The reachability problem for Petri nets

Sławomir Lasota
University of Warsaw

I. Intro
 II. Decidability III. F $_{\omega}$-hardness

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Petri net:

configuration : places $\rightarrow \mathbb{N} \quad \mathbb{N}^{d}$
step relation between configurations

Decision problem:

given

- Petri net
- source configuration
- target configuration
check if there is a sequence of steps (run) from source to \geq target

Reability problem in Petri nets Coverability

configuration graph: configurations and steps

Reachability: is there a path (run) from source to target?
Coverability: is there a path (run) from source to target \uparrow ?

Why is it important?

- core verification problem
- equivalent to many other problems in concurrency, process algebra, logic, language theory, linear algebra, etc

Fast growing functions and induced complexity classes

$$
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=A_{i} \circ A_{i} \circ \ldots \circ A_{i}(1)=A_{i}^{n}(1) \\
& A_{\omega}(n)=A_{n}(n) \quad \text { Ackermann function }
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}(n)=2^{n} \\
& A_{3}(n)=\operatorname{tower}(n)
\end{aligned}
$$

$$
A_{4}(n)=\ldots
$$

$$
\left..^{2^{2^{2}}}\right\}
$$

$$
\begin{array}{ll}
\mathrm{F}_{i}=\bigcup_{j_{1} \ldots j_{m<i}} \operatorname{DTIME}\left(A_{i} \circ A_{j l} \circ \ldots \circ A_{j m}\right) & \mathrm{F}_{2}=\operatorname{DTIME}\left(2^{\circ(\mathrm{n})}\right) \\
& \mathrm{F}_{3}=\operatorname{TOWER} \\
& \ldots \\
& \mathrm{F}_{\omega}=\operatorname{ACKERMANN}
\end{array}
$$

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Many faces of Petri nets

Part III

- Petri nets:

- vector addition systems with states (VASS):

Part II

- dimension d
- finite set of control states Q
- finite set of transitions of the form:

two different graphs!

- configurations $(q, v)=q(v) \in Q \times \mathbb{N}^{d}$
- step relation:

$$
q(v) \longrightarrow p(v+a)
$$

- reachability relation:

$$
q(v) \longrightarrow^{*} p(w)
$$

Petri nets \leftrightarrows VASS

- Petri nets:

- vector addition systems with states (VASS):

split every transition

into input and output:

then add one more "global" place

Counter programs without zero-tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

$\mathrm{x}+=n$	(increment counter x by $n)$	
$\mathrm{x}-=n$	(decrement counter x by $n)$	abort if $\mathrm{x}<n$
goto L or L^{\prime}	$\left(\right.$ jump to either line L or line $\left.L^{\prime}\right)$	nondeterminism

except for the very last command which is of the form:

$$
\begin{array}{ll}
\text { halt if } \mathrm{x}_{1}, \ldots, \mathrm{x}_{l}=0 & \begin{array}{l}
\text { (terminate provided all } \\
\text { the listed counters are zero) }
\end{array}
\end{array}
$$

Example:

Counter programs \rightarrow VASS

- counter programs without zero-tests:
- dimension $:=$ number of counters
- control states := control locations
- transitions := commands

1:	loop	
2:	loop	
$3:$	$x-=1$	$y+=1$
4:	loop	
$5:$	$x+=1$	$y-=1$
6:	$z-=1$	

- vector addition systems with states (VASS):
$(-1,1,0) \complement^{p} \overbrace{(0,0,-1)}^{(0,0,0)} \sim q \frown(1,-1,0)$

Counter programs with zero-tests

zero test command:
zero? x
(continue if counter \times equals 0) otherwise abort

Example:

1: $x+=100$
2: goto 3 or 5
3: $x-=1$
4: goto 2
5: zero? x
6: $x+=1$
> counter programs with zero-tests are Turing complete
I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation
configuration graph:

configuration tree:

coverability tree: domination

domination

Dickson's Lemma: every infinite sequence of configurations

admits a domination:
$\theta_{i} \leq \Theta_{j}$ for some $\mathrm{i}<\mathrm{j}$.

