Improved Ackermannian lower bound for the Petri nets reachability problem

[Czerwiński, L., Lazic, Leroux, Mazowiecki 2019]
[Czerwiński, L., Orlikowski 2021]
[Czerwiński, Orlikowski 2021]
[Leroux 2021]
[L. 2022]

Sławomir Lasota

University of Warsaw

Jagiellonian TCS Seminar, 2022.01.26, online

Part I:

the reachability problem and its complexity

• Petri nets:

• Petri nets:

• vector addition systems with states:

• Petri nets:

• vector addition systems with states:

- vector addition systems
- counter automata without 0-tests
- multiset rewriting

• . . .

• Petri nets:

• vector addition systems with states:

• counter programs without 0-tests:

- vector addition systems
- counter automata without 0-tests
- multiset rewriting

• . . .

• counter programs without 0-tests:

1:	loop	
2:	loop	
3:	x −= 1	y += 1
4:	loop	
5:	x += 1	y -= 1
6:	z -= 1	

counters are nonnegative integer variables initially all equal zero

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment	counter	х	by	n)
--------	------------	---------	---	----	---	---

- x = n (decrement counter x by n)
- **goto** L **or** L' (jump to either line L or line L')

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter x by n)	
x -= n	(decrement counter x by n)	abort if x
goto L or L'	(jump to either line L or line L')	

< *n*

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter x by n)	
x -= n	(decrement counter x by n)	abort if $x < n$
goto L or L'	(jump to either line L or line L')	

except for the very last command which is of the form:

halt if $x_1, \ldots, x_l = 0$ (terminate provided all
the listed counters are zero)otherwise abort

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter x by n)	
x -= n	(decrement counter x by n)	abort if $x < n$
goto L or L'	(jump to either line L or line L')	

except for the very last command which is of the form:

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter x by n)	
x -= n	(decrement counter x by n)	abort if $x < n$
goto L or L'	(jump to either line L or line L')	

except for the very last command which is of the form:

halt if $x_1, \ldots, x_l = 0$ (terminate provided all
the listed counters are zero)otherwise abort

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter \times by n)	
x -= n	(decrement counter x by n)	abort if $x < n$
goto L or L'	(jump to either line L or line L')	

except for the very last command which is of the form:

counters are nonnegative integer variables initially all equal zero

Counter program = a sequence of commands of the form:

x += n	(increment counter \times by n)	
x -= n	(decrement counter x by n)	abort if $x < n$
goto L or L'	(jump to either line L or line L')	

except for the very last command which is of the form:

Reachability problem

Reachability problem: given a counter program **without zero tests**

```
1: x' += 100

2: goto 5 or 3

3: x += 1 x' -= 1 y += 2

4: goto 2

5: halt if x' = 0.
```

can it halt? (successfully execute its halt command)

Reachability problem

Reachability problem: given a counter program **without zero tests**

```
1: x' += 100

2: goto 5 or 3

3: x += 1 x' -= 1 y += 2

4: goto 2

5: halt if x' = 0.
```

why is it important?

can it halt? (successfully execute its halt command)

Reachability problem

Reachability problem: given a counter program **without zero tests**

```
1: x' += 100

2: goto 5 or 3

3: x += 1 x' -= 1 y += 2

4: goto 2

5: halt if x' = 0.
```

why is it important?

can it halt? (successfully execute its halt command)

Coverability problem: given a counter program **without zero tests**

with trivial halt command

1: x' += 1002: goto 5 or 3 3: x += 1 x' -= 1 y += 24: goto 2 5: halt.

can it halt?

