## Improved Ackermannian lower bound for the Petri nets reachability problem

[Czerwiński, L., Lazic, Leroux, Mazowiecki 2019]
[Czerwiński, L., Orlikowski 2021]
[Czerwiński, Orlikowski 2021]
[Leroux 2021]
[L. 2022]

Sławomir Lasota<br>University of Warsaw

Part I:
the reachability problem and its complexity

## Many faces of Petri nets

- Petri nets:



## Many faces of Petri nets

- Petri nets:

- vector addition systems with states:
$(-1,1,0) \circlearrowright \sim \overbrace{2}^{(0,0,-1)}$


## Many faces of Petri nets

- Petri nets:

- vector addition systems with states:
$(-1,1,0) \int_{R}^{(0,0,-1)}$
- vector addition systems
- counter automata without 0-tests
- multiset rewriting
-...


## Many faces of Petri nets

- Petri nets:

- vector addition systems with states:
$(-1,1,0) \bigcirc \int_{k}^{(0,0,-1)}$
- counter programs without 0 -tests:

```
1: loop
2: loop
3: }\quadx-=1\quady+=
4: loop
5: }\quadx+=1\quady-=
6: z - = 1
```

- vector addition systems
- counter automata without 0-tests
- multiset rewriting
- ...


## Many faces of Petri nets

- counter programs without 0-tests:

| 1: loop |  |  |
| :--- | :---: | :--- |
| $2:$ | loop |  |
| $3:$ | $x-=1$ | $y+=1$ |
| $4:$ | loop |  |
| $5:$ | $x+=1$ | $y-=1$ |
| $6:$ | $z-=1$ |  |

## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

```
x += n
    (increment counter x by n)
x -= n
    (decrement counter x by n)
goto L or L' (jump to either line L or line L')
```


## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

```
x += n
x -= n
    (increment counter x by n)
    (decrement counter x by n) abort if x < n
goto L or L' (jump to either line L or line L')
```


## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

```
x +=n (increment counter x by n)
x -= n (decrement counter x by n)
abort if x < n
goto L or L' (jump to either line L or line L')
```

except for the very last command which is of the form:

| halt if $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}=0$ | (terminate provided all otherwise abort <br> the listed counters are zero) |
| ---: | :--- |

## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

| $\mathrm{x}+=n$ |  |
| :--- | :--- |
| $\mathrm{x}-=n$ | $($ increment counter x by $n)$ |
| goto $L$ or $L^{\prime}$ | $($ decrement counter x by $n)$ |
|  | (jump to either line $L$ or line $\left.L^{\prime}\right)$ | abort if $\mathrm{x}<n$

except for the very last command which is of the form:

$$
\begin{array}{ll}
\text { halt if } x_{1}, \ldots, x_{l}=0 \quad \begin{array}{l}
\text { (terminate provided all } \\
\text { the listed counters are zero) }
\end{array} \text { otherwise abort }
\end{array}
$$

## Example:

1: $x^{\prime}+=100$
2: goto 5 or 3
initially: $x^{\prime}=x=y=0$
3: $x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: goto 2
5: halt if $x^{\prime}=0$.

## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

| $\mathrm{x}+=n$ |  |
| :--- | :--- |
| $\mathrm{x}-=n$ | $($ increment counter x by $n)$ |
| goto $L$ or $L^{\prime}$ | $($ decrement counter x by $n)$ |
|  | (jump to either line $L$ or line $\left.L^{\prime}\right)$ | abort if $\mathrm{x}<n$

except for the very last command which is of the form:

$$
\begin{array}{ll}
\text { halt if } x_{1}, \ldots, x_{l}=0 \quad \begin{array}{l}
\text { (terminate provided all } \\
\text { the listed counters are zero) }
\end{array} \text { otherwise abort }
\end{array}
$$

## Example:

1: $x^{\prime}+=100$
2: goto 5 or 3
3: $x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: goto 2
5: halt if $x^{\prime}=0$.

## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero

Counter program $=$ a sequence of commands of the form:

| $\mathrm{x}+=n$ |  |
| :--- | :--- |
| $\mathrm{x}-=n$ | $($ increment counter x by $n)$ |
| goto $L$ or $L^{\prime}$ | $($ decrement counter x by $n)$ |
|  | (jump to either line $L$ or line $\left.L^{\prime}\right)$ | abort if $\mathrm{x}<n$

except for the very last command which is of the form:

$$
\begin{array}{ll}
\text { halt if } x_{1}, \ldots, x_{l}=0 \quad \begin{array}{l}
\text { (terminate provided all } \\
\text { the listed counters are zero) }
\end{array} \text { otherwise abort }
\end{array}
$$

## Example:

1: $x^{\prime}+=100$
2: goto 5 or 3

$$
\text { initially: } x^{\prime}=x=y=0
$$

3: $x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: goto 2
5: halt if $x^{\prime}=0$.


## Counter programs without zero tests

counters are nonnegative integer variables initially all equal zero
Counter program $=$ a sequence of commands of the form:

| $\mathrm{x}+=n$ | $($ increment counter x by $n)$ |
| :--- | :--- |
| $\mathrm{x}-=n$ | $($ decrement counter x by $n)$ |
| goto $L$ or $L^{\prime}$ | (jump to either line $L$ or line $L^{\prime}$ ) | abort if $\mathrm{x}<n$

except for the very last command which is of the form:

$$
\begin{array}{ll}
\text { halt if } x_{1}, \ldots, x_{l}=0 \quad \begin{array}{l}
\text { (terminate provided all } \\
\text { the listed counters are zero) }
\end{array}
\end{array}
$$

## Example:



## Reachability problem

Reachability problem: given a counter program without zero tests
1: $x^{\prime}+=100$
2: goto 5 or 3
$3: x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: goto 2
5: halt if $x^{\prime}=0$.
can it halt? (successfully execute its halt command)

## Reachability problem

Reachability problem: given a counter program without zero tests

1: $x^{\prime}+=100$
2: goto 5 or 3
$3: x+=1 \quad x^{\prime}-=1 \quad y+=2$
4: goto 2
5: halt if $x^{\prime}=0$.

## why is it important?

can it halt? (successfully execute its halt command)

## Reachability problem

Reachability problem: given a counter program without zero tests
1: $x^{\prime}+=100$
2: goto 5 or 3
3: $x+=1 \quad x^{\prime}-=1 \quad y+=2$

## why is it important?

4: goto 2
5: halt if $x^{\prime}=0$.
can it halt? (successfully execute its halt command)

Coverability problem: given a counter program without zero tests

```
1: }\mp@subsup{x}{}{\prime}+=10
2: goto 5 or 3
3:x+=1 x'-=1 y y += 2
4: goto 2
5: halt.
``` with trivial halt command
can it halt?





















Fast growing functions and induced complexity classes
\[
\begin{aligned}
& A_{1}(n)=2 n \\
& A_{i+1}(n)=A_{i} \circ A_{i} \circ \ldots \circ A_{i}(1)=A_{i}^{n}(1)
\end{aligned}
\]

\section*{Fast growing functions and induced complexity classes}
\[
\begin{array}{ll}
A_{l}(n)=2 n \\
A_{i+1}(n)=\underbrace{}_{n} \circ A_{i} \circ \ldots \circ A_{i}(1)=A_{i}^{n}(1) & A_{l}(n)=2 n \\
& A_{2}(n)=2^{n} \\
& A_{5}(n)=2^{2^{2}} \quad \cdots^{2} \\
& A_{4}(n)=\ldots
\end{array}
\]

