
A machine-independent characterization of
timed languages

Miko laj Bojańczyk? and S lawomir Lasota??

Institute of Informatics, University of Warsaw

Abstract. We use a variant of Fraenkel-Mostowski sets (known also as
nominal sets) as a framework suitable for stating and proving the fol-
lowing two results on timed automata. The first result is a machine-
independent characterization of languages of deterministic timed au-
tomata. As a second result we define a class of automata, called by us
timed register automata, that extends timed automata and is effectively
closed under minimization.

1 Introduction

This paper studies minimization of deterministic timed automata [2]. Existing
approaches to this problem explicitly minimize various resources used by an
automaton, such a locations or clocks, see [1, 8, 14–16]. We take a different ap-
proach, which abstracts away from the syntax of a timed automaton, and focuses
on the recognized language, and specifically its Myhill-Nerode equivalence rela-
tion. Our notion of minimality is described by the following definition.

Definition 1. An automaton for a language L is called minimal if for every
two words w,w′ the following conditions are equivalent:

– The words are equivalent with respect to Myhill-Nerode equivalence.
– The states reached after reading the words are equal.

In the case of a deterministic timed automaton, the term “state” refers to the
location (or control state) and the valuation of clocks. One of the main contribu-
tions of this paper is a minimization algorithm for deterministic timed automata.
Of course in the case of timed automata, Myhill-Nerode equivalence has infinitely
many equivalence classes, e.g. in the language

{t1 · · · tn ∈ R∗ : ti = ti−1 + 1 for all i ∈ {2, . . . , n}},

the equivalence class of a word is determined by its last letter.

A new automaton model. There is a technical problem with minimizing
deterministic timed automata: the minimization process might leave the class of
timed automata, as witnessed by the following example.

? Supported by the ERC Starting Grant “Sosna”.
?? Supported by the FET-Open grant agreement FOX, number FP7-ICT-233599.



Example 1. Consider the following language L ⊆ R∗. A word belongs to L if
and only if it has exactly three letters t1, t2, t3 ∈ R, and the following conditions
hold.

– The letter t2 belongs to the open interval (t1; t1 + 2);
– The letter t3 belongs to the open interval (t1 + 2; t1 + 3);
– The letters t2 and t3 have the same fractional part, i.e. t3 − t2 ∈ Z.

This language is recognized by a deterministic timed automaton. After reading
the first two letters t1 and t2, the automaton stores t1 and t2 in its clocks. This
automaton is not minimal in the sense of Definition 1. The reason is that the
words (0, 0.5) and (0, 1.5) are equivalent with respect to Myhill-Nerode equiva-
lence, but the automaton reaches two different states. Any other timed automa-
ton would also reach different states, as timed automata may reset clocks only
on time-stamps seen in the input word (unless ε-transitions are allowed).

Because of the example above, we need a new definition of automata. We
propose a straightforward modification of timed automata, which we call timed
register automata. Roughly speaking, a timed register automaton works like a
timed automaton, but it can modify its clocks, e.g. increment or decrement
them by integers1. For instance, in language L from Example 1, the minimal
automaton stores not the actual letter t2, but the unique number in the interval
(t1; t1 + 1) that has the same fractional part as t2.

We prove that timed register automata can be effectively minimized.
Typically, minimization corresponds to optimization of resources of an au-

tomaton. In case of timed automata, the resources seem to be locations and
clocks, but maybe also constants used in the guards, anything else? One sub-
stantial novelty of our approach is that the kind of resource we optimize is not
chosen ad hoc, but derived directly from Myhill-Nerode equivalence. Myhill-
Nerode equivalence is an abstract concept; and therefore we need a tool that is
well-suited to abstract concepts. The tool we use is Fraenkel-Mostowski sets.

Fraenkel-Mostowski sets. By these we mean a set theory different from the
standard one, originating in the work of Fraenkel and Mostowski (see [10] for the
references), and thus called by us Fraenkel-Mostowski sets (FM sets in short).
Much later a special case of this set theory has been rediscovered by Gabbay
and Pitts [11, 10] in the semantics community, as a convenient way of describing
binding of variable names. Motivated by this important application, Gabbay and
Pitts use the name nominal sets for the special case of FM sets they consider.
Finally, FM sets (under the name ”nominal G-sets”) have been used in [3] to min-
imize automata over infinite alphabets, such as Francez-Kaminski finite-memory
automata [9]. The paper [3] is the direct predecessor of the present paper.

In the setting of [3] (see also the full version [4]), FM sets are parametrized
by a data symmetry, consisting of a set of data values together with a group
G of permutations of this set. For instance, finite-memory automata are suit-
ably represented in the data symmetry of all permutations of data values. To

1 A certain restriction to the model is required to avoid capturing Minsky machines.

2



model timed automata, and even timed register automata, we choose the timed
symmetry, based on the group of automorphisms of the structure2

(R, <,+1).

Despite that this data symmetry presents several technical challenges, we
show that FM sets can be used to solve nontrivial algorithmic problems, such
as the minimization problem. A more accurate description of this paper is that
we study automata in FM sets under the timed symmetry; and these automata
happen to capture timed automata, and even timed register automata. In par-
ticular, we study languages where the timestamps appearing in a word are not
necessarily increasing.

The second principal contribution of this paper is an exact characterization of
the languages recognized by deterministic timed automata. The characterization
is in the style of the Myhill-Nerode theorem, and is machine-independent, in the
sense that it does not refer to any notion of recognizing device.

Summary of contributions. Below are the main contributions of our paper.

1. We introduce a new class of automata, called timed register automata, which
generalize timed automata.

2. We prove that, unlike for deterministic timed automata, deterministic timed
register automata are closed under minimization. We also give a minimiza-
tion algorithm for timed register automata (Theorem 3 in Section 2).

