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Part  I: 
the reachability problem
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Counter programs without zero tests

Counter program = a sequence of commands of the form:

except for the very last command which is of the form:

Example:

initially:  x’ = x = y = 0

finally:  x' = 0    x = 100    y = 200

no zero tests

counters are nonnegative integer variables initially all equal zero

otherwise abort

abort if x < n
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Reachability problem

Reachability problem: given a counter program without zero tests

can it halt?      (successfully execute its halt command)

Coverability problem: given a counter program without zero tests
with trivial halt command

can it halt? 

why is it important?
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B-multiplier

initial valuation: all counters 0

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

} RATIO(b, c, d, B)

One can compute an Ak(n)-multiplier with 3k+2 counters, 
in time polynomial in k, n

3 distinguished
counters b, c, d

B - fixed positive integer
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Fk -hardness in dimension 3k+2

 RATIO(b, c, d, Ak(n))

program of size n 
with two 0-tested counters:

does it have a halting run
that does (Ak(n)-1)/2 zero tests? 

P

P 
instrumented

program without 0-tests:

Ak(n)-multiplier M

does it halt? 
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Instrumentation

P 
instrumented

0-tested counters

• introduce fresh counters b, c, d

• instrument increments and decrements:

• replace                 by 

• replace halt by

put x, y on 
budget c

c + x + y constans

• b = Ak(n)
• c > 0
• d = b · c
• x = y = 0

Aim: 
simulate (Ak(n)-1)/2 zero tests 

merged halt of M and P
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Simulation of a zero test put x, y on 
budget c

c                      y                       x

d = b · (c + x + y)
constans

c                      y                       x

c                      y                       x

c                      y                       x

• d decreases by    2 · (c + x + y)                        x = 0 and y = c initially and finally
• d decreases by < 2 · (c + x + y)                        halt if d = 0 will surely fail   

d decreases by <= 2 · (c + x + y)
b decreases by 2
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One can compute an Ak(n)-multiplier with 3k+2 counters, 
in time polynomial in k, n

A1-amplifier

Ak-amplifier                       Ak(n)-multiplier

A2-amplifier

…

…
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The set computed by a counter program from a set

the set of all valuations at successful halt

consider all runs
(nondeterminism)

a set I of initial valuations

starting in I
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F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

One can compute an Ak-amplifier with 3k+2 counters, 
in time polynomial in k, n

P(b, c, d, b’, c’, d’)

d=0



18

F-amplifier

consider all runs
(nondeterminism)

• b = B
• c > 0
• d = b · c
• all other counters 0

RATIO(b, c, d, B) {
For every fixed B:

RATIO(b, c, d, B)

RATIO(b’, c’, d’, F(B))

One can compute an Ak-amplifier with 3k+2 counters, 
in time polynomial in k, n

P(b, c, d, b’, c’, d’)

d=0
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initial valuation: all counters 0

n-multiplier

RATIO(b, c, d, n)

RATIO(b’, c’, d’, Ak(n))

Ak-amplifier

Ak(n)-multiplier

Ak-amplifier                       Ak(n)-multiplier
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Amplifier lifting

• A1-amplifier:
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Amplifier lifting

• A1-amplifier:

• Ak-amplifier                            Ak+1-amplifier  
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Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4(4)     {n/4

Amplifier lifting

• A1-amplifier:

• Ak-amplifier                            Ak+1-amplifier  



21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

Ak-amplifier 

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4

(4)     {n/4
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Amplifier lifting

(b1, c1, d1, b2, c2, d2)

Ak-amplifier 

4-multiplier

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4

(4)     {n/4
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Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier 

4-multiplier

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4

(4)     {n/4
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Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier 

4-multiplier

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4

(4)     {n/4



21

Amplifier lifting

(b1, c1, d1, b2, c2, d2)

(b2, c2, d2, b1, c1, d1) identity-amplifier

Ak-amplifier 

(b, c, d, b2, c2, d2)

Ak+1-amplifier

instrumented

4-multiplier

Ai+1(n)  =  Ai  ◦ Ai ◦  … ◦ Ai(4)  =  Ai
n/4

(4)     {n/4
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Open questions

• dimension-parametric complexity: gap n-4 … 2n+4

• low dimensions starting from 3

• extensions:

• data Petri nets

• pushdown Petri nets

• branching VASS
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Open questions

thank you!

• dimension-parametric complexity: gap n-4 … 2n+4

• low dimensions starting from 3

• extensions:

• data Petri nets

• pushdown Petri nets

• branching VASS