Fast growing functions and induced complexity classes
\[
\begin{aligned}
& A_{l}(n)=2 n \\
& A_{i+1}(n)=A_{i} \circ A_{i} \circ \ldots \circ A_{i}(1)=A_{i}^{n}(1) \\
& A_{l}(n)=2 n \\
& A_{2}(n)=2^{n} \\
& \left.A_{3}(n)=2^{2^{2} \cdots^{2}}\right\}_{n} \\
& \mathrm{FF}_{i}=\bigcup_{m} \operatorname{FDTIME}\left(A_{i}^{m}(n)\right)
\end{aligned} \begin{array}{ll}
A_{4}(n)=\ldots
\end{array}
\]

Fast growing functions and induced complexity classes
\[
\begin{aligned}
& A_{l}(n)=2 n \\
& A_{i+1}(n)=A_{i} \circ A_{i} \circ \ldots \circ A_{i}(1)=A_{i}^{n}(1) \\
& A_{l}(n)=2 n \\
& \\
& \left.A_{2}(n)=2^{n} A_{3}(n)=2^{2^{2}}\right\}_{n} \\
& \mathrm{FF}_{i}=\bigcup_{m} \operatorname{FDTIME}\left(A_{i}^{m}(n)\right) \\
& A_{4}(n)=\ldots \\
& \mathrm{F}_{i}=\bigcup_{p \in \mathrm{FF}_{i-1}} \operatorname{DTIME}\left(A_{i}(p(n))\right)
\end{aligned}
\]

```

dimension = number of counters }\mp@subsup{F}{n}{}\mathrm{ -membership in dimension:

```
2019 Ackermannian upper bound \(\mathrm{F} \omega\) [Leroux, Schmitz]
    2020
            \(\left.2^{2^{2 \cdots 2}}\right\} n\)
super-TOWER lower bound \(\mathrm{F}_{3}\) [Czerwiński, L., Orlikowski]
\(\left.2^{2^{\cdots{ }^{2}}}\right\} 2^{n}\)

2021 - Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]
2021 - improved Ackermannian lower bound [L.]
```

dimension = number of counters
F

```
(2019
2021 - Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux]
2021 - improved Ackermannian lower bound [L.]
```

dimension = number of counters
F

```
(2019
2021 - Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux] 6n
2021 - improved Ackermannian lower bound [L.]

2021 - Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux] 6n 4n+5
2021 - improved Ackermannian lower bound [L.]
```

dimension = number of counters
F

```
(2019
2021 Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux] 6n 4n+5
2021 - improved Ackermannian lower bound [L.] 3n+2
dimenfion = number of counters
\(F_{n}\)-membership in dimension:


2021 - Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux] 6n 4n+5
2021 - improved Ackermannian lower bound [L.] 3n+2
2021 further improved Ackermannian lower bound [Leroux]
\(2 n+4\)
dimension = number of counters
\(F_{n}\)-membership in dimension:
2019 - Ackermannian upper bound \(\mathrm{F}_{\omega}\) [Leroux, Schmitz]
super-TOWER lower bound \(\mathrm{F}_{3}\) [Czerwiński, L., Orlikowski]
\(\left.2^{2^{2^{2}}}\right\} 2^{n}\)
\(F_{n}\)-hardness in dimension:
\begin{tabular}{l|ll}
2021 & Ackermannian lower bound [Czerwiński, Orlikowski] [Leroux] & \(6 n\) \\
2021 & improved Ackermannian lower bound [L.] \\
2021 & further improved Ackermannian lower bound [Leroux] &
\end{tabular}

\section*{Part II: \\ proof of the lower bound}
\(F_{k}\)-hardness in dimension \(3 k+2\)

\section*{The set computed by a counter program}


\section*{\(B\)-multiplier}
\(B\) - fixed positive integer

3 distinguished counters b, c, d
consider all runs
(nondeterminism)