3. We study automata in Fraenkel-Mostowski sets, under the timed symmetry.
4. We prove a kind of Myhill-Nerode theorem, which characterizes exactly the

languages of deterministic timed automata (Theorem 5 in Section 4).

Related research. We only mention here a few related papers we are aware
of. Minimization of (nondeterminstic) timed automata has been studied in par-
ticular in [1, 14, 16], with respect to bisimulation equivalence. As we mention
later, our approach extends easily to bisimulation. On the negative side, min-
imization of nondeterministic automata with respect to language equivalence
is undecidable, cf. [15, 8]. A characterization of deterministic timed languages
using finite monoids has been proposed in [6]. Our characterization is of a dif-
ferent nature, being based on orbit-finiteness of the set of equivalence classes
of Myhill-Nerode equivalence. Another machine-independent characterization of
deterministic timed languages has been given in [13].

2 Timed register automata

In this paper, we study timed automata as a special case of automata where
the alphabet is of the form A × R, where A is a finite set and R is the real
numbers. In a letter (a, t) ∈ A × R, we call a the label and t the timestamp.
Timed automata accept only words where the timestamps increase from left to

2 Studying this group has been suggested to us by James Worrell.

3



right, call such words monotonic. Unlike timed automata, some of the automata
we study in this paper can accept non-monotonic words.

Constraints. A constraint over variables x1, . . . , xn is any quantifier free for-
mula that uses the variables, the binary predicate ≤, and the unary function +1.
Examples of constraints include

x ≤ (y + 1) + 1 ∧ (y + 1) + 1 ≤ x.

When writing constraints, we sometimes use syntactic sugar, for instance writing
the above constraint as x = y+ 2. A constraint over variables x1, . . . , xn defines
a subset X ⊆ Rn.

A constraint ϕ is called maximal if every other constraint on the same vari-
ables is either implied by ϕ, or inconsistent with ϕ. An example of a maximal
constraint is

x2 = x1 + 1 ∧ x2 < x3 < x2 + 1.

The constraint x < y < x + 2 is not maximal, since it is independent with
y < x+ 1. Not every constraint is equivalent to a finite disjunction of maximal
constraints, for instance the constraint x < y.

Clearly, maximal constraints describe those regions that are bounded.

Timed register automata. We now define an automaton model, which can
recognize languages over alphabets of the form A × R. A (nondeterministic)
timed register automaton A is given by the following ingredients.

– A finite set A of labels.
– A finite set Loc of locations, also called control states.
– Subsets of the locations for the initial and final locations.
– For each location l ∈ Loc, a set Xl of register names3.
– For every two locations l, k ∈ Loc, and every label a ∈ A, a constraint (not

necessarily maximal) which defines a subset

δl,a,k ⊆ RXl × R× RXk .

We assume that every initial location has an empty set of register names.
A state of the automaton is defined to be a pair (l, η), where l is a location

and η is a function, called the register valuation, of the form η : Xl → R. We
write QA for the set of states of an automaton A. This set is infinite if the
automaton uses registers.

The semantics of the automaton is defined in the standard way. One defines
the transition relation

δA ⊆ QA × (A× R)×QA,
3 A simplified version, where the set of register names does not depend on the loca-

tion, would not minimize well. The reason is that the number of reals necessary to
remember may depend on location. Ignoring some minor differences, the simplified
version resembles updatable timed automata of [5].

4



to be the set of triples (l, η), (a, t), (k, µ) such that (η, t, µ) ∈ δl,a,k. A run over
an input word from (A×R)∗ is a sequence of states that starts in an initial state
and is consistent with the transition relation.

A timed register automaton is called deterministic if there is one initial lo-
cation and the transition relation δA is a function δA : QA × (A× R)→ QA.

Timed register automata, as defined above, are too powerful (a similar un-
decidability result is shown in [5]):

Theorem 1. Emptiness is undecidable for deterministic timed register automata.

Proof. By simulating a Minsky machine. The automaton has three register names:
x, y, z. The idea is that z represents zero, x− z is the value of the first counter
and y − z is the value of the second counter. Since the automaton can use the
+1 in its transition relation, it can increment and decrement the counters. The
zero tests are simulated by testing x = z or y = z. ut

The reason why the undecidability proof above works is that we allow a state
to store, at the same time, real numbers which are very far from each other. This
motivates a restriction on timed register automata to be defined now.

Constrained timed register automata. In a constrained timed register au-
tomaton, for each location l there is a maximal constraint ϕl over the register
names of l, called the legality constraint. In a constrained automaton, the notion
of state is changed: a state (l, µ) must be such that the register valuation µ
satisfies the constraint ϕl. Despite the different semantics, a constrained timed
register automaton can be easily seen to be a special case of a timed register au-
tomaton, because legality constraints can be enforced by the transition relation.

The idea of adding legality constraints might seem an ugly fix. As we shall
see later, constrained timed register automata have an elegant interpretation in
terms of FM sets. Also, they are powerful enough to simulate timed automata.

Theorem 2. Emptiness is decidable for constrained timed register automata.

As our first main result, we state:

Theorem 3. The class of constrained timed register automata is closed under
minimization. There is an algorithm that computes, for a given constrained timed
register automaton, the minimal automaton.

Speaking abstractly, the minimal automaton is the syntactic automaton, or, in
other words, the quotient of a given automaton by language equivalence; this
will become apparent when in Section 3 we will observe that timed register
automata are a subclass of automata in FM sets under the timed symmetry.
Speaking concretely, we minimize the number of locations, and the number of
register variables in each location.

Our minimization algorithm adopts the classical idea of iterative partition re-
finement, and works equally well for bisimulation of nondeterministic automata.

Timed automata. Timed automata [2] are defined similarly as timed register
automata above. A timed automaton has a number of clock variables, that may

5



be used to store the current timestamp and to compare it against timestamps
read later on. The transition relation of a timed automaton is described using a
subset of constraints, in the sense of the above definition. With these respects,
timed automata seem to be a subclass of constrained timed register automata.

