
Timed pushdown automata and
branching vector addition systems

Lorenzo Clemente˚, Sławomir Lasota˚, Ranko Lazić:, and Filip Mazowiecki:
˚Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

:DIMAP, Department of Computer Science, University of Warwick, UK

Abstract—We prove that non-emptiness of timed register
pushdown automata is decidable in doubly exponential time.
This is a very expressive class of automata, whose transitions may
involve state and top-of-stack clocks with unbounded differences.
It strictly subsumes pushdown timed automata of Bouajjani
et al., dense-timed pushdown automata of Abdulla et al., and
orbit-finite timed register pushdown automata of Clemente and
Lasota. Along the way, we prove two further decidability results
of independent interest: for non-emptiness of least solutions to
systems of equations over sets of integers with addition, union
and intersections with N and ´N, and for reachability in one-
dimensional branching vector addition systems with states and
subtraction, both in exponential time.

I. INTRODUCTION

Background: Timed automata [3] are one of the most
studied and used models of reactive timed systems. Motivated
by verification of programs with both procedural and timed
features, several extensions of timed automata by a pushdown
stack have been proposed, including pushdown timed automata
(PDTA) [6], recursive timed automata (RTA) [4], [19], dense-
timed pushdown automata (dtPDA) [1], and timed register
pushdown automata (trPDA) [9].

While PDTA simply add an untimed stack to a timed
automaton, dtPDA are allegedly more powerful since they
allow to store clocks on the stack evolving at the same
rate as clocks in the finite control. Surprisingly, Clemente
and Lasota showed that, as a consequence of the interplay
of the stack discipline and the monotone elapsing of time,
dtPDA is in fact not more expressive than PDTA, and the
two models are strictly subsumed by orbit-finite trPDA [9].
Moreover, subsumption still holds if trPDA are restricted
to timeless stack, and in this case there is nothing to pay
in terms of the complexity of non-emptiness, which is the
central decision problem for model checking: it is EXPTIME-
complete for both PDTA, dtPDA, and trPDA with timeless
stack; for orbit-finite trPDA, the best known upper bound rises
to NEXPTIME (ibid.). The main question posed in the latter
work is whether the heavy restriction of orbit finiteness, which
bounds the differences between state and top-of-stack clocks,
can be lifted while keeping non-emptiness decidable.

Partially supported by the European Research Council (ERC) project Lipa
under the EU’s Horizon 2020 research and innovation programme (grant
agreement No. 683080), by the Polish NCN grant 2016/21/B/ST6/01505,
and by the Engineering and Physical Sciences Research Council (grant
EP/M011801/1).

The proofs of the NEXPTIME and EXPTIME upper bounds
for orbit-finite and timeless-stack trPDA (respectively) [9]
involved translations to systems of equations in which vari-
ables range over sets of integers, and available operations
include addition, union, and intersection with the singleton
set t0u. Similar systems have been studied in a variety of
contexts, and extensions quickly lead to undecidability: e.g.,
already over the naturals, when arbitrary intersections are
permitted, decidability is lost since this model subsumes unary
conjunctive grammars [14].

Contributions: Our headline result answers positively the
question raised by Clemente and Lasota [9]: we prove that
non-emptiness remains decidable when the assumption of
orbit-finiteness of trPDA is dropped. The resulting class of
automata strictly subsumes all pushdown extensions of timed
automata mentioned above (with the exception of RTA [4],
[19]1), and is the first one to allow timed stacks without
bounding the differences of state and top-of-stack clocks.2

For example, it is able to recognise the language of all timed
palindromes over ta, bu containing the same number of a’s
and b’s (cf. Example 2).

The decidability proof proceeds in three stages. The first one
is a sequence of transformations that translates, in exponential
time, trPDA to systems of equations over sets of integers
with addition, union, and intersections with N and ´N, and is
considerably more involved than the corresponding translation
for orbit-finite trPDA [9].

Secondly, we show how such systems of equations can be
translated in polynomial time to one-dimensional branching
vector addition systems with states extended with a subtraction
operation (1-BVASS˘). Branching vector addition systems
with states (BVASS) have been studied extensively in recent
years with motivations coming from computational linguistics,
linear logic, and verification of recursively parallel programs
amongst others; cf. Lazić and Schmitz [18] and references
therein. In particular, while the reachability problem for
BVASS is not known to be decidable in general, it was recently
proved to be PTIME-complete in dimension one for unary
encoding of constants [13], and PSPACE-complete for binary

1The model of RTA differs significantly from the other models since the
stack contains clock values which are constant w.r.t. the elapsing of time.

2Note that Clemente and Lasota denoted by trPDA an undecidable class
in which many stack symbols can be popped and pushed in one step, like
in prefix-rewriting. For simplicity, we use the same name for the new largest
decidable subclass.978-1-5090-3018-7/17/$31.00 c©2017 European Union

encoding [12]; however, the model extended with subtractions
is undecidable already in dimension six [17].

In the final stage of the decidability proof, we argue by an
ingenious surgery of reachability trees that 1-BVASS˘ have
a small-model property, i.e., that reachability in dimension
one has witnesses with values bounded exponentially. We thus
deduce that 1-BVASS˘ reachability is decidable in EXPTIME.

The former upper bound on 1-BVASS˘ combined with our
exponential reduction from trPDA yields a 2-EXPTIME upper
bound for the trPDA non-emptiness problem. To supplement
the two main translations, we exhibit also their reverses: from
1-BVASS˘ to the systems of equations, and from the latter to
trPDA, both in polynomial time.

Finally, we mention the analysis of dtPDA based on tree
automata of [2]. It is shown there that runs of dtPDA can
be represented as graphs of bounded split-width, and one can
construct a finite tree automaton recognizing precisely those
decompositions corresponding to timed runs of the dtPDA.
Upon a closer inspection of our approach for trPDA (cf. the
reduction to BVASS outlined below), it can be argued that we
also perform a similar reduction to a kind of tree automaton,
albeit not a finite one, but one with a counter taking values
in the nonnegative integers. This extra counter is needed to
keep track of possibly unbounded differences between register
values for matching push/pop pairs. The fact that a finite
tree automaton suffices when analyzing dtPDA should be
contrasted to our previous semantic collapse result of dtPDA
to the variant with timeless stack [9]: For the latter model,
since the stack is timeless, there are no long push/pop timing
dependencies and a finite tree automaton clearly suffices.

Organisation: After defining timed register pushdown au-
tomata in Sec. II and systems of equations over sets of integers
in Sec. III, we develop the translations between them in
Sec. IV and V. In Sec. VI we define 1-BVASS˘, in Sec. VII
we establish PTIME interreducibility between 1-BVASS˘ and
equations, and in Sec. VIII we prove that their reachability
problem is in EXPTIME. Some closing remarks can be found
in Sec. IX.

II. TIMED REGISTER PUSHDOWN AUTOMATA

We are interested in an extension of pushdown automata where
control states and stack symbols are additionally equipped with
tuples of values from an infinite time domain T, which can
be either the dense time structure pQ,ď,`1q, or the simpler
discrete time structure pZ,ď,`1q. Our results are valid for
both structures; in the sequel, we focus on the former.

A. Constraints

We describe subsets of Qk, for k ą 0, by formulas. A
constraint φpx1, . . . , xkq of dimension k is a Boolean com-
bination3 of atomic formulas using variables x1, . . . , xk, the
binary predicate ď, and the unary function `1. We denote
by varpφq the set of free variables appearing in φ. For

3Allowing first order quantifiers does not increase the expressive power, as
both dense and discrete time structures admit quantifier elimination.

example, the following is a constraint with free variables
varpφq “ tx1, x2, x3u:

φpx1, x2, x3q ”
`

x1 ď x2 ^ x2 ď x1`1^ px1`1 ď x2q
˘

_
`

px1`1q`1 ď x3 ^ x3 ď px1 ` 1q`1
˘

.

By using syntactic sugar we can rewrite the above constraint
as x1 ď x2 ă x1 ` 1 _ x1 ` 2 “ x3. We assume a binary
representation of integer constants in constraints.

A constraint φ defines the set vφw Ď Qk of all valuations
satisfying φ. For example, the above constraint denotes the set
vφw “

pa, b, cq P Q3
ˇ

ˇ a ď b ă a` 1 or a` 2 “ c
(

. Sets of
the form vφw for a constraint φ are called definable.