Theorem: Coverability tree is finite.
Coverable configurations = (coverability tree) \downarrow

Question: What can be read out from coverability tree?

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

Characteristic equation

- dimension d

- finite set of control states Q
- finite set of transitions T of the form:

- source $q(v)$, target $p(w) \in Q \times \mathbb{N}^{d} q, p$ distinct

- one variable per transition in T, to represent the number of its applications
- for each control state, an equation

$$
\mathrm{nr} \text { of incoming transitions }=\mathrm{nr} \text { of outgoing transitions }
$$

except for $p, q \ldots$
Example: $\quad x+z+1=x+y$

$$
y+u=u+z+1
$$

- source $q(v)$, target $p(w) \in Q \times \mathbb{N}^{d} \quad q, p$ distinct

- one variable per transition in T, to represent the number of its applications
- for each control state, an equation

$$
\mathrm{nr} \text { of incoming transitions }=\mathrm{nr} \text { of outgoing transitions }
$$

except for $p, q \ldots$

- d equations:

```
total sum of effects =w-v
```

Example:

$$
\begin{aligned}
x+z+1 & =x+y \\
y+u & =u+z+1 \\
-x+2 u & =-1 \\
x-u & =1 \\
-z & =-2
\end{aligned}
$$

source $q(2,0,2)$,
$\operatorname{target} p(1,1,0) \in Q \times \mathbb{N}^{3}$

State equation vs reachability

Fact: \quad Characteristic equation has a solution in \mathbb{N}
$q(v) \xrightarrow{\text { if }}^{\text {in run }} p(w) \quad$ configurations \mathbb{N}^{d}

Lemma: Characteristic equation has a strongly connected solution in \mathbb{N}

Question: Does $q(v) \cdots_{\rightarrow^{*}} p(w)$ imply $q(v) \longrightarrow{ }^{*} p(w)$?

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Reachability problem for VASS

Decomposition algorithm

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Perfectness: sufficient condition for reachability

Question: Does $q(v) \cdots^{*} p(w)$ imply $q(v) \longrightarrow{ }^{*} p(w)$?

Perfectness

 $\left(\boldsymbol{\Theta}_{1}\right)$ For every $m, q(v) \ldots \ldots{ }^{*} q^{\prime}\left(v^{\prime}\right)$ using every transition $\geq m$ times unboundedness$\left(\boldsymbol{\Theta}_{1}\right) \Rightarrow$ VASS is strongly connected

Example:

$(-1,1,1) \bigodot q^{\prime} \overbrace{(0,0,-1)}^{(0,0,0)} q{ }^{(1,-1,0)}$
source $q(2,0,2)$
target $q^{\prime}(1,1,0)$

Perfectness

$\left(\boldsymbol{\Theta}_{1}\right)$ For every $m, q(v) \cdots^{*} q^{\prime}\left(v^{\prime}\right)$ using every transition $\geq m$ times unboundedness $\left(\boldsymbol{\Theta}_{2}\right)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}^{\prime} \geq \mathbf{1}$,

$$
\begin{aligned}
q(v) & \longrightarrow *{ }^{*}(v+\Delta) \\
q^{\prime}\left(v^{\prime}+\Delta^{\prime}\right) & \longrightarrow{ }^{*} q^{\prime}\left(v^{\prime}\right)
\end{aligned}
$$

Examples:

source $q(2,0,2)$
x

source $q(2,0)$

Perfectness: sufficient condition for reachability

Lemma: $\left(\boldsymbol{\Theta}_{1}\right) \wedge\left(\boldsymbol{\Theta}_{2}\right) \Rightarrow q(v) \longrightarrow q^{*}\left(v^{\prime}\right)$.