Timed automata have however one additional feature, not reflected in our
definitions above: the clock variables are initially set to 0. In consequence, only
non-negative timestamps are considered. Intuitively, a timed automaton is aware
of the time that has elapsed from some absolute moment 0, while our automata
are only aware of the relative time separating timestamps in the input. In partic-
ular, languages recognized by timed register automata are always closed under
translations, i.e., for any d ∈ R, the permutation x 7→ x+ t preserves L:

L+ t = L.

A language L ⊆ (A × R≥0)∗ can be encoded as the following language closed
under translations, which has essentially the same structure as L:

−→
L =

⋃
t∈R
a∈A

((a, 0) L) + t =
⋃
t∈R
a∈A

(a, t) (L+ t) ⊆ (A× R)∗.

Thus, in this paper we only consider languages that are closed under translations.
On the level of timed automata, this property may be enforced by assuming that
all the clock variables are uninitialized (that is, initially undefined), similarly like
in finite memory automata of Francez and Kaminski [9].

Theorem 4. For every (deterministic) timed automaton with uninitialized clocks
one can compute an equivalent (deterministic) constrained timed register au-
tomaton.

The idea of the proof is to translate regions of a timed automaton to locations
of a timed register automaton. Unbounded regions are eliminated by projecting
onto bounded coordinates. One additional register checks monotonicity.

Constrained timed register automata are strictly more expressible than timed
automata, as shown in the example below.

Example 2. Let A be a singleton, thus A× R is essentially R. The language

L = {t1 . . . tn : n ≥ 2, tn − t1 ∈ N, ti+1 − ti ≤ 1 for i < n}

is not recognized by a timed automaton, but is recognized by a deterministic
constrained timed register automaton with two registers. The automaton stores
initially t1 in its register, and then increments its value, say t, by 1 at every
input letter greater than t. It accepts whenever an input letter equals t.

Due to Theorem 4, the minimization algorithm of Theorem 3 works for de-
terministic timed automata as well. How does the definition of minimality from
Definition 1 correspond to resources of a timed automaton? The most appropri-
ate to say is that we minimize the number of regions, and the number of clocks

6



in each region. Indeed, as regions of timed automata are translated to locations
of timed register automata, each region may be optimized independently. We
however honestly note that the number of locations of the minimal automaton
may be greater than the number of locations of an original timed automaton.

3 Fraenkel-Mostowski sets and their automata

The definition of Fraenkel-Mostowski sets (FM sets) is parametrized by a data
symmetry (D, G), which consists of a set D of data values and a subgroup G of
the group of all bijections of D. Examples of data symmetries include:

– The classical symmetry, where the set of data values is empty, and the group
has only the identity. FM sets in the classical symmetry are going to be
normal sets.

– The equality symmetry, where the set of data values is a countably infinite
set, and the group contains all bijections. FM sets in the equality symmetry
are essentially the same thing as nominal sets in [11] or FM sets in [10].

– The timed symmetry, where the set of data values is the real numbers, and
the group contains all permutations of real numbers that preserve the order
relation ≤ and the successor function x 7→ x+ 1 (we call such permutations
timed permutations). This is the data symmetry that we use in this paper.

Intuitively speaking, normal sets are built out of empty sets and brackets {
and }. The intuition behind FM sets is that they can in addition use data values
as atomic elements. Our presentation below is motivated by [10].

Fix a data symmetry (D, G). Consider first the cumulative hierarchy of sets
with data values, which is a hierarchy of sets indexed by ordinal numbers and
defined as follows. The empty set is the unique set of rank 0. A set of rank α
is any set whose elements are sets of rank smaller than α, or data values. A
permutation π ∈ G can be applied to a set X in the hierarchy, by renaming the
data values belonging to X, and the data values belonging to elements of X,
and so on. The resulting set, which has the same rank, is denoted by X · π.

A set C of data values is said to be a support of a set X in the cumulative
hierarchy if X · π = X · σ holds for every permutations π, σ ∈ G which agree on
elements of C. A set is called finitely supported if it has some finite support. We
use the name FM set for a set in the cumulative hierarchy which is hereditarily
finitely supported, which means that it is finitely supported, the sets belonging
to it are finitely supported, and so on.

The support of an FM set is not unique, e.g. supports are closed under adding
data values. A set with empty support is called equivariant.

Example 3. An example of an equivariant FM set in the timed symmetry is R
itself. Another example is R∗. A tuple (x1, . . . , xn) ∈ R∗ is supported by the set
{x1, . . . , xn}. The set R− {0} is not equivariant; it is supported by {0}.

For some data symmetries, including the classical and equality ones, one
can show that every FM set has the least support. However, FM sets in the

7



timed symmetry do not have least supports. For instance, the set R−{0} is not
supported by the empty set, but it is supported by the sets {0} or {1}. This is
because if π is a timed permutation, then π(1) = 1 is equivalent to π(0) = 0.

In many respects, FM sets behave like normal sets. For instance, if X,Y are
FM sets, then X × Y , X ∪ Y , X∗ and the finite powerset of X are all FM sets.
Another example is the family of subsets of X that have finite supports. The
appropriate notion of a function between FM sets X and Y is that of a finitely
supported function, which is a function from X to Y whose graph is an FM set.

Orbit-finite FM sets. From our perspective, the key property of FM sets is their
more relaxed notion of finiteness. Suppose that X is an FM set. For a set of data
values C, define the C-orbit of an element x ∈ X to be the set

{x · π : π ∈ G and π is the identity on C}.

If C supports X, then the C-orbits form a partition of X. The set X is called
orbit-finite if the partition into C-orbits has finitely many parts, for some C
which supports X. Observe that the number of C-orbits increases as the set C
grows. Therefore, a set is orbit-finite if it has a finite number of orbits for some
minimal set C that supports it. In particular, an equivariant set is orbit-finite if
and only if it has finitely many ∅-orbits.