\section*{\(B\)-multiplier}
\(B\) - fixed positive integer


One can compute an \(A_{\boldsymbol{k}}(n)\)-multiplier with \(3 k+2\) counters, in time polynomial in \(k\), \(n\)
\(F_{k}\)-hardness in dimension \(3 k+2\)
program of size \(n\)
with two 0 -tested counters:

does it have a halting run
that does \(\left(A_{k}(n)-1\right) / 2\) zero tests?
program of size \(n\)
with two 0 -tested counters:

does it have a halting run that does \(\left(A_{k}(n)-1\right) / 2\) zero tests?
\(F_{k}\)-hardness in dimension \(3 k+2\)
program of size \(n\)
with two 0-tested counters:

does it have a halting run that does \(\left(A_{k}(n)-1\right) / 2\) zero tests?
program without 0 -tests:
```

1: x+=1 y += 1
2: loop
3: }\quadx+=1\quady+=
4: for i := n down to 1 do

```
    loop
        \(\mathrm{x}+=i+1 \quad \mathrm{z}-=i\)
    : loop
10: \(\quad x-=n+1 \quad y-=1\)
11: halt if \(\mathrm{y}=0\).
RATIO(b, c, d, \(\left.A_{k}(n)\right)\)
1: i+=
2: loop
3: \(\quad\) x \(+=\)
4: loop
5: loop
```

Momp
instrumented

```
    loop at most b times
: zero? \(\hat{i}\)
19: loop
20:
does it halt?

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
- \(\mathrm{c}>0\)
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(x=y=0 \quad 0\)-tested counters
```

1: i+=1 x +=1 y +=1 b +=1 c +=1 d += 1
2: loop
4: loop
loop

```

```

            loonstruumented
            c' -= 1 c+=1
            loop at most b times
                x' -= 1 x+=1 d += 1
                *
    zero? \hat{ i}
loop
20: x-= i y -= 1
21: halt if }\textrm{y}=

```

Aim: simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
- c > 0
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(x=y=0 \quad 0\)-tested counters
```

1: i+=1 x +=1 y +=1 b +=1 c +=1 d += 1
2: loop
4: loop
loop

```

```

            lop
        c' -= 1 c+=1
            loop at most b times
                \mp@subsup{x}{}{\prime}-=1}\quadx+=1\quadd+=
            =1
    8: zero? \hat{i}
9: loop
20: x-= i y -= 1
21: halt if }\textrm{y}=

```

Aim: simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
- c > 0
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(x=y=0 \quad 0\)-tested counters
```

1: i+=1 x += 1 y += 1 b += 1 c +=1 d d+= 1
2: loop
4: loop
loop

```

```

    moinstrumented
        loop at most b times
            x' -=1 x+=1 d +=1
            *
    z: zero? \hat{i}
9: loop
21: halt if }y=

```

Aim:
simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests
- introduce fresh counters b, c, d
- instrument increments and decrements:
\[

\]

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
- c > 0
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(\mathrm{x}=\mathrm{y}=0 \quad 0\)-tested counters
```

1: i+=1 x+=1 y+=1 b +=1 c +=1 d d +=1
2: loop
loop
loop

```

```

    loinstrumented
        loop at most b times
            x'-=1 x+=1 d += 1
            *
    zero? \hat{i}
9: loop
20: x-= i y -= 1
21: halt if }y=

```
- introduce fresh counters b, c, d
- instrument increments and decrements:
\[

\]
\[
\text { put } x, y \text { on }
\]
budget c

Aim:
simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
- c > 0
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(x=y=0 \quad 0\)-tested counters

- introduce fresh counters b, c, d
- instrument increments and decrements:
\[

\]
- replace zero? \(\times\) by
```

ZERO?X:
1: loop
2: y -= 1 x +=1 d -= 1
loop
4: c -=1 y +=1 d -= 1
5: loop
6:
loop
8: }\quadx-=1\quady+=1\quadd-=
9: b -= 2

```

Aim:
simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests

\section*{Instrumentation}
- \(\mathrm{b}=A_{k}(n)\)
-c \(>0\)
- \(\mathrm{d}=\mathrm{b} \cdot \mathrm{c}\)
- \(x=y=0 \quad 0\)-tested counters


