
Improved Ackermannian lower bound
for the Petri nets reachability problem

Jagiellonian TCS Seminar, 2022.01.26, online
1

[Czerwiński, L., Lazic, Leroux, Mazowiecki 2019]
[Czerwiński, L., Orlikowski 2021]
[Czerwiński, Orlikowski 2021]
[Leroux 2021]
[L. 2022]

Sławomir Lasota
University of Warsaw

2

Part I:
the reachability problem
and its complexity

3

Many faces of Petri nets

• Petri nets:

p q

x

z

y

3

Many faces of Petri nets

• vector addition systems with states:

• Petri nets:

p q

x

z

y

3

Many faces of Petri nets

• vector addition systems with states:

• Petri nets:

p q

x

z

y

• vector addition systems

• counter automata without 0-tests

• multiset rewriting

• …

3

Many faces of Petri nets

• vector addition systems with states:

• counter programs without 0-tests:• Petri nets:

p q

x

z

y

• vector addition systems

• counter automata without 0-tests

• multiset rewriting

• …

3

Many faces of Petri nets

• counter programs without 0-tests:

4

Counter programs without zero tests
counters are nonnegative integer variables initially all equal zero

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

counters are nonnegative integer variables initially all equal zero

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

counters are nonnegative integer variables initially all equal zero

abort if x < n

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example:

initially: x’ = x = y = 0

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example:

initially: x’ = x = y = 0

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example:

initially: x’ = x = y = 0

finally: x' = 0 x = 100 y = 200

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n

4

Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example:

initially: x’ = x = y = 0

finally: x' = 0 x = 100 y = 200

no zero tests

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n

5

Reachability problem

Reachability problem: given a counter program without zero tests

can it halt? (successfully execute its halt command)

5

Reachability problem

Reachability problem: given a counter program without zero tests

can it halt? (successfully execute its halt command)

why is it important?

5

Reachability problem

Reachability problem: given a counter program without zero tests

can it halt? (successfully execute its halt command)

Coverability problem: given a counter program without zero tests
with trivial halt command

can it halt?

why is it important?

6

1970

1980

1990

2000

2010

2020

6

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969
1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981

1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

}KLMST
decomposition

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

first upper bound F𝜔3 [Leroux, Schmitz]2015

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

first upper bound F𝜔3 [Leroux, Schmitz]2015
Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

first upper bound F𝜔3 [Leroux, Schmitz]2015
Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

}KLMST
decomposition

huge complexity gap!

6

EXPSPACE lower bound [Lipton]1976

EXPSPACE algorithm for coverability [Rackoff]1978

decidability of coverability [Karp, Miller]1969

(incomplete) decidability of reachability [Sacerdote, Tenney]1977

decidability of reachability [Mayr]1981
decidability of reachability - simplified proof [Kosaraju]1982

1970

1980

1990

2000

2010

2020

decidability of reachability - refined data structure [Lambert]1992

decidability of reachability by Presburger invariants [Leroux]2009
decidability of reachability without KLMST decomposition [Leroux]2011

first upper bound F𝜔3 [Leroux, Schmitz]2015
Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }gap

}KLMST
decomposition

huge complexity gap!

7

2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }gap

222
…2}n

7

2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }gap

“super’’-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

222
…2}n

222…2

}2n

7

2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }gap

“super’’-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

222
…2}n

222…2

}2n

gap closed!

7

2010

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019 }gap

“super’’-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

gap closed!

8

Fast growing functions and induced complexity classes

A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n(1) {n

8

Fast growing functions and induced complexity classes

A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n(1) {n

A1(n) = 2n

A2(n) = 2n

A3(n) =

A4(n) = …
2

2
2
… 2}n

8

Fast growing functions and induced complexity classes

A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n(1) {n

A1(n) = 2n

A2(n) = 2n

A3(n) =

A4(n) = …
2

2
2
… 2}n

FFi = ⋃m
 FDTIME(Ai

m(n))

8

Fast growing functions and induced complexity classes

A1(n) = 2n

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(1) = Ai
n(1) {n

A1(n) = 2n

A2(n) = 2n

A3(n) =

A4(n) = …
2

2
2
… 2}n

FFi = ⋃m
 FDTIME(Ai

m(n))

Fi = ⋃p∊FFi-1
 DTIME(Ai(p(n)))

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:
6n

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:
6n 4n+5

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:
6n 4n+5
3n+2

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:
6n 4n+5
3n+2

further improved Ackermannian lower bound [Leroux] 2n+42021

dimension = number of counters

9

2020

2021

2022

Ackermannian upper bound F𝜔 [Leroux, Schmitz]2019

TOWER lower bound F3 [Czerwiński, L., Lazic, Leroux, Mazowiecki]2019

super-TOWER lower bound F3 [Czerwiński, L., Orlikowski]2021

Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]2021

improved Ackermannian lower bound [L.]2021

222
…2}n

222…2

}2n

Fn -membership in dimension:
 n-4

Fn -hardness in dimension:
6n 4n+5
3n+2

further improved Ackermannian lower bound [Leroux] 2n+42021

dimension = number of counters

still a gap!