In many data symmetries orbit-finite sets are closed under product, but not
in the timed symmetry as illustrated in Example 4.

Example 4. The set R is orbit-finite, namely it has one ∅-orbit. The set R2 is
not orbit-finite. The ∅-orbits are of the following form:

{(x, y) : x− y = k} {(x, y) : x− y ∈ (k, k + 1)} for all k ∈ Z.

Observe that two orbits of the first kind, say {(x, y) : x − y = k} and {(x, y) :
x−y = l}, are equivariantly isomorphic via the mapping (x, y) 7→ (x, y+(k− l)).
Likewise, every two orbits of the second kind are mutually isomorphic. Another
example of two isomorphic but distinct orbits in R∗ is R and {(x, x, x) : x ∈ R}.
There are infinitely many equivariant isomorphisms between these two orbits,
including x 7→ (x, x, x) and x 7→ (x+ 1, x+ 1, x+ 1).

Automata. The definition of automata in FM sets is exactly like the definition
of automata in normal sets, except that the notion of finiteness is relaxed to
orbit-finiteness. Specifically, a nondeterministic FM automaton is a tuple

(A,Q, I, F, δ) I, F ⊆ Q δ ⊆ Q×A×Q

where the alphabet A, states Q, initial states I ⊆ Q, final states F ⊆ Q and
transitions δ ⊆ Q×A×Q are FM sets, and all of them except for δ are required
to be orbit-finite. (We come back to the orbit-finiteness of δ in Example 5.)
The definition of acceptance is as usual for automata. An automaton is called
equivariant if all of its components are equivariant. From now on, we only study
equivariant automata.

8



Example 5. Consider the language L ⊆ R∗ which contains words where some
letter appears twice. This language is recognized by a nondeterministic FM au-
tomaton whose states are: an initial state q, one state qx for each real number
x, and a single accepting state >. The transition relation contains triples

(q, x, q) (q, x, qx) (qx, y, qx) (qx, x,>) (>, x,>)

for every real numbers x, y. The transition relation is not orbit-finite, because
the set of transitions (qx, y, qx) is isomorphic to R2. In general, the transition
relation will necessarily have infinitely many orbits in any automaton which
stores real numbers in its state, and which reads arbitrary input letters.

A deterministic FM automaton is the special case of a nondeterministic one,
where the transition relation is a function δ : Q× A→ Q, and where the set of
initial states contains only one state. From now on, we only study equivariant
deterministic automata and work exclusively in the timed symmetry.

Comparing the models. So far, we have introduced two kinds of automata. In
Section 2, we have introduced timed register automata, and we have identified a
subclass of constrained timed register automata. In Section 3, we have introduced
automata in FM sets. In this section, we show that in the specific case of FM
sets in the timed symmetry, the two kinds of automata are closely related. We
only study the deterministic case, but the nondeterministic case is analogous.
The results are summed up in Figure 1.

Fig. 1. Timed register automata, and FM automata in the timed symmetry.

We first show that a deterministic timed register automaton is almost a
special case of a deterministic FM automaton. The input alphabet, which is a
set of the form A × R, for a finite set A is an equivariant orbit-finite FM set.
The number of orbits is the size of A, because permutations of data values (=
timestamps) do not change the labels. Recall that a state of a timed register
automaton consists of a location and a valuation of registers. Thus the set of all
states is an equivariant FM set, since it is basically a set of tuples of real num-
bers. In the same way, the initial and accepting states are equivariant subsets,
because they are identified by their locations, and locations are not changed by

9



permutations of data values. Finally, transition function of a timed register au-
tomaton is equivariant, because it is defined in terms of the order and successor,
both preserved by timed permutations.

So why is a deterministic timed register automaton not necessarily an FM
automaton? Because the states are not, in general, an orbit-finite FM set. For
instance, if an automaton has two registers in some location, then its states will
not be orbit-finite for the same reason as R2. This is where the constraints on the
register valuations, as defined in Section 2, come in. The following lemma shows
that maximal constraints can be used to enforce an orbit-finite state space.

Lemma 1. The following conditions are equivalent for a subset X ⊆ Rn:

– X is equivariant and has one orbit.
– X is defined by a maximal constraint.

As a conclusion, a constrained timed register automaton is exactly the same
thing as a timed register automaton, whose state space is orbit-finite.

So far we have shown that constrained timed register automata are included
in FM automata. The inclusion is strict, as the transition function in a timed
register automaton is defined by constraints, while in the abstract definition, the
transition function is only required to be equivariant. Not all equivariant tran-
sition functions are definable by constraints, as shown in the following example.

Example 6. Suppose that K ⊆ Z is any set of integers, e.g. the prime numbers.
Consider the language diff(K) = {t1 t2 ∈ R2 : t2 − t1 ∈ K}. Regardless of K,
this language can be recognized by a deterministic FM automaton. The state
space of the automaton has four orbits: an initial state ε, an accepting state >, a
rejecting sink state ⊥, and one state qt for every real number t. The automaton
starts in the initial state ε. The transition function is:

δ(ε, t) = qt δ(⊥, t) = ⊥ δ(qs, t) =

{
> if t− s ∈ K
⊥ otherwise

δ(>, t) = >

The transition function is easily seen to be equivariant. For most K, however, it
is not defined by a constraint (one argument is that there are uncountably many
choices for K, and only countably many choices for a constraint).

Example 6 implies that the abstract definition of a deterministic FM automa-
ton is too powerful. For instance, arbitrary FM automata cannot be represented
in a finite way. Restricting equivariant functions to those definable by constraints
makes the automata manageable, but it is not necessarily the only solution to
the problem. We do not investigate other solutions in this paper.

4 Characterization of deterministic timed automata

In this section we provide a machine-independent characterization of the class
of languages recognized by deterministic timed automata.