An automorphism of the dense time structure is a bijective
function f : Q Ñ Q which is monotonic (i.e., x ď y implies
fpxq ď fpyq) and preserves integer distances (i.e., fpx`1q “
fpxq ` 1). Thus, rigid translations fpxq “ x ` k are dense
time automorphisms for every k P Q, as well as functions of
the form gpxq “ txu ` hpx ´ txuq where h is a monotonic
bijection of the interval r0, 1q to itself.4 The orbit of a tuple
x P Qk is the set of all tuples of the form fpxq, where f is a
dense time automorphism (extended point-wise in the natural
way). In other words, an orbit is an equivalence class of tuples
carrying the same information in terms of ordering and integer
differences. For example, the orbit of the tuple p0, 0.5, 1q is
the set of tuples px, y, zq s.t. x ă y ă z and z ´ x “ 1;
thus, p2, 2.2, 3q is in the same orbit as p0, 0.5, 1q (i.e., they
are equivalent modulo timed automorphisms), but neither is
p2, 2, 3q nor p2, 2.2, 3.1q. Every definable set vφw is invariant
under automorphisms, and thus is partitioned into (necessarily
disjoint) orbits. When the partition is finite, we call vφw orbit-
finite. For instance, the set defined by the constraint x1 ď

x2 ă x1 ` 1 is partitioned into two orbits, which are defined,
respectively, by the constraints:

x1 “ x2 and x1 ă x2 ă x1 ` 1.

Notice that a definable set needs not be orbit-finite in general.
For instance the constraint x1 ą x2`1 defines an orbit-infinite
set, since for every two integer distances i, j ą 1 and x P Q,
the two tuples px` i, xq and px` j, xq cannot be in the same
orbit unless i “ j. A constraint defining an orbit-finite set is
itself called orbit-finite.

Let the span of a tuple a P Qk be max a´min a, i.e., the
difference between the maximal and the minimal values in a.
A set has bounded span if it admits a common bound on the
spans of all its elements. If the span is bounded, then it is
exponentially bounded since constants are encoded in binary.
We obtain the following characterization of orbit-finiteness:

Proposition 1 (cf. [9, Lemma III.1]). A definable set vφw is
orbit-finite if, and only if, it has bounded span K. Moreover,
K is at most exponential.

In dimension k “ 1 there are only trivial constraints, and
hence the only definable sets are Q and H.

4While we are usually concerned with dense time automorphisms in the
paper, we will occasionally use also automorphisms of the structure pQ,ďq,
which is a weaker variant requiring only monotonicity.

B. Timed register PDA

Our model is obtained by extending classical PDA with
additional registers holding timestamps from the dense time
structure. Registers can be compared with the binary predicate
ď and the unary function `1. We allow both registers in the
finite control (i.e., global registers) and in the stack; the latter
registers can be pushed, popped, and checked against global
registers. Most importantly, we allow unbounded differences
between global registers and registers on top of the stack.

While classical timed models (e.g. [3], [7], [1]) use clocks,
which measure differences between timestamps, we use regis-
ters, which record the timestamps themselves. Clock resets
are simulated by assigning the current input timestamp to
a register, and comparing a clock against a constant k is
simulated by comparing the difference between a register and
the current input timestamp against k. While a clock increases
its value monotonically with the elapse of time, the value of
a register is preserved until the next assignment. In particular,
our model can in general read non-monotonic words, i.e.,
words with no relationship between timestamps of subsequent
symbols; if necessary, monotonic input can be enforced within
the model by adding an extra control register recording the
previous input timestamp and constraining the next one.

A timed register PDA P (trPDA) of dimension k is a tuple

xpφqqqPQ, pφaqaPA, pφγqγPΓ, I, F, ppushδqδP∆push
, ppopδqδP∆popy

where:

(1) Q is a finite set of of control states and, for each q P Q,
φq is an orbit-finite constraint of dimension k; variables
appearing in φq can be understood as register names in
state q, and vφqw Ď Qk describes all admissible values of
registers in control state q;

(2) A is a finite alphabet of input symbols; for each a P A,
φa is an orbit-finite constraint of dimension k describing
admissible tuples of time values that can accompany the
input symbol a;

(3) Γ is a finite set of stack symbols; for each γ P Γ, φγ
is an orbit-finite constraint of dimension k that describes
those tuples of time values that can be stored on the stack
together with the stack symbol γ;

(4) I, F Ď Q are the sets of initial and accepting control
states, resp., and

(5) ∆push,∆pop Ď Q ˆ Aε ˆ Q ˆ Γ are the set of push and
pop transitions, resp., where Aε is A extended with the
empty word ε R A; moreover, for every transition δ “
pp, a, q, γq P ∆push, pushpaqγ is a not necessarily orbit-
finite constraint of dimension 4k, and similarly for ∆pop.

A push constraint pushpaqγp~xp, ~xa, ~xq, ~xγq has 4k free
variables ~xp, ~xa, ~xq, ~xγ (each of size k), where ~xp “

pxp,1, . . . , xp,kq represents registers in the current control state
p, ~xa represents the timestamps in the input symbol a, ~xq
represents the registers in the next control state q, and ~xγ
represents the registers in the stack symbol γ (which is in this
case pushed on the stack); similarly for ∆pop.

We consider a trPDA P as a symbolic representa-
tion for the infinite-state pushdown automaton P 1 “
A

Q1, A1,Γ1, I 1, F 1,∆1push,∆
1
pop

E

where

Q1 “
ď

qPQ

tquˆ vφqw A1 “
ď

aPA

tauˆ vφaw

I 1 “
ď

qPI

tquˆ vφqw Γ1 “
ď

γPΓ

tγuˆ vφγw

F 1 “
ď

qPF

tquˆ vφqw

and ∆1push Ď Q1 ˆA1 ˆQ1 ˆ Γ1 is defined as the union, over
all pp, a, q, γq P ∆push, of relations of the form

ppp, tq, pa, uq, pq, vq, pγ,wqq
ˇ

ˇ pt, u, v, wq P
0

pushpaqγ
8(

,

and similarly for ∆1pop. To the PDA P 1 we can apply all
the classical definitions for PDAs, namely the notion of run,
accepting run, language recognized, etc., and thus all these no-
tions transfer to the trPDA P . As an immediate consequence,
classical closure properties of languages recognized by PDAs
(i.e., context-free languages) directly transfer to trPDA, such as
closure under union, reversal, concatenation, iteration, images
and inverse images of (timed) homomorphisms. For technical
convenience, in the sequel we assume w.l.o.g. that a trPDA
starts in an initial control state with the empty stack, and
accepts when it enters an accepting control state and its stack
is empty. The non-emptiness problem for a given trPDA P is
to decide whether there exists an accepting run.

Observe that we do not include “nop” transitions, i.e.,
transitions not accessing the stack, since they can be simulated
by pushing a dummy symbol (with any time value) and
then immediately popping it. An alternative definition yielding
an essentially equivalent model could be considered where
each control state, input symbol, or stack symbol, has its
own dimension, including dimension 0, but we avoid this for
simplicity. In dimension k “ 1 the orbit-finite constraints
on states, input alphabet, and stack alphabet can be omitted.
Examples demonstrating the syntax and expressive power of
trPDA can be found in Example 1 and 2 below.

Remark 1. The model of trPDA is not ad hoc: it is an
instantiation of a general model of definable PDA [8] where
atoms are pQ,ď,`1q, resp. pZ,ď,`1q, along the general lines
of [8], [15], [16].

C. State of the art

Since trPDA generalise pushdown automata, all problems
which are undecidable for pushdown automata (such as uni-
versality, equivalence, inclusion, disjointness, etc.) remain
undecidable for trPDA. The challenge then, is to show which
decidable problems on pushdown automata are still decidable
for trPDA. In this paper, we focus on the non-emptiness
problem. In the rest of the section, we discuss the relationship
of trPDA with related models in the literature.

First of all, trPDA without stack is the same as timed register
finite automata [5], a generalization of timed automata [3] with

uninitialized clocks. For this reason, we require that the state
constraints φq are orbit-finite, otherwise non-emptiness would
be undecidable already in dimension k “ 3 and without a
stack [5]. Indeed, by dropping orbit-finiteness of the control
state, it becames possible to simulate a 2-counter machine with
zero test (i.e., a Minsky machine) using only three registers
x1, x2, x3: The two counters are represented as the differences
x1 ´ x3 and x2 ´ x3, respectively; incrementation of the first
counter is x11 “ x1`1, decrementation is x1 “ x11`1, and zero
test is x1 “ x3; similarly for the second counter. On the other
hand, orbit-finiteness of φa, for input symbols a’s, is inessen-
tial for the non-emptiness problem (we existentially quantify
it away; cf. the end of Sec. II-D), and thus can be dropped.
We do not know whether dropping the orbit-finiteness of φγ ,
for stack symbols γ, would lead to undecidability.

