c2, d2, Ak+1(B))

RATIO(b, c, d, B)

Ak+1-amplifier

61

III. F𝜔 -hardness
• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

62

Open questions

• dimension-parametric complexity: Fk-hardness for which dimension?

• small fixed dimension

• extensions:

• data Petri nets

• pushdown Petri nets

• branching Petri nets

63

I. Intro

II. Decidability

III. F𝜔 -hardness

• reachability and coverability
• equivalent models
• coverability tree
• characteristic equation

• reduction
• multipliers and simulation of zero-tests
• amplifiers
• open questions

• decomposition algorithm
• perfectness: sufficient condition for reachability
• refinement

thank you!