10



Every language recognized by a deterministic timed automaton with unini-
tialized clocks is equivariant and contains only monotonic words. Finally, the
set of equivalence classes of Myhill-Nerode equivalence is orbit-finite. As shown
in Example 6, these conditions are not sufficient even to characterize nonde-
terministic orbit-finite timed register automata. One additionally needs to say,
roughly, that only recent timestamps can be remembered, and older timestamps
must be forgotten. Our formulation of this condition is as follows.

For two nonempty words u,w ∈ (A × R)+ (think of monotonic words) and
M ∈ N we write u <M w to mean that the first timestamp in w is larger than
the last timestamp in u, by at least M .

Definition 2. Let M ∈ N. A language L ⊆ (A × R)∗ is called M -forgetful if
for every words u,w ∈ (A×R)+, v ∈ (A×R)∗ and a timed permutation π such
that v · π = v, u <M w and u · π <M w, it holds:

u v w ∈ L ⇔ (u · π) v w ∈ L. (1)

Observe that M -forgetfulness implies M ′-forgetfulness for all M ′ > M . Note
that v · π = v implies (u v) · π = (u · π) v and that if L is equivariant then the
property (1) may be equivalently written as u v w ∈ L ⇔ u v (w · π) ∈ L.

Example 7. The language L from Example 2 in Section 2 is not M -forgetful for
any M ≥ 0. Indeed, instantiating Definition 2 with

u = 0.4 v = 1.2 2.2 . . . M+0.2 M+1.2 w = M+1.4

and any timed permutation π satisfying π(0.4) = 0.3 and π(0.2) = 0.2, we get a
contradiction, as 0.4 v w ∈ L while 0.3 v w /∈ L.

Example 8. The language of all monotonic words is 0-forgetful. The language
“for some timestamp t, both t and t + 3 appear in the word” is 3-forgetful but
not 2-forgetful.

Theorem 5. Let A be a finite set of labels. For a language L ⊆ (A × R)∗, the
following conditions are equivalent:

– L is recognized by a deterministic timed automaton with uninitialized clocks.
– L satisfies simultaneously the following conditions:

1. L is equivariant;
2. L contains only monotonic words;
3. L is M -forgetful for some threshold M > 0; and
4. the set of equivalence classes of the Myhill-Nerode equivalence ∼L is

orbit-finite.

Note that the set of equivalence classes of ∼L is an (equivariant) FM set when
L is an (equivariant) FM set. Even in presence of condition 3, condition 4 is still
necessary, as shown by the following example.

Example 9. Consider the language containing all monotonic timed words of the
form t1 t2 . . . tn (t1+1) (t2+1) . . . (tn+1), for n ≥ 0. The language is 1-forgetful,
but its syntactic automaton is orbit-infinite.

11



5 Future work

Our approach based on Fraenkel-Mostowski sets may be further elaborated.
We consider a subclass of orbit-finite automata where the transition function

(or relation) is definable by constraints. These restrictions are sufficient to cap-
ture timed automata, but there may be other manageable restrictions that are
more liberal. As a natural continuation of this work we plan to pursue automata
with semi-linear transition functions. We suppose that one would be able to cap-
ture in this framework, among the others, periodic time constraints, cf. [7], or
some subclasses of hybrid automata, like linear hybrid automata [12].

Another urgent challenge is to relate our approach to the previous work, in
particular to minimization of [1, 14, 16] and to characterizations of [6] and [13].

Acknowledgments. We kindly thank anonymous reviewers for insightful com-
ments and valuable suggestions.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Minimiza-
tion of timed transition systems. In CONCUR, pages 340–354, 1992.

2. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

3. M. Bojańczyk, B. Klin, and S. Lasota. Automata with group actions. In Proc.
LICS’11, pages 355–364, 2011.

4. M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. 2012. Sub-
mitted. Accessible at http://www.mimuw.edu.pl/∼sl/PAPERS/lics11full.pdf.

5. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theor.
Comput. Sci., 321(2-3):291–345, 2004.

6. P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and
timed languages. Inf. Comput., 182(2):137–162, 2003.

7. C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.
Journal of Automata, Languages and Combinatorics, 5(4):371–404, 2000.

8. O. Finkel. Undecidable problems about timed automata. CoRR, abs/0712.1363,
2007.

9. N. Francez and M. Kaminski. Finite-memory automata. TCS, 134(2):329–363,
1994.

10. M. Gabbay. Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

11. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

12. T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.
13. Oded Maler and Amir Pnueli. On recognizable timed languages. In FoSSaCS,

pages 348–362, 2004.
14. J. Springintveld and F. W. Vaandrager. Minimizable timed automata. In FTRTFT,

pages 130–147, 1996.
15. S. Tripakis. Folk theorems on the determinization and minimization of timed

automata. Inf. Process. Lett., 99(6):222–226, 2006.
16. M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time tran-

sition systems. Formal Methods in System Design, 11(2):113–136, 1997.

12



The content of the remaining sections is as follows. In Section A we define
aperiodic sets and provide a characterization thereof. In Section B we give a
characterization of those relation between aperiodic sets that are definable by
constraints. These two sections prepare a ground for the proofs of Theorems 3
and 5, that are to be found in Sections C and E, respectively. In Section D we
spell out the proof of Theorem 4.

A Aperiodic sets

A nominal set is called aperiodic if its every orbit X is either a singleton, or
admits an equivariant function X → R. The aim of this section is to derive a
representation of orbit-finite aperiodic sets, stated in Proposition 1 below.

For convenience consider an equivalence relation on R: x � y if y − x is an
integer. Thus two real numbers are related if their fractional parts are equal.

Call a subset X ⊆ R non-redundant if no two elements of X are related by �.
Clearly, if a support of an element is minimal wrt. set inclusion, it is necessarily
non-redundant.

An element of a nominal set may have many different minimal supports,
for instance {4.5, 8.3} ∈ Pfin(R) is supported by itself, by also by {0.5, 0.3} or
{3.5,−6.7}. In Lemma 2 we claim however that the minimal support is deter-
mined uniquely up to �.