If we add a (classical, untimed) stack to timed register finite
automata, then we obtain trPDA with timeless stack, which
already subsume several models from the literature, such as
pushdown timed automata [7] with uninitialized clocks, and
dense-timed PDA [1] with uninitialized clocks. (The latter
model has been shown to be expressively equivalent to push-
down timed automata in [9].) Non-emptiness of trPDA with
timeless stack is EXPTIME-complete [9].

Timed register context-free grammars (trCFG) correspond
to trPDA (thus with a timed stack) with a single control
state of dimension zero, plus “long rules” reading one stack
symbol and pushing possibly many stack symbols. We show
in [9] that non-emptiness of trCFG is decidable in EXPTIME.
Intuitively, for grammars one can just orbitize separately the
stack symbols; while this operation in general provides an
overapproximation of the set of accepting runs for trPDA,
in the case of grammars it is precise. Unlike the models
mentioned so far, trPDA with untimed control states, and also
trCFG, can express truly timed context-free properties such as
timed palindromes, as shown below.Notice that in this model
push and pop transitions have 2k free variables, where k is
the dimension of input and stack alphabets.

Example 1. Let the input alphabet A “ ta, bu contain
two input symbols of dimension one, and consider the
language L of timed palindromes of even length, L “

wwR
ˇ

ˇ w P pAˆQq˚
(

. Notice how palindromicity is re-
quired also in the timestamps, which makes it impossible for
L for be recognized without a truly timed stack. We construct
trPDA P recognizing L with just two control states Q “ tp, qu
of dimension zero, of which p is initial and q is final, and a
stack alphabet Γ “

ā, b̄
(

of dimension one. (Alternatively,
one can construct a trCFG recognizing the same language;
but we stick to the trPDA syntax here.) In the constraints
below, the variable y refers to the timed value on the top
of the stack (pushed or popped, depending on the transition),
and z refers to the timed value of the input symbol. In control
state p, upon reading an input symbol pc, zq P A ˆ Q, the
automaton pushes pc̄, zq P Γ ˆ Q to the stack, and it decides
nondeterministically whether to stay in p, or move to control

state q: pp, c, r, c̄q P ∆push for r P tp, qu and c P ta, bu, where

pushpcrc̄pz, yq ” y “ z.

From control state q, the automaton attempts to pop the sym-
bols appearing in the input: pq, c, q, c̄q P ∆pop for c P ta, bu,
where popqcqc̄pz, yq ” y “ z.

Let’s now consider trPDA with time both in the control
state and in the stack. Orbit-finite trPDA are trPDA where
we additionally demand orbit-finiteness of the following two
projections consisting of control state and topmost stack
symbol [9]:

pt, wq P Q2k
ˇ

ˇ Du, v P Q2k ¨ pt, u, v, wq P
0

pushpaqγ
8(

, and

pt, wq P Q2k
ˇ

ˇ Du, v P Q2k ¨ pt, u, v, wq P
0

poppaqγ
8(

.

Non-emptiness for orbit-finite trPDA is in NEXPTIME [9],
while the decidability status of trPDA without the orbit-finite
restriction above has been left open. Orbit-finite trPDA are
more expressive than trCFG. In fact, while the projection to the
untimed component of languages recognized by trCFG are the
(classical) context-free languages [9, Lemma IV.2], orbit-finite
trPDA can recognize (untimed) non-context-free languages.
One such language is the set of untimed palindromes over
ta, bu containing the same number of a’s and b’s [9, Example
IV.3]. Notice that the orbit-finiteness constraint prevents us
from recognizing timed palindromes and at the same time
carrying unrelated timing information in the control state; this
will be fixed in Example 2 below.

In trPDA studied in this paper, we do not require that the
push/pop constraints pushpaqγ and poppaqγ are orbit-finite.
Therefore, in trPDA we allow values of registers in the stack
to be arbitrarily far from the values of registers in the state. We
show in this paper that non-emptiness for trPDA is decidable
(in 2-EXPTIME; cf. Theorem 1), even dropping such orbit-
finiteness requirement. This closes the problem left open in
[9]. Moreover, the example below presents a language which
can be recognized by trPDA but not by an orbit-finite trPDA,
thus showing that orbit-finiteness is a true semantic constraint.

Example 2. With A “ ta, bu as in Example 1 above, consider
the language L of timed palindromes of even length over Aˆ
Q with the same number of a’s and b’s. Thus, L combines
the language from Examples 1 and [9, Example IV.3]. We
construct below a trPDA P of dimension k “ 1 recognizing L.
Notice that (1) palindromicity applies not only to the finite part
A, but also to time values, and (2) the projection of L to A is
not a context-free language. Thus trPDA can express nontrivial
counting properties on top of a given context-free language.

In the constraints below, the variable x represents the value
of the register in the current state, x1 refers to its value in the
next state, y refers to the timed value on the top of the stack
(pushed or popped, depending on the transition), and z refers
to the timed value of the input symbol. The stack alphabet is
Γ “

ā, b̄,K
(

, and we have four control states Q “ tp, q, r, su,
of which I “ tpu is initial, and F “ tsu is final.

The sets of push and pop transitions ∆push and ∆pop contain
precisely the transitions mentioned below. From the initial

control state p, the automaton moves to the control state q by
nondeterministically initializing its register and pushing it on
the stack with bottom-of-stack symbol K: pp, ε, q,Kq P ∆push,
where pushpεqKpx, z, x

1, yq ” px “ x1 “ yq. In control state
q, the automaton pushes the input symbol pc, zq P A ˆ Q
to the stack, and at the same time increments or decrements
its state register depending on whether c “ a or c “ b;
moreover, it stays nondeterministically in q, or moves to r:
pq, c, q1, c̄q P ∆push for q1 P tq, ru and c P ta, bu, where

pushqaq1āpx, z, x
1, yq ” px1 “ x` 1^ y “ zq, and

pushqbq1b̄px, z, x,
1 yq ” px “ x1 ` 1^ y “ zq.

From control state r, the automaton attempts to pop the
symbols appearing in the input, while keeping incrementing
or decrementing the state register depending on whether it
sees a or b. Thus, pr, c, r, c̄q P ∆pop for c P ta, bu, where
the constraint poprcrc̄ is the same as pushqcqc̄ above. Finally,
on seeing the bottom-of-stack symbol K, the automaton can
pop it only if its current register equals the time value on
the stack, and go to the accepting state s: pr, ε, s,Kq P ∆pop,
where poprεsKpx, z, x

1, yq ” px “ yq.

We conclude this section by mentioning that more general
models than trPDA can be considered, for which however
the non-emptiness problem becomes undecidable. One such
example is obtained if we allow push transitions to read the top
of the stack, for which we have shown that non-emptiness is
undecidable, already for dimension k “ 1 [9] 5. Intuitively, one
can simulate a 2-counter automaton by encoding one counter
as the difference between the register in the state and the
register on the top of the stack, and the other counter as the
height of the stack. It is not clear whether allowing “rewrite”
transitions of the form pp, a, q, α, βq (the topmost stack symbol
α is rewritten into β) would lead to undecidability.

D. Outline

Our main result is a decision procedure for testing non-
emptiness of trPDA. For complexity-theoretic considerations,
we assume a binary representation of all numeric constants
appearing in constraints.

Theorem 1. The non-emptiness problem for trPDA is decid-
able in 2-EXPTIME.

We apply the following strategy in the decidability proof. As
the first step, we translate a trPDA into a system of equations
over sets of integers, with an exponential blowup (cf. Sec-
tions III and IV); for the sake of completeness, a reverse
translation from systems of equations to trPDA is provided
in Section V. Then, we show that the non-emptiness problem
for systems of equations is polynomially interreducible with
the analogous problem for an extension of branching vector
addition systems in dimension one (cf. Sections VI and VII).
Finally, we obtain an EXPTIME decision procedure for the

5This more general model, allowing popping and pushing many stack
symbols in one step, was called trPDA in [9].

latter problem, by bounding exponentially the counter values
in an accepting run (cf. Section VIII).

In the following, we are interested exclusively in non-
emptiness of trPDA, and thus the actual recognized language
will not be relevant. Therefore, we drop the input alphabet,
and consider the projected transition relations ∆1push,∆

1
pop Ď

Q ˆ Q ˆ Γ instead, where pp, q, γq P ∆1push if there exists
a P A s.t. pp, a, q, γq P ∆push with constraint6 (the constraint
for ∆1pop is analogous):

pushpqγ ”
ł

aPA

Dvarpφaq ¨ pushpaqγ .