 $A_1(n) = 2n$ $A_{i+1}(n) = A_i \circ A_i \circ \ldots \circ A_i(1) = A_i^n(1)$ N

 $A_1(n) = 2n$ $A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(1) = A_i^n(1) \qquad A_1(n) = 2n$ $A_2(n) = 2^n \dots^2$ $A_3(n) = 2^{2^n} \dots^2$ $A_4(n) = \dots$

$$A_{i}(n) = 2n$$

$$A_{i+1}(n) = A_{i} \circ A_{i} \circ \dots \circ A_{i}(1) = A_{i}^{n}(1) \qquad A_{1}(n) = 2n$$

$$A_{2}(n) = 2^{n} \dots^{2}$$

$$A_{3}(n) = 2^{2} \prod_{m=1}^{2} n$$

$$A_{4}(n) = \dots$$

$$FF_{i} = \bigcup_{m=1}^{m} \text{FDTIME}(A_{i}^{m}(n))$$

 $A_1(n) = 2n$ $A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(1) = A_i^n(1) \qquad A_1(n) = 2n$ $A_2(n) = 2^n$ $A_{2}(n) = 2^{n} \dots 2^{2}$ $A_{3}(n) = 2^{2} \dots 2^{n}$ $A_4(n) = \ldots$ $\mathbf{FF}_i = \bigcup \text{FDTIME}(A_i^m(n))$ $\mathbf{F}_{i} = \bigcup_{p \in \mathsf{FF}_{i-1}} \text{DTIME}(A_{i}(p(n)))$

Part II:

proof of the lower bound

F_k -hardness in dimension 3k+2

The set computed by a counter program

initial valuation: all counters 0 1: x += 1 y += 12: **loop** 3: x += 1 y += 14: for i := n down to 1 do loop 5: consider all runs x = 1 z = 16: 7: loop (nondeterminism) x += i + 1 z -= i8: 9: **loop** 10: x -= n + 1 y -= 111: **halt if** y = 0.

the set of all valuations at successful halt

B - fixed positive integer

initial valuation: all counters 0 1: x += 1 y += 1 2: **loop** $x += 1 \quad y += 1$ 3: 4: for i := n down to 1 do loop 5: x = 1 z = 16: loop 7:x += i + 1 z -= i8: 9: **loop** 10: x -= n + 1 y -= 111: **halt if** y = 0.

3 distinguished counters b, c, d

consider all runs (nondeterminism)

B - fixed positive integer

B - fixed positive integer

B - fixed positive integer

3 distinguished counters b, c, d

consider all runs (nondeterminism)

10th Hilbert's problem!

```
\mathsf{RATIO}(\mathsf{b},\,\mathsf{c},\,\mathsf{d},\,B)
```

B - fixed positive integer

B - fixed positive integer

One can compute an $A_k(n)$ -multiplier with 3k+2 counters, in time polynomial in k, n

\mathbf{F}_k -hardness in dimension 3k+2

program of size *n* with two **0-tested** counters:

```
1: i += 1   x += 1   y += 1   b += 1   c += 1   d += 1
2: loop
3: x += 1 y += 1 c += 1 d += 1
4: loop
     loop
5:
        c -= i c' +=
6:
        loop at most
                              +=i+1
     loop
9:
                     = i + 1
10:
        b ·
11:
     loop
        b' = 1 b + = 1
12:
13:
     loop
      c' = 1 c += 1
14:
        loop at most b times
         x' = 1 \quad x = 1 \quad d = 1
16:
 8: zero? î
```

20: x −= i y −= 1 21: halt if y = 0

does it have a halting run that does $(A_k(n)-1)/2$ zero tests?

F_k -hardness in dimension 3k+2

program of size *n* with two **0-tested** counters:

program without 0-tests:

20: x = i y = 121: halt if y = 0

does it have a halting run that does $(A_k(n)-1)/2$ zero tests?

does it halt?

\mathbf{F}_k -hardness in dimension 3k+2

program of size *n* with two **0-tested** counters:

20: x = i y = 121: halt if y = 0

does it have a halting run that does $(A_k(n)-1)/2$ zero tests?

program without 0-tests:

1: x += 1 y += 12: **loop** $x += 1 \quad y += 1$ 3: 4: for $i_{j} := n$ down to 1 do (m)-multiplier M x = 1 z = 16: 7: loop x += i + 1 z -= i8: 9: **loop** 10: x -= n + 1 y -= 111: halt if y = 0.