Proof:
Choose sufficiently large n

Claim: $q^{\prime}(\Delta) \xrightarrow{\cdots \cdots \rightarrow)^{*}} q^{\prime}\left(\Delta^{\prime}\right)$.
using every transition $\geq m$ times
$\left(\boldsymbol{\Theta}_{2}\right)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}^{\prime} \geq \mathbf{1}$,

$$
q(v) \Longrightarrow q(v+\Delta)
$$

$$
q^{\prime}\left(v^{\prime}+\Delta^{\prime}\right) \rightarrow^{*} q^{\prime}\left(v^{\prime}\right)
$$

$q^{\prime}\left(v^{\prime}+\boldsymbol{\Delta}+(n-1) \boldsymbol{\Delta}^{\prime}\right)$
$\xrightarrow[\text { Claim }]{ } q^{\prime}\left(v^{\prime}+n \boldsymbol{\Delta}^{\prime}\right)$ 致

Claim: $q^{\prime}(\Delta) \xrightarrow{-\cdots} q^{*}\left(\Delta^{\prime}\right)$.

Proof:
$\left(\boldsymbol{\Theta}_{1}\right) \quad$ For every $m, q(v) \rightarrow^{*} q^{\prime}\left(v^{\prime}\right)$ using every transition $\geq m$ times $\left(\boldsymbol{\Theta}_{2}\right)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}^{\prime} \geq \mathbf{1}$,
$\Pi: \quad q(v) \longrightarrow{ }^{*} q(v+\Delta)$ $\Pi^{\prime}: q^{\prime}\left(v^{\prime}+\Delta^{\prime}\right) \longrightarrow^{*} q^{\prime}\left(v^{\prime}\right)$

Folding of a pseudo-run a: $\mathrm{F}(\mathrm{a}) \in \mathbb{N}^{T}$
Effect of a pseudo-run a: $\quad \mathrm{E}(\mathrm{a}) \in \mathbb{Z}^{d}$
Observation: Given pseudo-runs $\left.\left.q()_{-}\right) \quad \beta \quad q^{\prime}()^{\prime}\right)$ such that $F(\alpha)-F(\beta) \geq \mathbf{1}$, there is a pseudo-run
$\boldsymbol{\gamma} \cdots q^{\prime}()^{\prime}$ such that $\mathrm{F}(\boldsymbol{\gamma})=\mathrm{F}(\boldsymbol{\alpha})-\mathrm{F}(\boldsymbol{\beta})$
$\left(\boldsymbol{\Theta}_{1}\right) \Rightarrow q(v) \quad \beta \quad q^{\prime}\left(v^{\prime}\right)$ such that $\mathrm{F}(\boldsymbol{\alpha})-\mathrm{F}(\boldsymbol{\beta})$ arbitrarily large

$$
\begin{array}{ll}
F(\alpha)-F(\beta)-F(\boldsymbol{\Pi})-F\left(\boldsymbol{\Pi}^{\prime}\right) & \geq \mathbf{1} \\
F(\alpha)-F\left(\boldsymbol{\Pi} \beta \boldsymbol{\Pi}^{\prime}\right) & \geq \mathbf{1}
\end{array}
$$

By Observation, $\left.q^{\prime}()_{-}\right)$such that $\mathrm{F}(\boldsymbol{\gamma})=\mathrm{F}(\boldsymbol{\alpha})-\mathrm{F}(\boldsymbol{\beta})-\mathrm{F}(\boldsymbol{\Pi})-\mathrm{F}\left(\boldsymbol{\Pi}^{\prime}\right)$

$$
\begin{aligned}
\mathrm{E}(\boldsymbol{\gamma})=\mathrm{E}(\boldsymbol{\alpha})-\mathrm{E}(\boldsymbol{\beta})-\mathrm{E}(\boldsymbol{\Pi})-\mathrm{E}\left(\boldsymbol{\Pi}^{\prime}\right) & = \\
0-\boldsymbol{\Delta}-\left(-\boldsymbol{\Delta}^{\prime}\right) & =\boldsymbol{\Delta}^{\prime}-\boldsymbol{\Delta}
\end{aligned}
$$

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

Decomposition algorithm

Question: Is $\left(\boldsymbol{\Theta}_{1}\right) \wedge\left(\boldsymbol{\Theta}_{2}\right)$ decidable?