The relation lifts naturally to subsets of R: two sets are related if there is
a bijective matching that relates elements of one set to elements of the other
set. Observe that the set of supports of an element of a nominal set is closed
under �. We claim that the minimal supports of an element are just a single
abstraction class of �:

Lemma 2. In the timed symmetry, all minimal supports of an element of a
nominal set are related by �.

Proof. Consider the interval I = [0, 1). If a support of an element is a subset of
I we call it fraction support. Clearly, if an element x is supported by C, then x
has also a fraction support D ⊆ I with D � C. It is thus sufficient to show the
following claim:

Claim. In the timed symmetry, every element of a nominal set has the least
fraction support wrt. set inclusion.

We need to argue that if C and D are finite fraction supports of an element
of a nominal set, then C ∩D is a support too. An equivalent condition is spelled
out in the claim below. For C ⊆ I, by GC we mean the subgroup of timed group
containing those permutations π that fix C, that is

π(x) = x for all x ∈ C.

Claim. For all finite C,D ⊆ I, the subgroup GC∩D is included in GC +GD, the
smallest subgroup containing GC and GD.

13



As it has been proved in [4], instead of comparing the whole subgroups, it is
sufficient to compare the individual orbits, in the special case when both C \D
and D \ C are singleton sets. Even if our setting is slightly different from that
considered in [4], as we restrict to fraction supports only, the proof of Theorem
10.3 in [4] may be repeated here to prove that the last claim above is implied by
the following one:

Claim. For all finite E ⊆ I and c, d ∈ I \ E such that c 6= d,

c ·GE ⊆ c ·
(
GE∪{c} +GE∪{d}

)
.

We embark on the proof of the last claim from now on. Consider a finite E ⊆ I
and c, d ∈ I \ E such that c 6= d. Let e ∈ c · GE . We need to define a timed
permutation

π = σ1θ1σ2θ2 . . . σnθn, (2)

with σi ∈ GE∪{d}, θi ∈ GE∪{c}, and π(c) = e. The proof is split into two cases,
E 6= ∅ and E = ∅.
Case E = ∅. This case is proved in essentially the same way as for total order
symmetry, see Corollary 10.5 in [4]. Let l be the greatest element of E smaller
than c, and let h be the smallest element of E greater than c, assuming they
both exist. (If l does not exist put l := h′ − 1, where h′ is the greatest element
of E; symmetrically, if h does not exists put h := l′ + 1, where l′ is the smallest
element of E.) Then c ·GE is the open interval (l, h). Take any e ∈ (l, h); without
loss of generality assume that e > c. We need to show some π as in (2) such that
π(c) = e.

The only interesting case is d ∈ (c, e]. In this case, take some d′ ∈ (c, d) and
put π = σθ, where

– σ is some timed permutation that acts as identity on ([d, l + 1) (so σ ∈
GE∪{d}) and such that σ(c) = d′,

– θ is some timed permutation that acts as identity on (h−1, c] (so θ ∈ GE∪{c})
and such that θ(d′) = e.

Case E = ∅. This case needs a special treatment, as G0 is the whole timed
group in this case. The orbit c ·G0 is thus the whole set R.

Assume wlog. c < e. Assume additionally c < d (the case d < c is shown
similarly). The only interesting case now is c < d < e. Note that e may be
arbitrarily large.

Let σ1 be an arbitrary permutation that fixes d and maps c to some d1 ∈
(c, d). Note that d1 may be any value in (c, d). Similarly, let θ1 be an arbitrary
permutation that fixes c and maps d1 to some c1 ∈ (d, c+ 1). Again, c1 may be
any value in (d, c + 1). The intuition is that d1 may be chosen arbitrarily close
to d and c1 may be chosen arbitrarily close to c + 1. By repeating this process
sufficiently many times one finally reaches e as required. ut

Proposition 1. In the timed symmetry, every aperiodic one-orbit set is isomor-
phic to an orbit of R∗.

14



Proof. Let X be an aperiodic one-orbit nominal set in the timed symmetry. We
will show that X is isomorphic to an orbit of Pfin(R), which in turn is clearly
isomorphic to an orbit of R∗.

Choose an arbitrary element x0 ∈ X and its arbitrary minimal support
y0 ⊆ R. Wlog. assume the minimal support to be nonempty (otherwise X is a
singleton, clearly isomorphic to the orbit {∅}). The pair 〈y0, x0〉 determines an
equivariant relation containing all the pairs

〈y0 · π, x0 · π〉

where π ranges over the timed group. Note that whenever a pair 〈y, x〉 is in this
relation, the set y is a minimal support of x, as the action of a group necessarily
preserves minimal supports. It is easily seen that the relation is a surjective
function from one orbit of Pfin(R) to X. Indeed, if 〈y, x1〉 and 〈y, x2〉 are two
related pairs then using an arbitrary permutation π that maps x1 to x2, and
equivariance, one obtains y · π = y, and since the set of elements of y supports
x1, we obtain x1 = x1 · π = x2.

Call the function f and its domain Y . We aim at showing that f is also
injective.

Assume two different elements y1, y2 ∈ Y that are both mapped by f to some
x ∈ X. As elements of the same orbit, y1 and y2 are related by some permutation

y1 · π = y2. (3)

By the very definition of f , elements appearing in y1 are a minimal support of
x, and likewise for y2. By Lemma 2 we obtain y1 � y2, i.e., the same fractional
parts appear in y1 and y2. Denote by F this set of fractional parts.

By (3) the permutation π maps elements of y1 to elements of y2. Thus π
induces the unique permutation of the fractional parts F . Clearly, some power
πk of π induces identity on F , thus πk is an integer translation of R.

We will use now our assumption about existence of an equivariant function
g : X → R, to deduce y1 = y2. As x · πk = x, by equivariance of g we get
g(x) · πk = g(x), thus πk is necessarily identity. In consequence, π itself is an
identity too, which implies y1 = y2 as required.