RATIO(b, c, d, $A_k(n)$)

does it halt?

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

```
1: i += 1   x += 1   y += 1   b += 1   c += 1   d += 1
2: loop
3: x += 1 y += 1 c += 1 d += 1
4: loop
     loop
5:
        c —= i c′ +=
6:
       loop at most
7:
                      tim
                          x' += i + 1
          x -= i
8:
9:
     loop
10:
     b = 1
11:
     loop
     instrumented
12:
13:
14:
       c' = 1 c += 1
       loop at most b times
15:
          x' = 1 x + 1 d + 1
16:
     i += 1
17:
18: zero? i
19: loop
20: x -= i y -= 1
21: halt if y = 0
```

```
Aim: simulate (A_k(n)-1)/2 zero tests
```

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

```
1: i += 1   x += 1   y += 1   b += 1   c += 1   d += 1
2: loop
3: x += 1 y += 1 c += 1 d += 1
4: loop
     loop
5:
        c —= i c′ +=
6:
       loop at most
7:
                      tim
                           x' += i + 1
          x -= i
8:
9:
     loop
10:
      b = 1
11:
     loop
     instrumented
12:
13:
       c' = 1 c + = 1
14:
       loop at most b times
15:
          x' = 1 x + 1 d + 1
16:
     i += 1
17:
18: zero? i
19: loop
20: x -= i y -= 1
21: halt if y = 0
```

```
Aim: simulate (A_k(n)-1)/2 zero tests
```

• introduce fresh counters b, c, d

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

- introduce fresh counters b, c, d
- instrument increments and decrements:

command	replaced by	
x += 1	x += 1	c = 1
x −= 1	x -= 1	c += 1

Aim: simulate $(A_k(n)-1)/2$ zero tests

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

- introduce fresh counters b, c, d
- instrument increments and decrements:

command	replaced by	
x += 1	x += 1 c −= 1	
x −= 1	x = 1 c $+= 1$	

put x, y on	
budget c	

c + x + y constans

Aim: simulate $(A_k(n)-1)/2$ zero tests

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

```
1: i += 1   x += 1   y += 1   b += 1   c += 1   d += 1
2: loop
3: x += 1 y += 1 c += 1 d += 1
4: loop
     loop
5:
       c —= i c′ +≡
6:
       loop at most x' += i + 1
7:
8:
     loop
9:
10:
     b = 1
11:
    loop
     instrumented
12:
13:
      c' = 1 c + = 1
14:
       loop at most b times
15:
         x' = 1 x + 1 d + 1
16:
17:
     i += 1
18: zero? i
19: loop
20: x = i y = 1
21: halt if y = 0
```

Aim: simulate $(A_k(n)-1)/2$ zero tests

- introduce fresh counters b, c, d
- instrument increments and decrements:

command	replaced by		
x += 1	x += 1	c = 1	
x −= 1	x -= 1	c += 1	

put x, y on **budget** c

• replace zero? x by

c + x + y constans

```
ZERO? x:

1: loop

2: y = 1 x = 1 d = 1

3: loop

4: c = 1 y = 1 d = 1

5: loop

6: y = 1 c = 1 d = 1

7: loop

8: x = 1 y = 1 d = 1

9: b = 2
```

- b = $A_k(n)$
- c > 0
- $d = b \cdot c$
- x = y = 0 **0-tested** counters

- introduce fresh counters b, c, d
- instrument increments and decrements:

command	replaced by		
x += 1	x += 1	c = 1	
x −= 1	x -= 1	c += 1	

• replace zero? x by

put x, y on **budget** c

c + x + y constans

```
      ZERO? x:

      1: loop

      2: y = 1 x + = 1 d = 1

      3: loop

      4: c = 1 y + = 1 d = 1

      5: loop

      6: y = 1 c + = 1 d = 1

      7: loop

      8: x = 1 y + = 1 d = 1

      9: b = 2
```