Decidability of $\left(\boldsymbol{\Theta}_{1}\right) \wedge\left(\boldsymbol{\Theta}_{2}\right)$

Question: How to decide $\left(\Theta_{2}\right)$?
Using coverability tree!

Question: How to decide $\left(\boldsymbol{\Theta}_{1}\right)$?
Using characteristic equation!

Example:

$(-1,1,(1) \int^{\sim} \overbrace{(0,0,-1)}^{(0,0,0)} q(1,-1,0)$

$$
\begin{aligned}
& \text { source } q(2,0,2) \\
& \text { target } p(1,1,0)
\end{aligned}
$$

homogeneous system:

$$
z-y=1
$$

$$
z-y=0
$$

$$
x-u=0
$$

$$
z-\mathbf{X}=0
$$

Refinement

$\left(\boldsymbol{\Theta}_{2}\right)$ fails:
computable - how?
($\left.\boldsymbol{\Theta}_{1}\right)$ For every $m, q(v) \rightarrow{ }^{*} q^{\prime}\left(v^{\prime}\right)$ using every transition $\geq m$ times $\left(\boldsymbol{\Theta}_{2}\right)$ For some $\boldsymbol{\Delta}, \boldsymbol{\Delta}^{\prime} \geq \mathbf{1}$,

$$
\begin{aligned}
q(v) & \rightarrow^{*} q(v+\Delta) \\
q^{\prime}\left(v^{\prime}+\Delta^{\prime}\right) & \rightarrow^{*} q\left(v^{\prime}\right)
\end{aligned}
$$

there exists m s.t. every configuration reachable from $q(v)$ has some coordinate <m

there exists m s.t. every run from $q(v)$ has some coordinate $<m$

Refinement

$\left(\Theta_{2}\right)$ fails: there exists m s.t. every run from $q(v)$
has some coordinate $<m$

Refinement

$\begin{array}{ll}\left(\boldsymbol{\Theta}_{1}\right) & \text { For every } m, q(v){ }^{*} q^{\prime}\left(v^{\prime}\right) \\ & \text { using every transition } \geq m \text { times } \\ \left(\boldsymbol{\Theta}_{2}\right) & \text { For some } \boldsymbol{\Delta}, \boldsymbol{\Delta}^{\prime} \geq \mathbf{1}, \\ & q(v) \rightarrow^{*} q(v+\boldsymbol{\Delta}) \\ & q^{\prime}\left(v^{\prime}+\boldsymbol{\Delta}^{\prime}\right) \rightarrow^{*} q^{\prime}\left(v^{\prime}\right)\end{array}$
minimal solutions of state equation
$\left(\boldsymbol{\Theta}_{1}\right)$ fails:

computable, using a bound on

$$
q(v) \rightarrow^{*} q(v+\Delta)
$$

$$
q^{\prime}\left(v^{\prime}+\Delta^{\prime}\right) \rightarrow{ }^{*} q^{\prime}\left(v^{\prime}\right)
$$

$t \in T, \quad k<m$

$$
T=\{t, u, \ldots\}
$$

are these instances smaller?

Refinement

$\left(\boldsymbol{\Theta}_{1}\right)$ fails:
there exists m s.t. every pseudo-run $q(v) \quad \rightarrow^{*} q^{\prime}\left(v^{\prime}\right)$ uses some transition < m times

is this instance smaller? is this an instance at all?