III. SYSTEMS OF EQUATIONS OVER SETS OF INTEGERS

We consider systems of equations of the form

∆ :

$

’

’

&

’

’

%

X1 “ t1
...

Xn “ tn,

where X1, . . . , Xn are pairwise-distinct variables to be in-
terpreted as sets of integers, and right-hand side expressions
t1, . . . , tn are built according to the following abstract syntax:

t ::“ t1u | t´1u | Xi | t` t | tY t | tX N | tX´N

where “`” is interpreted element-wise as A ` B :“
ta` b | a P A and b P Bu for A,B Ď Z, and intersection can
be taken only w.r.t. N and ´N. A variable assignment µ
is a function assigning to each variable Xi a subset µpXiq

of integers. This is extended to terms in the natural way. A
solution is a variable assignment µ satisfying every equation,
i.e., µpXiq “ µptiq for every equation Xi “ ti.

We are interested in the least solution of systems of equa-
tions, which exists since we can only build monotonic terms.
Thus, equivalently we can consider systems of inclusions, by
replacing equalities Xi “ ti by inclusions Xi Ě ti. In this case
there is no need to require the variables Xi to be pairwise
distinct, i.e., there may be multiple inclusions for the same
left-hand side variable. By introducing extra variables, one
can transform inclusions into the following restricted form:

X Ě t1u

X Ě t´1u

X Ě Y X N
X Ě Y X´N

X Ě Y ` Z. (1)

The non-emptiness problem asks, for a given system ∆ of
equations and a distinguished variable X therein, whether the
least solution µ of ∆ assigns to X a non-empty set of integers.
The membership problem asks, given an additional integer k P
Z (coded in binary), whether k P µpXq.

Example 3. We can compactly represent a singleton tku using
only constants t1u , t´1u as the least solution of Zk in

Z0 Ě t1u ` t´1u ,
Z2m Ě Zm ` Zm,

Z2m`1 Ě Zm ` Zm ` t1u .

6Due to quantifier elimination, both pushpqγ and poppqγ can be rewritten
as constraints.

Thus, we can represent a finite set P “ tp1, . . . , pnu as ZP Ě
Zp1 Y ¨ ¨ ¨ Y Zpn , a linear set L “ b ` P˚ (with bases and
periods given in binary) as XL Ě Zb Y pXL ` ZP q, and a
semilinear set S “

Ťn
i“1 Li as XS Ě XL1

Y ¨ ¨ ¨ YXLn
.

The use of intersection is assumed to be very limited. Unre-
stricted intersections of the form X X Y immediately lead
to undecidability of non-emptiness. Indeed, already equa-
tions over N with unrestricted intersection subsume unary
conjunctive grammars by replacing terminals with t1u and
concatenation with `, and the latter model has undecidable
non-emptiness [14]. On the other hand, non-emptiness of
system of equations without intersections can be solved in
PTIME by constructing a context-free grammar, which is
obtained by interpreting 1 and ´1 as terminal symbols, and
by replacing sum with concatenation [9]. However, the mem-
bership problem—which reduces to check whether 0 belongs
to the least solution—is already NP-complete even without
intersections, since now one really needs to count 1’s and ´1’s
[9]. Finally, allowing intersections with singleton constants
makes both non-emptiness and membership NP-complete [9].

We show that decidability of system of equations is pre-
served even if we allow intersections with N and ´N.

Theorem 2. Non-emptiness of systems of equations with
intersections with N and ´N is decidable in EXPTIME.

The proof of the theorem follows from the PTIME reduction
to reachability in 1-BVASS˘ shown in Sec. VII, and the fact
that the latter problem is in EXPTIME by Theorem 6.

IV. FROM TRPDA TO SYSTEMS OF EQUATIONS

This section is devoted entirely to the proof of the following
theorem (recall that we assume binary representations of
integer constants appearing in the constraints):

Theorem 3. The non-emptiness problem of trPDA reduces, in
exponential time, to the same problem of systems of equations.

This is achieved in several steps, which we now outline.
First, we decompose rational time values into the (discrete) in-
teger part and the (continuous) fractional part (Sec. IV-A). This
is beneficial, since control state registers, as well as registers
on top of the stack, have bounded span (cf. Proposition 1), and
thus we can represent many integer values by a single integer
plus a bounded distance, which is encoded in the state. In this
way, we reduce the integer part to dimension one (Sec. IV-B).
Since we have now only one integer in the current control
location, one in the top of the stack, and one in the next
control location, it follows that transitions are in dimension
three w.r.t. the integer part. We define a convenient normal
form for these transitions in dimension three, called triangles
(Sec. IV-C), which we can further simplify (Sec. IV-D and
IV-E). Finally, once the structure of triangles is at its simplest,
we can write a system of equations encoding reachability in
the original trPDA (Sec. IV-F).

A. Product structure

Instead of dense time structure pQ,ď,`1q, we prefer to
work in the product structure T defined below. This allows
us, roughly speaking, to deal with the integer and fractional
parts separately. The factorization of a rational number into the
integer and fractional part gives rise to a bijection between
Q and Z ˆ I, for I “ r0, 1q X Q. Consider the product of
the integer part structure pZ,ď,`1q with the fractional part
structure pI,ďq:

pZˆ I,ďZ,ďI,`1q , where (2)

pz, qq ďZ pz
1, q1q iff z ď z1,

pz, qq ďI pz
1, q1q iff q ď q1, and

pz, qq ` 1 “ pz ` 1, qq,

(3)

Using relations (3) one can define an isomorphic copy of pQ,ď
,`1q inside Zˆ I, i.e., dense time is a reduct of (2): the `1
function is already present in (3), and the copy ď1 of the order
ď can be defined lexicographically:7

pz, qq ď1 pz1, q1q ðñ z ăZ z
1 _ pz “ z1 ^ q ďI q

1q. (4)

Nothing changes if we replace the half-open interval by the
open one I “ p0, 1q. Indeed, up to isomorphism the formula (4)
defines the same order as before, namely the unique countable
infinite dense total order without end points. Finally, up to
isomorphism nothing changes if pI,ďq is replaced by pQ,ďq.

Thus, from now on we work in the product structure

T :“ pZ,ď,`1q ˆ pQ,ďq “ pZˆQ,ďZ,ďQ,`1q (5)

Modulo isomorphism, the subset of Qk defined by a constraint
φpx1, . . . , xkq is the same as the subset of pZˆQqk defined by
the new formula pφ, obtained by replacing every atomic formula
x ď y ` k in φ by px ăZ y ` kq _ ppx “Z y ` kq ^ x ďQ yq.
We can thus assume that every constraint φ in the input trPDA
has been rewritten to pφ. In the sequel, we write ď instead of
ďQ and ďZ, when this does not lead to confusion.

B. Reducing the integer part to dimension one

When interpreted over T, registers appearing in states and
stack symbols are members of pZˆQqk, subject to the local
legality constraints pφp and pφγ , respectively. The sets defined
by the constraints φp and φγ are orbit-finite by definition
of trPDA, and thus by Proposition 1 they have at most
exponential span K. We construct an equivalent (w.r.t. non-
emptiness) trPDA whose integer part has dimension one by
fixing for each control state (resp. stack symbol) a reference
integer register xi and by recording in the control state
(resp. stack symbol) for every other integer register xj , the
difference xj ´ xi P t´K, . . . ,Ku. Fractional values are not
modified and thus remain of dimension k. Therefore, states
and stack symbols instead of being members of pZ ˆ Qqk
are from now on members of Z ˆ Qk, i.e., the integer part

7On the other hand, the product structure (2) is not a reduct of pQ,ď,`1q;
indeed, the predicate x “I y in the product structure says that the difference
between x and y is an integer, and is not definable in pQ,ď,`1q.

is reduced to dimension 1. The number of controls states and
stack symbols in the resulting automaton is increased by an
exponential multiplicative factor.

With this simple first step we achieve a fundamental gain:
except for the one-dimensional integer part which will be
treated separately, we have moved from the dense time domain
pQ,ď,`1q to the simpler (homogeneous) structure pQ,ďq.
The fundamental difference between these two structures is
that while Qk is orbit-infinite with respect to automorphisms
preserving ď and `1, it becomes orbit-finite when only ď is
considered. Indeed, an orbit of Qk with respect to automor-
phisms of pQ,ďq is fully determined by consistently choosing
for each pair of variables xi, xj whether or not xi ď xj holds.
The set of these orbits, denoted orbitspQkq below, is thus of
exponential size with respect to k, and its finiteness will be
crucial for constructing equations later.