We have thus proved that X and Y are isomorphic. ut

B Functions definable by constraints

In this section, we study relations on aperiodic sets that are definable by con-
straints, as defined in Section 2. The first problem is that constraints were de-
fined for subsets of R∗, while the notion of an aperiodic set is more abstract. We
prove that there is a canonical extension of constraints to the abstract notion of
aperiodic sets.

We define the presentation of an aperiodic single-orbit set X to be an equiv-
ariant injection f : X → R∗. By Proposition 1, every aperiodic set has a represen-
tation. Suppose that X,Y are aperiodic single orbit states, with presentations

15



f, g. We say a relation R ⊆ X × Y is definable by constraints with respect to
the presentations f, g if there is a subset of S ⊆ R∗ × R∗ that is definable by
constraints such that

(x, y) ∈ R iff (f(x), f(y)) ∈ S.

A set might have several different presentations. However, the following lemma
shows that the representations are not important for definability by constraints.

Lemma 3. If a relation R ⊆ X × Y is definable by constraints with respect to
presentations f, g, then the same holds for any other choice of presentations.

Thanks to the above lemma, we can simply say that a relation on X × Y is
definable by constraints, without mentioning the presentations. The definition
lifts to orbit-finite sets X and Y as follows. We say that a relation R ⊆ X × Y
is definable by constraints if for every orbit U of X and every orbit V of Y , the
restriction of R to U×V is definable by constraints. Finally, we say a function is
definable by constraints if it its graph is a relation that is definable by constraints.

Consider an equivariant function from Rn to Rm defined by:

(x1 . . . xn) 7→ (xi1 + k1, . . . , xim + km). (4)

Every function of this form we call simple. Observe that a simple function is
described by a constraint:

y1 = xi1 + k1 ∧ . . . ∧ ym = xim + km

over variables x1 . . . xn, y1 . . . ym. Clearly, not every equivariant function from
Rn to Rm is simple. However, every function from a single orbit of Rn is simple:

Lemma 4. Every equivariant function from an orbit of R∗ to an orbit of R∗ is
simple, and thus definable by a maximal constraint.

Proof. Let f be an equivariant function from an orbit of Rn to an orbit of Rm.
Suppose

f(x1 . . . xn) = (y1 . . . ym)

for some argument (x1 . . . xn) ∈ Rn. By equivariance, f preserves supports, and
thus for every yj there is some xij such that xij − yj is an integer. Let kj be the
differences, for j = 1 . . .m. Again by equivariance, the function f is precisely
the simple mapping (4). ut

As an immediate corollary we have:

Lemma 5. Let X,Y be aperiodic orbit-finite sets. Every equivariant function
f : X → Y is definable by constraints.

Above we have studied binary relations, but the definitions and results ex-
tend naturally to ternary relations and so on. The case of ternary relations is
particularly important, since a function

f : X × Y → Z, (5)

16



such as the transition function of a deterministic orbit-finite automaton, is a
special case of a ternary relation. The goal of this section is Theorem 6, which
characterizes those functions f which are definable by constraints. Before we can
state the theorem, we need to define a notion of limit, presented in Section B.1.

B.1 Left and right limits

Consider a (not necessarily equivariant) function f : X → Y , where X,Y are
nominal sets. We say that an element y ∈ Y is the right limit of f in x, if there
is some threshold M ∈ N such that

π(0) > M implies f(x · π) = y.

The right limit, which does not necessarily exist, is denoted by f(x +∞). In a
similar way, we define the left limit, denoted by f(x−∞).

Suppose that f : X×Y → Z is an equivariant function. We write f(x, y+∞)
for the right limit of the function y 7→ f(x, y). Likewise, we define

f(x, y −∞) f(x+∞, y) f(x−∞, y).

Example 10. Consider the function max : R× R→ R. For every x, y ∈ R:

max(x, y +∞) is undefined

max(x, y −∞) = x

max(x+∞, y) is undefined

max(x−∞, y) = y

Example 11. Consider the function f : R× R→ R ∪ {⊥} defined by

f(x, y) =

{
y if x− y is an integer, which is a prime number

⊥ otherwise

This is the transition function of the automaton from Example 6. The values

f(x, y +∞) f(x, y −∞) f(x+∞, y) f(x−∞, y)

are undefined for every x, y ∈ R.

B.2 Binary operations definable by constraints

In this section, we characterize those functions (5) that are definable by con-
straints.

Theorem 6. Let X,Y, Z be aperiodic orbit-finite nominal sets. A function

f : X × Y → Z

17



is definable by constraints if and only if for every x ∈ X and y ∈ Y

∧



∨

{
f(x, y +∞) is defined

f(x−∞, y) is defined

∨

{
f(x, y −∞) is defined

f(x+∞, y) is defined

(6)

Recall the discussion at the end of Section 3, which said that not all orbit-
finite automata are equivalent to timed register automata. From Theorem 6 we
get a more precise version of the discussion, as stated in Corollary 1.

Corollary 1. An orbit-finite nominal automaton is equivalent to a timed regis-
ter automaton if and only if:

– its state space is aperiodic; and
– its transition function satisfies criterion (6) from Theorem 6.

The rest of Section B.2 is devoted to proving Theorem 6. Fix the aperiodic
sets X,Y, Z and the function f : X×Y → Z. The top-down implication is given
in the following lemma.

Lemma 6. If f is definable by constraints, then (6) holds.

Proof. By inspecting the syntax of constraints. It is important that the im-
age of the function f is an orbit-finite set Z, and therefore its representation has
bounded span. By the span of a vector (x1, . . . , xn) ∈ Rn we mean here the max-
imal difference between two coordinates. For instance, the span of (1, 14.2,−2)
is 16.2. ut

The rest of the proof is devoted to the more interesting converse implication:
if (6) holds, then f is definable by constraints. By the definition of a function
defined by constraints, we need to show that for every orbit of X and every
orbit of Y , the function f restricted to the product of these orbits is definable
by constraints. Therefore, without loss of generality we can assume that X and
Y have one orbit.