Aim:
simulate \(\left(A_{k}(n)-1\right) / 2\) zero tests
- introduce fresh counters b, c, d
- instrument increments and decrements:
\[

\]
- replace zero? \(\times\) by
```

ZERO?X:
1: loop
2: y -= 1 x +=1 d -= 1
loop
4: c-=1 y +=1 d -=1
5: loop
6: y y = 1 c +=1 d -= 1
:loop
8: }\quadx-=1\quady+=1\quadd-=
9: b -= 2

```
- replace halt by
1: loop
2: \(\quad c-=1 \quad d-=2\)
    3: ZERO? c
        merged halt of \(M\) and \(P\)
    halt if ..., \(d=0\).

\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]
```

ZERO? $x$ :
1: loop
2: $\quad y-=1 \quad x+=1 \quad d-=1$
3: loop
4: $\quad c-=1 \quad y+=1 \quad d-=1$
5: loop
6: $\quad y-=1 \quad c+=1 \quad d-=1$
7: loop
8: $\quad x-=1 \quad y+=1 \quad d-=1$
9: $b-=2$

```

\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]


\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]


\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ZERO? x :} \\
\hline \multicolumn{2}{|l|}{1: loop} \\
\hline 2: \(\quad\) y \(-=\) & \(x+=1 \quad d-=1\) \\
\hline 3: loop & \\
\hline 4: c-= & \(y+=1 \quad d-=1\) \\
\hline 5: loop & \\
\hline 6: y-= & \(c+=1 \quad d-=1\) \\
\hline 7: loop & \\
\hline 8: \(\quad \mathrm{x}-=1\) & \(y+=1 \quad d-=1\) \\
\hline 9: \(\mathrm{b}-=2\) & \\
\hline
\end{tabular}

\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ZERO? x :} \\
\hline \multicolumn{2}{|l|}{1: loop} \\
\hline 2: \(\mathrm{y}-=\) & \(x+=1 \quad d-=1\) \\
\hline 3: loop & \\
\hline 4: c-= & \(y+=1 \quad d-=1\) \\
\hline 5: loop & \\
\hline 6: \(\quad \mathrm{y}-=\) & \(c+=1 \quad d-=1\) \\
\hline 7: loop & \\
\hline 8: \(\quad x-=1\) & \(y+=1 \quad d-=1\) \\
\hline 9: \(\mathrm{b}-=2\) & \\
\hline
\end{tabular}

\section*{Simulation of a zero test}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ZERO? x :} \\
\hline 1: loop & \\
\hline 2: \(\quad \mathrm{y}-=\) & \(x+=1 \quad d-=1\) \\
\hline 3: loop & \\
\hline 4: \(\quad\) c - = & \(y+=1 \quad d-=1\) \\
\hline 5: loop & \\
\hline 6: \(\quad \mathrm{y}-=\) & \(c+=1 \quad d-=1\) \\
\hline 7: loop & \\
\hline 8: \(\quad \mathrm{x}-=\) & \(y+=1 \quad d-=1\) \\
\hline 9: \(\mathrm{b}-=2\) & \\
\hline
\end{tabular}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]


\section*{Simulation of a zero test}
ZERO? X:
\begin{tabular}{lll} 
1: loop \\
2: y \(-=1\) & \(x+=1\) & \(d-=1\) \\
3: loop & & \\
4: c \(-=1\) & \(y+=1\) & \(d-=1\) \\
5: loop & & \\
6: y \(-=1\) & \(c+=1\) & \(d-=1\) \\
7: loop & & \\
8: \(\quad x-=1\) & \(y+=1\) & \(d-=1\) \\
9: \(b-=2\) & &
\end{tabular}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]