C. Triangles

Now that the integer part is one-dimensional, we can further
simplify the structure of transitions. Since values are now in
Z ˆ Qk, push and pop operations are described by formulas
of the form pushpqγppxp, ~xpq, pxq, ~xqq, pxγ , ~xγqq, which can
be transformed into a disjunction of formulas of the form

ϕZpxp, xq, xγq ^ ϕQp~xp, ~xq, ~xγq,

for a formula ϕZpxp, xq, xγq of discrete time atoms pZ,ď,`1q
and a formula ϕQp~xp, ~xq, ~xγq of dense total order atoms
pQ,ďq, both being conjunctions of atomic statements. Atomic
statements appearing in ϕZ are upper/lower bounds on differ-
ences xα´ xβ of variables xα, xβ P txp, xq, xγu, α ‰ β, and
thus ϕZ is equivalent to a conjunction of statements of the form
xα ´ xβ P I for I Ď Z an interval. Since there are only three
possible types of differences to consider (xq´xp, xγ´xq , and
xp´xγ), it suffices to consider triples of intervals. A triangle
is a triple xI, J,Ky of (not necessarily bounded) intervals
I, J,K Ď Z, denoting the following set vxI, J,Kyw Ď Z3:

px, y, zq P Z3
ˇ

ˇ py ´ xq P I ^ pz ´ yq P J ^ px´ zq P K
(

.

From now on push and pop operations will be described by
disjunctions of clauses of the form

pxI, J,Ky , ϕQq, where
0

ϕQ8 Ď Q3k. (6)

The interval I specifies the difference between the new control
state and the previous one, J specifies the difference between
the topmost stack symbol and the new control state, and K
specifies the difference between the previous control state and
the stack symbol. Transforming push and pop formulas into
disjunction of clauses increases the size by an exponential
multiplicative factor.

D. Redundant triangles

We now proceed to show that triangles of a very special
form suffice. A triangle xI, J,Ky is redundant if at least one
of the intervals I, J,K equals Z. We show that every triangle
is equivalent to a finite union of redundant triangles, in fact

linearly many w.r.t. the maximal (absolute values of) integers
defining I, J,K, thus at most exponential.

First, we notice that we can always apply the following
“strengthening” of intervals, by intersecting each interval with
the opposite of the sum of the other two: A triangle xI, J,Ky
is equivalent to the triangle xI 1, J 1,K 1y, i.e., vxI, J,Kyw “
vxI 1, J 1,K 1yw, where I 1 “ I Xp´pJ `Kqq, J 1 “ J Xp´pI `
Kqq, and K 1 “ K X p´pI ` Jqq. Strengthening results in a
triangle xI, J,Ky which satisfies

I Ď ´pJ `Kq, J Ď ´pI `Kq,K Ď ´pI ` Jq. (7)

When any of the inclusions above is an equality, the corre-
sponding interval can be deduced from the other two, and
we can replace this interval with Z to obtain an equivalent
redundant triangle. For example, if I “ ´pJ ` Kq, then
xI, J,Ky is equivalent to xZ, J,Ky. We call this the “redun-
dancy principle”. It is possible that all inclusions in (7) are
strict: For example, take I “ r2, 4s, J “ r6,8q, and K “

p´8,´9s, and we immediately have ´pI ` Jq “ p´8,´8s,
´pI ` Kq “ r5,8q, and ´pJ ` Kq “ Z. However, when
all inclusions in (7) are strict, we can nonetheless split one of
the three intervals into a finite disjoint union of intervals for
which some inclusions in (7) become equalities.

Fact 1. A non-empty triangle is equivalent to a finite union
of redundant triangles.

E. Restricted triangles

A triangle xI, J,Ky is restricted if at most two vertices
change at a time, i.e., if one of the following conditions holds:
‚ I “ t0u (and consequently J “ ´K by strengthening),
‚ J “ t0u (and consequently K “ ´I by strengthening),
‚ K “ t0u (and consequently I “ ´J by strengthening).

A trPDA is restricted if its push and pop transitions use
constraints containing only restricted triangles. While triangles
(even redundant ones) are in general not equivalent to boolean
combinations of restricted triangles, we can nonetheless show
that push and pop operations with redundant triangles can
be simulated by short sequences of operations with restricted
triangles. We show it for push operations; a similar construc-
tion can be given to simulate pop operations by restricted pop
operations. We use auxiliary intermediate control states written
‚ (different for each simulated transition). We also use nop
transitions of the form noppq consisting of a single clause
pI, ϕQq where the semantics is that the register px, ~xq P T in
the previous control state is related to the new one py, ~yq P T
iff y´x P I and p~x, ~yq P

0

ϕQ8; these additional nop operations
can later be removed by pushing and immediately popping a
dummy symbol on the stack (with any time value), which can
clearly be achieved by restricted operations. Consider one of
the clauses pxI, J,Ky , ϕQq of pushpqγ with redundant triangle
xI, J,Ky. There are three cases to consider:

a) xI, J,Zy: The difference between the register in the
previous control state and in the stack symbol is determined by
the other two differences. Execute a nop nopp‚ ” pI, p~x “ ~yqq
(only the integer register in the control state changes) followed

by a restricted push push‚qγ ” pxt0u ,´J, Jy , ϕQq (the
integer register in the control state does not change).

b) xI,Z,Ky: The difference between the register in the
new control state and in the stack symbol is determined by
the other two differences. Execute a restricted push pushp‚γ ”
pxt0u ,´K,Ky , ϕQq (the integer register in the control state
does not change) followed by a nop nop‚q ” pI, p~x “ ~yqq
(only the integer register in the control state changes).

c) xZ, J,Ky: The difference between the register in
the previous state and the new one is determined by the
other two differences. Execute a restricted push pushp‚γ ”
px´K, t0u ,Ky , ϕQq (the integer register in the next control
state is the same as the integer register pushed on the stack)
followed by a nop nop‚q ” p´J, p~x “ ~yqq.

We have thus transformed a trPDA into a restricted one; this
will be useful in the proof of soundness of Lemma 2 below.

Remark 2. The transformations described by now are all
effective. The first three of them, namely reducing the integer
part to dimension one, transforming push and pop formulas
into triangles, and finally decomposing the triangles into
redundant ones, can all be achieved at the total cost of a single
exponential blowup. The last transformation, namely reducing
the triangles to restricted ones, is polynomial.

F. System of equations

We are now ready to complete the reduction by defining a
system of equations ∆ (actually, we will define inclusions).
In order to do this, we define the following convenient
reachability relation: For two states pp, ~xq, pq, ~yq, let

pp, ~xq pq, ~yq

if there is a run from pp, ~xq to pq, ~yq starting and ending with
empty stack. The following lemma characterizes .

Lemma 1. The relation is the least relation satisfying

(base)
pp, ~xq pp, ~xq

(transitivity)
pp, ~xq pr, ~zq pr, ~zq pq, ~yq

pp, ~xq pq, ~yq

(push-pop)
pr, ~zq ps,~tq

pp, ~xq pq, ~yq
p~x, ~z,~t, ~yq P

0

push-popprsq
8

where push-popprsq ”
Ž

γPΓ Dvarpφγq ¨ pushprγ ^ popsqγ .

We are now ready to define the system ∆. There is a variable
Xpqo for each pair p, q of control states and for each of the
finitely many orbits o P orbitspQ2kq. This variable represents
the difference between the integer value of the starting state
p and the ending state q along runs starting and ending with
empty stack; moreover, the fractional values at p and q are
related as specified by o (cf. Lemma 2 below). Recall that
the orbits are with respect to the automorphisms of pQ,ďq.
As the number of states has only grown exponentially during
the previous transformations, and the number of orbits is
exponential in the dimension k, the total number of variables

p

r

γ

q

s

I

J

K

N

L

M

Fig. 1: Illustration for push-pop inclusions.

Xpqo is exponential as well. Following the characterization
of by Lemma 1, for every control state p and for every
diagonal orbit o P orbitsp

p~x, ~xq
ˇ

ˇ ~x P Qk
(

q, the system ∆
contains the following inclusion:

(base) Xppo Ě t0u .