- Aim: simulate $(A_k(n)-1)/2$ zero tests
- replace halt by

$$d = b \cdot \frac{(c + x + y)}{constans}$$

 ZERO? x:

 1: loop

 2: y -= 1 x += 1 d -= 1

 3: loop

 4: c -= 1 y += 1 d -= 1

 5: loop

 6: y -= 1 c += 1 d -= 1

 7: loop

 8: x -= 1 y += 1 d -= 1

 9: b -= 2

put x, y on **budget** c

$$d = b \cdot \frac{(c + x + y)}{constans}$$

 ZERO? x:

 1: loop

 2: y -= 1 x += 1 d -= 1

 3: loop

 4: c -= 1 y += 1 d -= 1

 5: loop

 6: y -= 1 c += 1 d -= 1

 7: loop

 8: x -= 1 y += 1 d -= 1

 9: b -= 2

$$d = b \cdot \frac{(c + x + y)}{constans}$$

 $d = b \cdot \frac{(c + x + y)}{constans}$

 ZERO? x:

 1: loop

 2: y -= 1 x += 1 d -= 1

 3: loop

 4: c -= 1 y += 1 d -= 1

 5: loop

 6: y -= 1 c += 1 d -= 1

 7: loop

 8: x -= 1 y += 1 d -= 1

 9: b -= 2

 $d = b \cdot \frac{(c + x + y)}{constans}$

Simulation of a zero test

 $d = b \cdot \frac{(c + x + y)}{constans}$

 ZERO? x:

 1: loop

 2: y -= 1 x += 1 d -= 1

 3: loop

 4: c -= 1 y += 1 d -= 1

 5: loop

 6: y -= 1 c += 1 d -= 1

 7: loop

 8: x -= 1 y += 1 d -= 1

 9: b -= 2

Simulation of a zero test

 $d = b \cdot \frac{(c + x + y)}{constans}$

 ZERO? x:

 1: loop

 2: y -= 1 x += 1 d -= 1

 3: loop

 4: c -= 1 y += 1 d -= 1

 5: loop

 6: y -= 1 c += 1 d -= 1

 7: loop

 8: x -= 1 y += 1 d -= 1

 9: b -= 2

d decreases by <= $2 \cdot (c + x + y)$ b decreases by 2

Simulation of a zero test

 $d = b \cdot (c + x + y)$ constans

ZERO? x: 1: **loop** 2: $y = 1 \quad x = 1 \quad d = 1$ 3: **loop** 4: c = 1 y + 1 d = 15: **loop** 6: y = 1 c = 1 d = 17: **loop** 8: x = 1 y = 1 d = 19: b -= 2

• d decreases by $< 2 \cdot (c + x + y)$ \longrightarrow halt if d = 0 will surely fail

d decreases by $\langle = 2 \cdot (c + x + y) \rangle$ b decreases by 2

• d decreases by $2 \cdot (c + x + y) \longrightarrow x = 0$ and y = c initially and finally

One can compute an $A_k(n)$ -multiplier with 3k+2 counters, in time polynomial in k, n

 $A_{k}-\text{amplifier} \longrightarrow A_{k}(n)-\text{multiplier}$ \dots $A_{2}-\text{amplifier}$ $A_{1}-\text{amplifier}$

The set computed by a counter program **from a set**

```
initial valuation: all counters 0
 1: x += 1 y += 1
 2: loop
 3: x += 1 y += 1
 4: for i := n down to 1 do
     loop
 5:
      x = 1 z = 1
 6:
                             consider all runs
     loop
 7:
                             (nondeterminism)
   x += i + 1 z -= i
 8:
 9: loop
10: x -= n + 1 y -= 1
11: halt if y = 0.
```

the set of all valuations at successful halt

The set computed by a counter program **from a set**

```
a set I of initial valuations
```

```
1: x += 1 y += 1
2: loop
3: x += 1 \quad y += 1
4: for i := n down to 1 do
     loop
 5:
     x = 1 z = 1
6:
                              consider all runs starting in I
     loop
 7:
                              (nondeterminism)
   x += i + 1 z -= i
 8:
9: loop
10: x -= n + 1 y -= 1
11: halt if y = 0.
```

the set of all valuations at successful halt

F-amplifier

For every fixed *B*:

One can compute an **A_k-amplifier** with *3k+2* counters, in time polynomial in *k, n*

F-amplifier

For every fixed *B*:

One can compute an A_k -amplifier with $3k+2$ counters,	
in time polynomial in <i>k, n</i>	

A_k -amplifier $\longrightarrow A_k(n)$ -multiplier

• A1-amplifier:

1: loop 2: loop 3: c = 1 c' += 1 d = 1 d' += 24: loop 5: c' = 1 c += 1 d = 1 d' += 26: b = 2 b' += 47: loop 8: c = 1 c' += 1 d = 2 d' += 49: b = 2 b' += 4

• A1-amplifier:

1: loop
2: loop
3:
$$c = 1$$
 $c' += 1$ $d = 1$ $d' += 2$
4: loop
5: $c' = 1$ $c += 1$ $d = 1$ $d' += 2$
6: $b = 2$ $b' += 4$
7: loop
8: $c = 1$ $c' += 1$ $d = 2$ $d' += 4$
9: $b = 2$ $b' += 4$

• A_k -amplifier $\longrightarrow A_{k+1}$ -amplifier

• A₁-amplifier:

1: loop
2: loop
3:
$$c = 1$$
 $c' += 1$ $d = 1$ $d' += 2$
4: loop
5: $c' = 1$ $c += 1$ $d = 1$ $d' += 2$
6: $b = 2$ $b' += 4$
7: loop
8: $c = 1$ $c' += 1$ $d = 2$ $d' += 4$
9: $b = 2$ $b' += 4$

• A_k -amplifier $\longrightarrow A_{k+1}$ -amplifier

$$A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(4) = A_i^{n/4}(4)$$

$$n/4$$

$$A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(4) = A_i^{n/4}(4)$$

$$n/4$$

A_k-amplifier

\mathcal{P} (b₁, c₁, d₁, b₂, c₂, d₂)

$$A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(4) = A_i^{n/4}(4)$$

$$n/4$$

A_k-amplifier

\mathcal{P} (b₁, c₁, d₁, b₂, c₂, d₂)

\mathcal{M} 4-multiplier

$$A_{i+1}(n) = A_i \circ A_i \circ \dots \circ A_i(4) = A_i^{n/4}(4)$$

$$n/4$$

A_k-amplifier

\mathcal{P} (b₁, c₁, d₁, b₂, c₂, d₂)

\mathcal{M} 4-multiplier

 \mathcal{L} (b₂, c₂, d₂, b₁, c₁, d₁) identity-amplifier

 $A_{i+1}(n) = A_i \circ A_i \circ \cdots \circ A_i(4) = A_i^{n/4}(4)$ Amplifier lifting n]4 Ak-amplifier \mathcal{P} (b₁, c₁, d₁, b₂, c₂, d₂) 1: \mathcal{M} 2: **loop** 3: \mathcal{P} **zero?** d_1 4: \mathcal{L} 5: **zero?** d_2 6: 4-multiplier 7: \mathcal{P} 8: **zero?** d₁ \mathcal{L} (b₂, c₂, d₂, b₁, c₁, d₁) identity-amplifier

Open questions

- dimension-parametric complexity: gap $n-4 \dots 2n+4$
- low dimensions starting from 3
- extensions:
 - data Petri nets
 - pushdown Petri nets
 - branching VASS

Open questions

- dimension-parametric complexity: gap n-4 ... 2n+4
- low dimensions starting from 3
- extensions:
 - data Petri nets
 - pushdown Petri nets
 - branching VASS