10

Part II:
proof of the lower bound

Fk -hardness in dimension 3k+2

11

The set computed by a counter program

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

3 distinguished
counters b, c, d

B - fixed positive integer

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

3 distinguished
counters b, c, d

B - fixed positive integer

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

• b > 0 ?

3 distinguished
counters b, c, d

B - fixed positive integer

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

• b > 0 ? 10th Hilbert’s problem!

3 distinguished
counters b, c, d

B - fixed positive integer

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

3 distinguished
counters b, c, d

B - fixed positive integer

12

B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

One can compute an Ak(n)-multiplier with 3k+2 counters,
in time polynomial in k, n

3 distinguished
counters b, c, d

B - fixed positive integer

13

Fk -hardness in dimension 3k+2

program of size n
with two 0-tested counters:

does it have a halting run
that does (Ak(n)-1)/2 zero tests?

P

13

Fk -hardness in dimension 3k+2

program of size n
with two 0-tested counters:

does it have a halting run
that does (Ak(n)-1)/2 zero tests?

P

program without 0-tests:

does it halt?

13

Fk -hardness in dimension 3k+2

 RATIO(b, c, d, Ak(n))

program of size n
with two 0-tested counters:

does it have a halting run
that does (Ak(n)-1)/2 zero tests?

P

P
instrumented

program without 0-tests:

Ak(n)-multiplier M

does it halt?

14

Instrumentation

P
instrumented

0-tested counters

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

14

Instrumentation

P
instrumented

0-tested counters

• introduce fresh counters b, c, d• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

14

Instrumentation

P
instrumented

0-tested counters

• introduce fresh counters b, c, d

• instrument increments and decrements:

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

14

Instrumentation

P
instrumented

0-tested counters

• introduce fresh counters b, c, d

• instrument increments and decrements:

put x, y on
budget c

c + x + y constans

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

14

Instrumentation

P
instrumented

0-tested counters

• introduce fresh counters b, c, d

• instrument increments and decrements:

• replace by

put x, y on
budget c

c + x + y constans

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

14

Instrumentation

P
instrumented

0-tested counters

• introduce fresh counters b, c, d

• instrument increments and decrements:

• replace by

• replace halt by

put x, y on
budget c

c + x + y constans

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim:
simulate (Ak(n)-1)/2 zero tests

merged halt of M and P

15

Simulation of a zero test

d = b · (c + x + y)
constans

15

Simulation of a zero test put x, y on
budget c

d = b · (c + x + y)
constans

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

c y x

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

c y x

c y x

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

c y x

c y x

c y x

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

c y x

c y x

c y x

d decreases by <= 2 · (c + x + y)
b decreases by 2

15

Simulation of a zero test put x, y on
budget c

c y x

d = b · (c + x + y)
constans

c y x

c y x

c y x

• d decreases by 2 · (c + x + y) x = 0 and y = c initially and finally
• d decreases by < 2 · (c + x + y) halt if d = 0 will surely fail

d decreases by <= 2 · (c + x + y)
b decreases by 2

16

One can compute an Ak(n)-multiplier with 3k+2 counters,
in time polynomial in k, n

A1-amplifier

Ak-amplifier Ak(n)-multiplier

A2-amplifier

…

…

17

The set computed by a counter program from a set

initial valuation: all counters 0

the set of all valuations at successful halt

consider all runs
(nondeterminism)

17

The set computed by a counter program from a set

the set of all valuations at successful halt

consider all runs
(nondeterminism)

a set I of initial valuations

starting in I

18

F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

One can compute an Ak-amplifier with 3k+2 counters,
in time polynomial in k, n

P(b, c, d, b’, c’, d’)

d=0

18

F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

One can compute an Ak-amplifier with 3k+2 counters,
in time polynomial in k, n

P(b, c, d, b’, c’, d’)

d=0

19

initial valuation: all counters 0

n-multiplier

RATIO(b, c, d, n)

RATIO(b’, c’, d’, Ak(n))

Ak-amplifier

Ak(n)-multiplier

Ak-amplifier Ak(n)-multiplier

20

Amplifier lifting

• A1-amplifier:

20

Amplifier lifting

• A1-amplifier:

• Ak-amplifier Ak+1-amplifier

20

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4(4) {n/4

Amplifier lifting

• A1-amplifier:

• Ak-amplifier Ak+1-amplifier

21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

Ak-amplifier

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4

(4) {n/4

21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

Ak-amplifier

4-multiplier

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4

(4) {n/4

21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier

4-multiplier

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4

(4) {n/4

21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier

4-multiplier

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4

(4) {n/4

21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier

(b, c, d, b2, c2, d2)

Ak+1-amplifier

instrumented

4-multiplier

Ai+1(n) = Ai ◦ Ai ◦ … ◦ Ai(4) = Ai
n/4

(4) {n/4

22

Open questions

• dimension-parametric complexity: gap n-4 … 2n+4

• low dimensions starting from 3

• extensions:

• data Petri nets

• pushdown Petri nets

• branching VASS

22

Open questions

thank you!

• dimension-parametric complexity: gap n-4 … 2n+4

• low dimensions starting from 3

• extensions:

• data Petri nets

• pushdown Petri nets

• branching VASS