For every control states p, r, q and for every orbit o P

orbitspQ3kq, the system ∆ contains the following inclusion:

(transitivity) Xpqo13 Ě Xpro12 `Xrqo23 ,

where oij is the projection to components i, j of the orbit o.
The push-pop inclusions are the most interesting. Re-

call that push and pop formulas pushpqγ and poppqγ have
been transformed into a disjunction of clauses of the form
pxI, J,Ky , ϕQq; cf. (6). For any control states p, q, r, s and a
stack symbol γ, consider one clause of pushprγ and one clause
of popsqγ (cf. Fig. 1),

pxI, J,Ky , ϕQ
pushq and pxL,M,Ny , ϕQ

popq, (8)

and consider also one of the finitely many orbits o P

orbitsp
1

D~u ¨ ϕQ
push ^ ϕ

Q
pop

9

q. For each of these choices, ∆

contains the following inclusion (push-pop):

Xpqo14 Ě pI`pXrso23XpJ`Nqq`LqX´pK`Mq. (9)

The correctness of the construction of ∆ follows by the lemma
below. Its proof strongly relies on the fact that the trPDA is
restricted (cf. Sec IV-E).

Lemma 2. Let P a restricted trPDA, and let µ be the least
solution of the system ∆. For every Xpqo, let

pXDpqo :“ty ´ x P Z | Dp~x, ~yq P o ¨ pp, px, ~xqq pq, py, ~yqqu ,

pX@pqo :“ty ´ x P Z | @p~x, ~yq P o ¨ pp, px, ~xqq pq, py, ~yqqu .

Then, pXDpqo “
pX@pqo “ µpXpqoq.

Thus, we immediately deduce that the trPDA is non-empty if,
and only if, some variable Xpqo of ∆ with p P I and q P F
is non-empty (recall that a trPDA starts and accepts with the
empty stack). This proves the correctness of our reduction.

V. FROM SYSTEMS OF EQUATIONS TO TRPDA

In this section we provide a PTIME reduction in the direc-
tion opposite than in the previous section. trPDA of dimension
1 already capture least solutions of system of equations.

Theorem 4. The non-emptiness problem of systems of equa-
tions reduces, in polynomial time, to the same problem for
trPDA of dimension 1.

Consider a restricted system of inclusions (1) with a dis-
tinguished variable X0 and µ its least solution. We reduce
non-emptiness of µpX0q to non-emptiness of a 1-dimensional
trPDA P of polynomial size over discrete time pZ,ď,`1q.
Since dense time is more general than discrete time, the same
construction also yields a trPDA over dense time.

For every variable X of ∆ there is a corresponding stack
symbol X of dimension 0 and we have two additional stack
symbols tN,´Nu of dimension 0 in order to simulate tests.
For convenience assume P starts its execution in control state
p (which is also final), with stack containing one symbol
X0, thus the initial configuration is ppp, xq, X0q for some
x P Z. P simulates the least solution µ in the following
sense: for every x, y P Z and variable (stack symbol) X ,
ppp, yq, εq is reachable from ppp, xq, Xq iff py ´ xq P µpXq.
Therefore, non-emptiness of ∆ reduces to non-emptiness of
P (recall that P accepts when the stack is empty).

We now describe the construction of the transitions of P .
The evolution of the automaton is driven by the contents of
the topmost stack symbol. For every inclusion of the form
X Ě tku we pop the topmost untimed stack symbol X and
we increment the local register by k:

popppXpx, yq ” py “ x` kq.

For every inclusion of the form X Ě Y XN with N P tN,´Nu
we pop X , we push the constraint obligation pN, xq where x
is the current value of the local register, and we then push Y ;
the register does not change:

poppp1Xpx, yq ” py “ xq

pushp1p2N px, y, zq ” pz “ y “ xq

pushp2pY px, yq ” py “ xq.

For every inclusion of the form X Ě Y ` Z we first pop X ,
and we then push Y and Z, without changing the value of the
register in the control:

poppp1Xpx, yq ” pushp1p2Y px, yq ” pushp2pZpx, yq ” py “ xq.

Finally, if we encounter a test obligation pN, zq with N P

tN,´Nu on top of the stack, we pop pN, zq and we check
that x ´ z P N , where x is the current value of the local
register; again, the local register does not change:

popppNpx, y, zq ” py “ x^ x ě zq

popppp´Nqpx, y, zq ” py “ x^ x ď zq.

In the description above, the states p1, p2 are fresh and depend
on the inclusion being simulated. Consequently, the number
of control states in P is polynomial w.r.t. the size of ∆. and
thus all together the size of P is polynomial as well.

VI. EXTENSION OF 1-DIMENSIONAL BRANCHING VASS

In this section we define the last model used in this paper,
namely 1-dimensional branching vector addition systems with
states, addition, and subtraction, denoted shortly 1-BVASS˘.
They are triples B “ pQ, q0,∆q, where Q is a finite set
of states, q0 is a distinguished leaf state, and ∆ Ď Q3 is

the transition relation. The intended meaning of a transition
pq, ql, qrq P ∆ is that q is the parent and ql, qr are respectively
the left and the right child. For simplicity we assume that q0 is
never a parent, i.e., q ‰ q0. We assume that the set of non-leaf
states is partitioned Qztq0u “ Q` Z Q´ into addition states
Q` and subtraction states Q´.

Such systems give rise to binary ordered trees whose nodes
are labeled with pairs pq, nq, where q P Q and n P N. We
shall refer to q and n as the state and natural label of a
tree node, respectively. A node with state label q P Q` is
an addition nodes, if q P Q´ a subtraction node. We only
consider finite trees t, where every internal (non-leaf) node v
has two children; we shall refer to them as the left child and the
right child of v, respectively. The right child of a subtraction
node is called a subtrahend node, and the subtree of t rooted
at subtrahend node is called subtrahend subtree. Similarly, on
the left we have the minuend node and the minuend subtree.
For a node v in a tree t, by tv we denote the subtree of t
rooted at the node v.

A labelled tree is a witness provided that:

‚ every leaf is labeled by pq0, 1q
8;

‚ for every internal node v, let pq, nq, pql, nlq and pqr, nrq
be labels of v, its left child and its right child, respec-
tively; then q ‰ q0 and pq, ql, qrq P ∆ and n “ nl ` nr
if q P Q` and n “ nl ´ nr if q P Q´.

It is convenient to think that the direction of the computation
is bottom-up because it reflects the values of parent nodes.
Notice that if q P Q´ then nl ´ nr P N and thus nl ě nr.
If the root node of t is labeled by pq, nq then we say that t
is a pq, nq-witness and pq, nq is the root label of t; we also
define the value of t as the natural label n of the root node.
The reachability problem asks, for a given 1-BVASS˘ B and
a pair pq, nq P QˆN, whether B admits a pq, nq-witness. As
we argue below, w.l.o.g. one may assume n “ 0.

Remark 3. In the standard model of 1-dimensional branching
VASS (cf. e.g. [13]) there are no subtraction states. On the
other hand, our model does not have unary transitions that
add a fixed integer value to the counter, as such transitions
can be easily simulated (see Example 4 below). It is also not
hard to see that the encoding of the target counter value (binary
vs unary) does not make a difference in terms of complexity
of the reachability problem for 1-BVASS˘.

Example 4. We show how 1-BVASS˘ can succinctly encode
natural numbers. For m ě 0, we define a 1-BVASS˘ Bm of
size logarithmic in m, and a distinguished state pm, such that
Bm admits exactly one witnessing tree with root node labeled
by state pm, and the value of this tree is m. For m “ 0 we
define a state p0 P Q

´ with one transition pp0, q0, q0q P ∆. For
any other m ą 0, the construction relies on binary encoding
of m, similarly as in Example 3. Formally, we define a state

8Usually leaves in BVASS models are labeled with 0. Since this model does
not have explicit unary transitions (see Remark 3) this change is important.

pm P Q
` and the following transitions:

pp2k, pk, pkq if m “ 2k;
pp2k`1, pk, ‚q, p‚, pk, q0q if m “ 2k ` 1,

where ‚ is a fresh intermediate state.
Using Bm as a gadget one can simulate unary transitions

by adding or subtracting m, even when m is encoded in
binary. Moreover, we can also simulate unary tests “ě m”
and “ď m” (and thus ““ m”) with m encoded in binary
by removing m and then adding it back (for “ě m”), or by
taking the complement to m two times in a row (for “ď m”).
Finally, introducing an auxiliary subtraction step at the very
end, w.l.o.g. we may assume the target counter value in the
reachability problem to be 0.

Remark 4. Another closely related formalism are bounded
one-counter automata [11], which are essentially 1-
dimensional VASS (without branching), where the values in
the counter are bounded by some fixed value N (encoded
in binary). We show that these model can be simulated
by 1-BVASS˘. Adding and subtracting values (encoded in
binary) can be simulated as already described in Example 4.
Moreover, to guarantee that the value in the counter does
not exceed N one can add after every transition a test
“ď N”; cf. Example 4. Using this reduction, one can easily
simulate bounded one-counter automata that are known to be
PSPACE-complete [11], which yields a direct proof that the
reachability problem is PSPACE-hard for 1-BVASS˘.