I. Intro

- reachability and coverability
- equivalent models
- coverability tree
- state equation

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

III. $F_{\omega \omega}$-hardness

Reachability problem for counter programs

Reachability problem: given a counter program without zero tests,

```
1: \(x^{\prime}+=100\)
2: goto 5 or 3
3: \(x+=1 \quad x^{\prime}-=1 \quad y+=2\)
4: goto 2
5: halt if \(x^{\prime}=0\).
```

can it halt? (successfully execute its halt command)

Coverability problem: given a counter program without zero tests with trivial halt command,

can it halt?

```
    1: }\mp@subsup{x}{}{\prime}+=10
    2: goto 5 or 3
    3:x+=1 x' }x=1\quady+=
    4: goto 2
    5: halt if }\mp@subsup{x}{}{\prime}=0
```

1: $x^{\prime}+=100$
2: loop
3: $\quad x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: halt if $x^{\prime}=0$

III. F $_{\omega}$-hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions
$F_{\omega \text {-hardness of reachability }}$
counter program with zero-tests of size n

can it halt in $A_{n}(n)$ steps?
can it halt in $A_{n}(n) / 2$ steps?
can it halt after $A_{\boldsymbol{n}}(n) / 2$ zero-tests?
counter program without zero-tests

```
1: x+=1 y += 1
2: loop
4. for }i:=n\mathrm{ down to 1 do
        P
: loop
11: halt if }y=
can it halt?
```


III. F $_{\omega}$-hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

The set computed by a counter program

B-multiplier

$B \in \mathbb{N}$ - fixed positive integer

One can compute $A_{\boldsymbol{n}}(n)$-multiplier of size $O(n)$
F_{ω}-hardness of reachability
program of size n
with two zero-tested counters:

can halt after $A_{\boldsymbol{n}}(\boldsymbol{n}) / 2$ zero-tests?
program without zero-tests:
1: $\mathrm{i}+=$
2: loop
2: loop
3: \quad x
4: loop
5:
instrumented
using b, c, d
19: loop
19:
can halt?

Instrumentation - simulation of zero tests

- $\mathrm{b}=A_{n}(n)$
- c > 0
- $\mathrm{d}=\mathrm{b} \cdot \mathrm{c}$
- $\mathrm{x}=\mathrm{y}=0 \quad$ zero-tested counters

- instrument increments and decrements:

\[

\]

- replace zero? \times by

$$
\begin{aligned}
& \text { ZERO? } \mathrm{x} \text { : } \\
& \text { 1: loop } \\
& \text { 2: } \quad y-=1 \quad x+=1 \quad d-=1 \\
& \text { loop } \\
& \text { 4: } \quad c-=1 \quad y+=1 \quad d-=1 \\
& \text { 5: loop } \\
& \text { 6: } \quad y-=1 \quad c+=1 \quad d-=1 \\
& \text { 7: loop } \\
& \text { 8: } \quad x-=1 \quad y+=1 \quad d-=1 \\
& \text { 9: } b-=2
\end{aligned}
$$

- replace halt by

- simulation of zero tests

$$
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { const }}
$$

$$
\begin{aligned}
& \mathrm{d} \text { decreases by }<=2 \cdot(\mathrm{c}+\mathrm{x}+\mathrm{y}) \\
& \mathrm{b} \text { decreases by } 2
\end{aligned}
$$

- d decreases by $2 \cdot(\mathrm{c}+\mathrm{x}+\mathrm{y}) \longrightarrow \mathrm{x}=0$ initially and finally, y preserved
- d decreases by $<2 \cdot(c+x+y)$
 halt if $\ldots, d=0$. will surely fail
F_{ω}-hardness of reachability
program of size n
with two zero-tested counters:

One can compute $A_{n}(n)$-multiplier of size $O(n)$
can halt after $A_{\boldsymbol{n}}(\boldsymbol{n}) / 2$ zero-tests?
program without zero-tests:
1: $x+=1 \quad y+=1$
2: loop
$A_{n}(n)=$ multiplier
loop
$\mathbf{x}+=i+1 \quad \mathrm{z}-=i$
loop
10: $\quad \mathrm{x}-=n+1 \quad \mathrm{y}-=1$
11: halt if $\mathrm{y}=0$.
RATIO(b, c, d, $\left.A_{n}(n)\right)$
1: $\mathrm{i}+=$
2: loop
4: loop
P
P
instrumented
instrumented
using b, c, d
using b, c, d
19: loop
20:
can halt?