\section*{Simulation of a zero test}
\[
\mathrm{d}=\mathrm{b} \cdot \frac{(\mathrm{c}+\mathrm{x}+\mathrm{y})}{\text { constans }}
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Zero? X :} \\
\hline 1: loop & \\
\hline 2: \(\mathrm{y}-=\) & \(x+=1 \quad d-=1\) \\
\hline 3: loop & \\
\hline 4: \(\quad\) c - = & \(y+=1 \quad d-=1\) \\
\hline 5: loop & \\
\hline 6: y - = & \(c+=1 \quad d-=1\) \\
\hline 7: loop & \\
\hline 8: \(\quad \mathrm{x}-=\) & \(y+=1 \quad d-=1\) \\
\hline 9: \(\mathrm{b}-=2\) & \\
\hline
\end{tabular}

d decreases by \(<=2 \cdot(c+x+y)\) b decreases by 2
- d decreases by \(2 \cdot(\mathrm{c}+\mathrm{x}+\mathrm{y}) \longrightarrow \mathrm{x}=0\) and \(\mathrm{y}=\mathrm{c}\) initially and finally
\(\cdot d\) decreases by \(<2 \cdot(c+x+y) \longrightarrow\) halt if \(d=0\) will surely fail

One can compute an \(A_{\boldsymbol{k}}(n)\)-multiplier with \(3 k+2\) counters, in time polynomial in \(k\), \(n\)


\title{
The set computed by a counter program from a set
}

\footnotetext{
initial valuation: all counters 0
```

1: x += 1 y += 1
loop
x+=1 y += 1
4: for i := n down to 1 do
loop
loop
9: loop
0: x -= n+1 y -= 1
11: halt if }\textrm{y}=0\mathrm{ .

```
        \(x-=1 \quad z+=1 \quad\) consider all runs
            (nondeterminism)
the set of all valuations at successful halt
}

\title{
The set computed by a counter program from a set
}
```

a set I of initial valuations
1: x+= 1 y += 1
2: loop
3: }x+=1\quady+=
4: for i := n down to 1 do
loop
x -= 1 z += 1
loop
consider all runs starting in I
x += i+1 z -= i
(nondeterminism)
9: loop
10: }\quad\textrm{x}-=n+1\quad\textrm{y}-=
11: halt if }\textrm{y}=0\mathrm{ .

```
the set of all valuations at successful halt
\[
\text { RATIO(b, c, d, B) }\left\{\begin{array}{l}
\cdot \mathrm{b}=B \\
\bullet \mathrm{c}>0 \\
\cdot \mathrm{~d}=\mathrm{b} \cdot \mathrm{c} \\
\cdot \mathrm{all} \text { other counters } 0
\end{array}\right.
\]

For every fixed \(B\) :


One can compute an \(A_{\boldsymbol{k}}\)-amplifier with \(3 k+2\) counters, in time polynomial in \(k, n\)
\[
\text { RATIO(b, c, d, B) }\left\{\begin{array}{l}
\cdot \mathrm{b}=B \\
\bullet \mathrm{c}>0 \\
\cdot \mathrm{~d}=\mathrm{b} \cdot \mathrm{c} \\
\cdot \text { all other counters } 0
\end{array}\right.
\]

For every fixed \(B\) :


One can compute an \(A_{\boldsymbol{k}}\)-amplifier with \(3 k+2\) counters, in time polynomial in \(k\), \(n\)

\section*{\(A_{k^{-}}\)-amplifier \(\longrightarrow A_{\boldsymbol{k}}(\boldsymbol{n})\)-multiplier}


\section*{Amplifier lifting}
- \(A_{1}\)-amplifier:

\section*{Amplifier lifting}
- \(A_{1 \text {-amplifier: }}\)
\[
\begin{aligned}
& \text { 1: loop } \\
& \text { 2: loop } \\
& \text { 3: } \quad c-=1 \quad c^{\prime}+=1 \quad d-=1 \quad d^{\prime}+=2 \\
& \text { loop } \\
& c^{\prime}-=1 \quad c+=1 \quad d-=1 \quad d^{\prime}+=2 \\
& \mathrm{~b}-=2 \quad \mathrm{~b}^{\prime}+=4 \\
& \text { 7: loop } \\
& \text { 8: } \quad c-=1 \quad c^{\prime}+=1 \quad d-=2 \quad d^{\prime}+=4 \\
& \text { 9: } b-=2 \quad b^{\prime}+=4
\end{aligned}
\]
- \(A_{\boldsymbol{k}^{-a m p l i f i e r}} \longrightarrow A_{k+1 \text {-amplifier }}\)