State of the art. As already mentioned in the introduction,
the reachability problem for the standard BVASS model in
dimension one is known to be PTIME-complete for unary en-
coding [13], and was recently shown to be PSPACE-complete
for binary encoding [12]. Therefore, according to Remark 3,
the reachability problem is PSPACE-hard for 1-BVASS˘ as
well. When BVASS is extended with subtraction reachability
becomes undecidable already in dimension six [17]. In the next
section we show that systems of equations and 1-BVASS˘ are
PTIME-interreducible, and then we establish in Sec. VIII that
1-BVASS˘ are decidable in EXPTIME.

VII. SYSTEMS OF EQUATIONS AND 1-BVASS˘

Theorem 5. The non-emptiness problem for systems of equa-
tions and the reachability problem for 1-BVASS˘ are PTIME-
interreducible.

While equations manipulate integers, 1-BVASS˘ manipulate
natural numbers. A 1-BVASS˘ B “ pQ, q0,∆q is simulated
by a system of equations as follows. For each state q P Q,
we have a variable Xq storing the values in state q and their
opposites. For the leaf state q0 we have the inclusion Xq0 Ě

t1,´1u, and for every transition pq, r, sq P ∆ we have

q P Q` : Xq Ě pXrXN`XsXNqYpXrXp´Nq`XsXp´Nqq,
q P Q´ : Xq Ě pXr`XsXp´NqqXNYpXr`XsXNqXp´Nq.

It is immediate to verify that, if µ is the least solution of the
system thus constructed, then pq, nq is reachable in B if, and

only if, 0 ď n P µpXqq. Moreover, the size of the system of
inclusions is polynomial in the size of the 1-BVASS˘.

Consider now a system of equations using restricted rules as
in (1). It will be more convenient to work with a different def-
inition of 1-BVASS˘. In the original definition the operations
(sum and subtraction) were encoded in the states. We consider
transition 1-BVASS˘ B “ pQ, q0,∆

“,∆`,∆´q, with unary
rules pp, qq P ∆“ just copying the value from p to q, and
binary rules ∆` and ∆´ computing the sum and difference
of values. Notice that in this definition the same state can be
used in both addition and subtraction rules. In witnesses the
internal nodes have a single child if a rule from ∆“ is used,
and the leaf state q0 has value 1. It is immediate to see that a
transition 1-BVASS˘ as above can be put in the conventional
form pQ, q0,∆q by doubling control states, but we use the
transition form to ease the construction below.

For each variable X we have two states q`X , q
´
X P Q

representing, intuitively, the positive and the opposite of the
negative part of X . For each inclusion X Ě t1u we have a
transition pq`X , q0q P ∆“, and for each inclusion X Ě t´1u
we have a transition pq´X , q0q P ∆“. For each inclusion
X Ě Y XN we have a transition pq`X , q

`
Y q P ∆“, and for each

inclusion X Ě Y Xp´Nq we have a transition pq´X , q
´
Y q P ∆“.

Finally, for each inclusion X Ě Y `Z we have the following
three transitions rooted in q`X :

pq`X , q
`
Y , q

`
Z q P ∆` and pq`X , q

`
Y , q

´
Z q, pq

`
X , q

`
Z , q

´
Y q P ∆´,

as well as the following three transitions rooted in q´X :

pq´X , q
´
Y , q

´
Z q P ∆` and pq´X , q

´
Y , q

`
Z q, pq

´
X , q

´
Z , q

`
Y q P ∆´.

It is easy to verify that x P µpXq if, and only if, either
x ě 0 and pq`X , xq is reachable, or x ď 0 and pq´X ,´xq
is reachable. Moreover, the size of the transition 1-BVASS˘

thus constructed is polynomial in the size of the system of
equations, and the same complexity is preserved even when
translating it into a 1-BVASS˘.

VIII. EXPTIME DECISION PROCEDURE FOR 1-BVASS˘

This section is devoted to proving our last result.

Theorem 6. Reachability of 1-BVASS˘ is in EXPTIME.

The complexity is w.r.t. the size of a 1-BVASS˘, understood
as the number of its transitions. Theorem 6 is easily inferred
from the following small witness property:

Lemma 3. If a 1-BVASS˘ B admits a pq, 0q-witness, then it
admits also a pq, 0q-witness with all natural labels bounded
by a constant N exponential in the size of B.

Indeed, Lemma 3 implies Theorem 6: the existence of a
bounded pq, 0q-witness is reducible to non-emptiness of a tree
automaton with states Q ˆ t0 . . . Nu, and with pq0, 1q and
pq, 0q as the initial and the final state, respectively. The size
of the tree automaton is exponential, thus the polynomial-time
complexity of non-emptiness of tree automata [10] yields the
desired upper bound.

In the rest of this section we prove Lemma 3. The general
idea is to show that if a pq, 0q-witness contains a node with
natural label larger than N then one can remove some parts
thereof to obtain a pq, 0q-witness of smaller size (i.e., having
less nodes). Fix a 1-BVASS˘ B “ pQ, q0,∆q. We will use
the following constants:

M1 “ |Q| ¨ 2
|Q|, and

M2 “M1 ` 23|Q|.

Our proof is based on two cornerstone Propositions 2 and 3.

Proposition 2. Let t be a pq,mq-witness, for m ąM1. There
exists a multiset tm1, . . . ,mku of natural numbers such that
(1) k ě pm´M1q{2

|Q|;
(2) mi ď 2|Q| for all i;
(3) for every non-empty subset of indices X Ď t1, . . . , ku,

there is a pq,m1q-witness t1, strictly smaller than t, where
m1 “ m´

ř

iPX mi;

Consequently, m1 ` . . . ` mk ď m. We call the multiset
tm1, . . . ,mku a downward decomposition of t. Note that we
work with multisets, where each element has its cardinality; in
particular, when writing tm1, . . . ,mku we allow for mi “ mj .
Intuitively, the numbers mi are values of some subtrees ti in
t that are pairwise disjoint. The conditions in Proposition 2
correspond to: (1) the number of subtrees is big enough; (2)
the values mi are small enough; (3) every subset of subtrees
ti’s can be safely removed from the tree and the value of the
resulting witness has decreased by the sum of all the removed
values.

Proposition 2 allows us to bound the values of subtrahend
subtrees by M2. Intuitively, when the subtrahend is larger than
M2—and thus the same holds for the minuend—, we can
decrease both these two subtrees without changing the value
of the subtraction node.

Lemma 4. Suppose that some of subtrahend subtrees of a
witness t has value larger that M2. Then, there exists a strictly
smaller witness t1 with the same root label as t.

Proof. Suppose that a subtree of t rooted in a subtrahend node
vr has value larger than M2. Let v be the parent of vr, and
vl its sibling (i.e., left child of v). Let pql, nlq and pqr, nrq be
the labels of vl and vr, respectively, and let tl and tr denote
the subtrees of t rooted at vl and vr, respectively. Since v is
a subtraction node, its natural label is nl ´ nr with nl ě nr.
Thus nl, nr ąM2.

We apply Proposition 2 simultaneously to the two subtrees
rooted in vl and vr, and obtain their respective downward
decompositions

ml
1, . . . ,m

l
kl

(

and

mr
1, . . . ,m

r
kr

(

. Since
nl, nr ąM2, we know that

kl, kr ą pM2 ´M1q{2
|Q| ě 22|Q|.

By the pigeonhole principle, some value c ď 2|Q| appears
in the multiset

ml
1, . . . ,m

l
kl

(

at least 2|Q| times. Similarly,
some value d ď 2|Q| appears in the multiset

mr
1, . . . ,m

r
kr

(

at least 2|Q| times. Consider d appearances of c in the former

multiset, and symmetrically c appearances of d in the latter
one. By Proposition 2(3), there is a pql, nl ´ c ¨ dq-witness ul
strictly smaller than tl, and similarly there is a pqr, nr´ c ¨dq-
witness ur, strictly smaller than tr. The tree t1 obtained from
t by replacing tl with ul and tr with ur is thus strictly smaller
than t but with the same value; indeed, the value of the subtree
rooted in v remains unchanged. This completes the proof.