III. F_{ω}-hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

$$
A_{1}(n)=2 n
$$

One can compute $A_{n}(n)$-multiplier of size $O(n)$

The set computed by a counter program from a set I

a set I of initial valuations

initial valuation: all counters 0

```
1: x += 1 y += 1
    loop
        x+= 1 y += 1
    for i := n down to 1 do
        loop
            x-=1 z+=1
        loop
            x += i+1 z -= i
    loop
10: x -= n+1 y -= 1
11: halt if }\textrm{y}=0\mathrm{ .
```

the set of all valuations at successful halt

F-amplifier

$$
\operatorname{RATIO}(\mathrm{b}, \mathrm{c}, \mathrm{~d}, B)\left\{\begin{array}{l}
\cdot \mathrm{b}=B \\
\bullet \mathrm{c}>0 \\
\cdot \mathrm{~d}=\mathrm{b} \cdot \mathrm{c} \\
\cdot \text { all other counters } 0
\end{array}\right.
$$

$F: \mathbb{N} \rightarrow \mathbb{N}$ - fixed function

For every fixed B :

$A_{\boldsymbol{n}}$-amplifier $\longrightarrow A_{\boldsymbol{n}}(\boldsymbol{n})$-multiplier

A_{n}-amplifier

$$
\begin{aligned}
& A_{l}(n)=2 n \\
& A_{k+1}(n)=A_{k} \circ A_{k} \circ \ldots \circ A_{k}(4)=A_{k}^{n / 4}
\end{aligned}
$$

'One can compute $A_{n^{-a m p l i f i e r ~}} \mathbf{P}(\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{b}$ ', c', d') with $3 n+2$ counters, of size $O(n)$

- A_{1}-amplifier:

```
1: loop
2: loop
                    c -= 1 coc
        loop
            c}\mp@subsup{c}{}{\prime}-=1\quadc+=1\quadd-=1\quad\mp@subsup{d}{}{\prime}+=
        b -= 2 b' += 4
    loop
8: c -= 1 c
9: b -= 2 b
```

- amplifier lifting:
A_{k}-amplifier
$\longrightarrow A_{k+1}$-amplifier

Amplifier lifting

- $A_{k+1}(n)=A_{k} \circ A_{k} \circ \ldots \circ A_{k}(4)=A_{k}{ }^{n / 4}$ (4) $n / 4$

\mathcal{L} identity-amplifier
RATIO $\left(\mathrm{b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, B\right)$

III. F_{ω}-hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

Open questions

- dimension-parametric complexity: F_{k}-hardness for which dimension?
- small fixed dimension
- extensions:
- data Petri nets
- pushdown Petri nets
- branching Petri nets

- reachability and coverability
- equivalent models
- coverability tree
- characteristic equation

II. Decidability

- decomposition algorithm
- perfectness: sufficient condition for reachability
- refinement

III. F_{ω}-hardness

- reduction
- multipliers and simulation of zero-tests
- amplifiers
- open questions

Positions

l offer a postdoc position (details) and a PhD position (details) in automata and concurrency theory.

Slides

The reachabilityproblem for Petri nets
Orbit-finite linear programming
Frontiers of automatic analysis of concurrent systems Solvability of orbit-finite systems of linear equations Some recent advances in register automata
Improved Ackermannian lower bound for the Petri nets ree Lower bounds for reachability in VASS in fixed dimension Computation theory with atoms I
Computation theory with atoms II
The reachabilityproblem for Petri nets is not elementary. Timed pushdown automata and branching vector addition Homomorphism problems for FO definable structures Decidability border for Petri nets with data: WQO dichotor Automata with timed atoms
Reachability analysis of first-order definable pushdown au Computation with atoms
Turing machines over infinite alphabets