\section*{Amplifier lifting}
- A1-amplifier:
\[
\begin{aligned}
& \text { 1: loop } \\
& \text { 2: loop } \\
& c-=1 \quad c^{\prime}+=1 \quad d-=1 \quad d^{\prime}+=2 \\
& \text { loop } \\
& c^{\prime}-=1 \quad c+=1 \quad d-=1 \quad d^{\prime}+=2 \\
& \mathrm{~b}-=2 \quad \mathrm{~b}^{\prime}+=4 \\
& \text { : loop } \\
& \text { 8: } \quad c-=1 \quad c^{\prime}+=1 \quad d-=2 \quad d^{\prime}+=4 \\
& \text { 9: } b-=2 \quad b^{\prime}+=4
\end{aligned}
\]
- \(A_{\mathbf{k}^{-a m p l i f i e r}} \longrightarrow A_{\mathbf{k + 1}}\)-amplifier
\[
A_{i+1}(n)=\underbrace{A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)}_{n / 4}=A_{i}^{n / 4}(4)
\]

\title{
Amplifier lifting
}
\(A_{k^{-a m p l i f i e r}}\)
\[
A_{i+l}(n)=\underbrace{\left.A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)=A_{i}^{n / 4}(4)\right)}_{n / 4}
\]
\(\mathcal{P}\left(b_{1}, c_{1}, d_{1}, b_{2}, c_{2}, d_{2}\right)\)

\title{
Amplifier lifting
}
\[
A_{i+1}(n)=A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)=A_{i}^{n / 4}(4)
\]
\(A_{k}\)-amplifier
\(\mathcal{P} \quad\left(b_{1}, c_{1}, d_{1}, b_{2}, c_{2}, d_{2}\right)\)
\(\mathcal{M}\) 4-multiplier

\title{
Amplifier lifting
}

\author{
\(A_{k^{-} \text {-amplifier }}\)
}
\[
A_{i+1}(n)=\underbrace{A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)}_{n / 4}=A_{i}^{n / 4}(4)
\]
\(\mathcal{P}\left(b_{1}, c_{1}, d_{1}, b_{2}, c_{2}, d_{2}\right)\)

M 4 -multiplier
\(\mathcal{L}\left(b_{2}, c_{2}, d_{2}, b_{1}, c_{1}, d_{1}\right)\) identity-amplifier

Amplifier lifting
\(A_{k}\)-amplifier
\[
A_{i+l}(n)=\underbrace{\left.A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)=A_{i}^{n / 4}(4)\right)}_{n / 4}
\]

\(\mathcal{L}\left(b_{2}, c_{2}, d_{2}, b_{1}, c_{1}, d_{1}\right)\) identity-amplifier
\[
A_{i+1}(n)=\underbrace{A_{i} \circ A_{i} \circ \ldots \circ A_{i}(4)}_{n / 4}=A_{i}^{n / 4}(4)
\]
\(\mathcal{P}\left(b_{1}, c_{1}, d_{1}, b_{2}, c_{2}, d_{2}\right)\)

\(\mathcal{L}\left(b_{2}, c_{2}, d_{2}, b_{1}, c_{1}, d_{1}\right)\) identity-amplifier

\section*{Open questions}
- dimension-parametric complexity: gap \(n-4 \ldots 2 n+4\)
- low dimensions starting from 3
- extensions:
- data Petri nets
- pushdown Petri nets
- branching VASS

\section*{Open questions}
- dimension-parametric complexity: gap \(n-4 \ldots 2 n+4\)
- low dimensions starting from 3
- extensions:
- data Petri nets
- pushdown Petri nets
- branching VASS```