In order to state the second cornerstone (Proposition 3
below) we need to introduce some notation. For a witness t,
let ssptq denote the set of all subtrahend subtrees of t. Being
subtrees of t, two subtrahend subtrees are either contained
one in another, or disjoint. A node of t is positive if it does
not belong to any subtrahend subtree of t. In other words,
on the path from the root to a positive node we never pass
through a subtrahend node, and consequently, if we increase
the value at a positive node, then the value of the root increases
too; moreover, these increases can be arbitrary. The positive
part of t, denoted t`, contains the positive nodes of t; it is
thus obtained by removing all (maximal) subtrahend subtrees
s P ssptq. Notice that we remove at most one of the subtrees of
an internal node, therefore a leaf in t` is a leaf in t. Consider
the positive part t` of t and the positive parts of all subtrahend
subtrees of t. Their sets of nodes are disjoint and sum up to the
set of nodes of t. We may thus say that tt`uYts` | s P ssptqu
forms a partition of t.

Consider a pp,mq-witness t and a node v P t` in its
positive part, labelled by pq, nq. The pq, nq, pp,mq-witness-
context, denoted t.v, is obtained from t by replacing the
subtree rooted at v by a single leaf labelled by pq, nq. Thus the
leaf v of a witness-context t.v may have label pq, nq different
from the label pq0, 1q of all other leaves. The following is the
second cornerstone of our proof.

Proposition 3. Let t.v be a pq, nq, pp,mq-witness-context, for
n ą M2 ě m. Suppose that all subtrahend subtrees of t
have value at most M2. There exists a multiset tn1, . . . , nku
of natural numbers such that
(1) k ě pn´M2q{pM2 ¨ p|Q| ` 1qq;
(2) ni ď |Q| ¨M2 for all i;
(3) for every non-empty subset X Ď t1, . . . , ku, there is a

pq, n1q, pp,mq-witness-context t1.v strictly smaller than
t.v, where n1 “ n´

ř

iPX ni.

Implicitly n1 ` . . . ` nk ď n, as above. The multiset
tn1, . . . , nku we call an upward decomposition of t.v. We
now use the two cornerstone propositions to prove Lemma 3.

Proof of Lemma 3. Fix a witness t with value 0, of minimal
size. We aim at showing that all natural labels in t are bounded
by N , for a sufficiently large constant N exponential in
the size of B, which will be made explicit below. Towards
contradiction, suppose that some node v in t labelled with
pq, nq has n ą N .

Let s P ttuY ssptq be the unique tree such that v P s`, i.e.,
v belongs to the positive part of s. Let pp,mq be the root label
of s. Note that m ď M2; indeed, if s P ssptq this follows by
Lemma 4 and minimality of t, and if s “ t we have m “ 0. We

will arrive at contradiction if we show that s can be replaced
with a strictly smaller pp,mq-witness. We will work with two
separate parts of s: the pq, nq, pp,mq-witness-context s.v, and
the pq, nq-witness sv rooted at v.

We apply Proposition 3 to the witness-context s.v, and
obtain its upward decomposition tn1, . . . , nku. As we want
to derive

k ě 2|Q| ¨ |Q| ¨M2 (10)

from Proposition 3(1), knowing that n ą N , we stipulate

N ěM2 ` 2|Q| ¨ |Q| ¨ pM2q
2 ¨ p|Q| ` 1q. (11)

Similarly, we apply Proposition 2 to the pq, nq-witness
sv , and obtain its downward decomposition tm1, . . . ,mlu.
Again, aiming at obtaining the same inequality (10) as before
for the cardinality l of tm1, . . . ,mlu, but this time from
Proposition 2(1), we stipulate

N ěM1 ` 22|Q| ¨ |Q| ¨M2. (12)

Now we are eventually able to reveal the value of N : it can
be any value satisfying the constraints (11) and (12).

The following pigeonhole argument is similar as in the proof
of Lemma 4. We know that both k and l satisfy inequality (10).
Thus some value c ď |Q| ¨ M2 necessarily appears at least
2|Q| times in tn1, . . . , nku, and similarly some value d ď 2|Q|

appears at least |Q| ¨M2 times in tm1, . . . ,mlu. Consider d
appearances of c in the former multiset, and c appearances
of d in the latter one. Using simultaneously Propositions 2(3)
and 3(3), we know that there is a pq, n´c¨dq-witness s1 strictly
smaller that sv , and a pq, n´c¨dq, pp,mq-witness-context s2 of
the same root value pp,mq as s.v, but strictly smaller in size.
By inserting s1 at node v in s2, we obtain a pp,mq-witness
strictly smaller than s, and by substituting it into t instead of
s we obtain a witness strictly smaller than t. This contradicts
minimality of t; the proof of Lemma 3 is thus completed.

IX. CONCLUSIONS

We have shown decidability of the non-emptiness problem
for trPDA in 2-EXPTIME, via an exponential reduction to
equations and then to 1-BVASS˘, both shown solvable in
EXPTIME. This answers a question raised in [9] about whether
orbit-finiteness restriction on push and pop rules could be
lifted while maintaining decidability; moreover, our reduction
to equations is considerably more involved than in [9]. The
latter question is directly related to whether in equations one
can have intersections with arbitrary intervalswhile preserving
decidability. We have thus answered positively both questions.

Several directions for future work can be identified. The
most urgent issue is complexity. While we provide a 2-
EXPTIME upper-bound for trPDA, the only known lower-
bound is EXPTIME, already for the less expressive orbit-
finite and grammar classes (cf. [9]). Regarding 1-BVASS˘—
or, equivalently, equations—we have provided an EXPTIME
upper-bound, while a PSPACE lower-bound can be im-
mediately inferred by simulating bounded one-counter au-
tomata [11]. Moreover, there is a gap between our decidability

result of BVASS˘ in dimension one, and the known undecid-
ability in dimension six [17].

We conclude by mentioning that both solutions of equations
and 1-BVASS˘ reachability sets are semilinear subsets of Z
and N, respectively. We omit the proof of this fact, which can
be found in the full version of the paper.

REFERENCES

[1] P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown
automata. In Proc. LICS’12, pages 35–44. IEEE, 2012.

[2] S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using
tree automata. In Proc. CONCUR’16, pages 27:1–27:14, 2016.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126:183–235, 1994.

[4] M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed recursive
state machines. In Proc. TIME’10, pages 61–68. IEEE, sept. 2010.

[5] M. Bojańczyk and S. Lasota. A machine-independent characterization
of timed languages. In Proc. ICALP’12, volume 7392 of LNCS, pages
92–103. Springer, 2012.

[6] A. Bouajjani, R. Echahed, and R. Robbana. Verification of context-free
timed systems using linear hybrid observers. In Proc. CAV’94, volume
818 of LNCS, pages 118–131. Springer, 1994.

[7] A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification
of systems with continuous variables and unbounded discrete data
structures. In Proc. Hybrid Systems ’94, volume 999 of LNCS, pages
64–85. Springer, 1995.

[8] L. Clemente and S. Lasota. Reachability analysis of first-order definable
pushdown systems. In Proc. CSL’15, volume 41 of LIPIcs, pages 244–
259. Dagstuhl, 2015.

[9] L. Clemente and S. Lasota. Timed pushdown automata revisited. In
Proc. LICS’15, pages 738–749. IEEE, July 2015.

[10] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacque-
mard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007.

[11] J. Fearnley and M. Jurdziński. Reachability in two-clock timed automata
is PSPACE-complete. Inf. Comput., 243:26–36, 2015.

[12] D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre.
Polynomial-space completeness of reachability for succinct branching
vass in dimension one. In preparation, 2017.

[13] S. Göller, C. Haase, R. Lazić, and P. Totzke. A polynomial-time
algorithm for reachability in branching VASS in dimension one. In
Proc. ICALP’16, volume 55 of LIPIcs. Dagstuhl, 2016.

[14] A. Jeż and A. Okhotin. Conjunctive grammars over a unary alphabet:
Undecidability and unbounded growth. Theory Comput. Syst., 46(1):27–
58, 2010.

[15] B. Klin, E. Kopczyński, J. Ochremiak, and S. Toruńczyk. Locally finite
constraint satisfaction problems. In Proc. LICS’15, pages 475–486.
IEEE, 2015.

[16] B. Klin, S. Lasota, J. Ochremiak, and S. Toruńczyk. Homomorphism
problems for first-order definable structures. In Proc. FSTTCS’16,
volume 65 of LIPIcs, pages 14:1–14:15. Dagstuhl, 2016.

[17] R. Lazić. The reachability problem for branching vector addition systems
requires doubly-exponential space. Inf. Process. Lett., 110(17):740–745,
2010.

[18] R. Lazić and S. Schmitz. Non-elementary complexities for branching
VASS, MELL, and extensions. In Proc. CSL-LICS’14. ACM, 2014.

[19] A. Trivedi and D. Wojtczak. Recursive timed automata. In Proc.
ATVA’10, volume 6252 of LNCS, pages 306–324. Springer, 2010.