Lemma 7. Let x ∈ X. If f(x, y+∞) is defined for some y ∈ Y , then f(x, y+∞)
is defined for all y ∈ Y , and has the same value.

Proof. Using the assumption that X has one orbit. ut
Thanks to the above lemma, we can use notation f(x,+∞) without specifying y.
Likewise for f(x,−∞), f(+∞, y) and f(−∞, y). Suppose that (6) holds. Choose
some x ∈ X and y ∈ Y . By rewriting condition (6) in disjunctive normal form,
there are four possibilities:

f(x,+∞), f(x,−∞) are defined

f(−∞, y), f(x,−∞) are defined

f(x,+∞), f(+∞, y) are defined

f(−∞, y), f(+∞, y) are defined.

18



We only study the first possibility, the other three are shown the same way.
If X is a singleton, then f is actually an equivariant function from Y to Z,

and it is therefore definable by constraints thanks to Lemma 5. Likewise if Y
is a singleton. The interesting case is when neither of the sets X and Y is a
singleton. By definition of aperiodicity, this means that there are functions

g : X → R h : Y → R.

Define a function by

∆ : X × Y → N ∆(x, y) = floor(h(y)− g(x)).

This function is equivariant, under assuming that the image N is equipped with
the trivial action.

Lemma 8. Suppose that f(x,+∞) is defined. There is some Mx ∈ N such that

f(x, y) = f(x,+∞) for every y with ∆(y, x) > Mx.

Proof. This lemma simply restates the definition of f(x,+∞) in terms of ∆.

Lemma 9. The partial function x 7→ f(x,+∞) is an equivariant partial func-
tion from X to Z. In particular, it is defined on all or no arguments.

A corollary of the above lemma is that the constant Mx which appears in
Lemma 8 does not depend on x.

We are now ready to complete the proof of Theorem 6. Recall the assump-
tion that both f(x,+∞) and f(x,−∞) are defined. By Lemma 9, the function
x 7→ f(x,+∞) is an equivariant function from X → Z that is defined on all
arguments. Like any equivariant function with a one-orbit domain, the function
x 7→ f(x,+∞) is definable by constraints. By Lemma 8, there is some M ∈ N
such that the functions f(x, y) and f(x,+∞) agree on arguments from the set

Σ1 = {(x, y) ∈ X × Y : ∆(y, x) > M}.

Since the set Σ1 is definable by a constraint, and the function f(x,+∞) is
definable by a constraint, it follows that the restriction of f to Σ1 is definable
by a constraint. Using the same argument for the function x 7→ f(x,−∞), we
see that there is some N ∈ N such that the restriction of f to the subset

Σ2 = {(x, y) ∈ X × Y : ∆(x, y) > N}

is definable by a constraint. Finally, consider the remaining arguments:

Σ3
def
= X × Y − (Σ1 ∪Σ2).

Lemma 10. The set Σ3 is orbit-finite.

By the above lemma, and by Lemma 5, the function f restricted to Σ3 set
is definable by constraints.

Summing up, we have partitioned the domain of f into three subsets, and
shown that it is definable by constraints when restricting to these subsets. There-
fore, the function f itself is definable by constraints. This finishes the proof of
Theorem 6.

19



C Proof of Theorem 3

Characterization of aperiodic sets. A timed permutation π is called bounded
if it has at least one fixed point, i.e., if π(t) = t for some t ∈ R. Otherwise, a
permutation is called unbounded.

Observe that if π is unbounded then for any x ∈ R the sequence (πn(x))n is
an unbounded increasing sequence; or for any x ∈ R the sequence (πn(x))n is
an unbounded decreasing sequence. In the first case π(x) > x for all x ∈ R. In
the second case, π(x) < x for all x ∈ R.

For x ∈ X, let
Gx = {π : x · π = x}

denote the stabilizer of x, a subgroup of the timed group. A subgroup, in par-
ticular a stabilizer, we call bounded if it only contains bounded permutations.
Otherwise, a subgroup is called unbounded.

Lemma 11. For a non-singleton one-orbit set X, the following conditions are
equivalent:

– X is aperiodic;
– all elements of X have bounded stabilizers.

Proof. We show the top-down implication first. Assume some x ∈ X with un-
bounded stabilizer. This means that there is some unbounded timed permutation
π with x · π = x. Any equivariant function f : X → R would satisfy

f(x) = f(x · π) = π(f(x)),

which is in contradiction with unboundedness of π. In consequence, X is not
aperiodic.

For the bottom-up implication, assume that all elements of X have bounded
stabilizers. We will show that X is aperiodic by constructing an equivariant
function f : X → R.

First observe that no element of X has empty support. Fix an arbitrary
x0 ∈ X and an arbitrary element y0 of some minimal support C0 of x0. Extend
the pair x0 7→ y0 to the equivariant function:

f : x0 · π 7→ π(y0). (7)

It only remains to show that this is a well-defined function. For this we need
some preparation. For C ⊆ R, let GC be the subgroup containing those timed
permutations that fix the set C:

GC = {π : π(t) = t for all t ∈ C}.

We know that GC0
⊆ Gx0

. We will argue that by minimality of C0, and by our
assumption it follows:

Fact 7 Gx0
⊆ GC0

.

20



Proof. For the sake of contradiction, suppose that for some π /∈ GC0
it holds

x0 · π = x0. Let t ∈ C0 be such that π(t) 6= t. By assumption on bounded
stabilizers, permutation π is bounded. We distinguish two cases. Wlog. assume
that π(x) > x for all x ∈ R, otherwise consider π−1.

Case C0 = {t}. We know that the generated subgroup GC0
+ {π}, the smallest

subgroup of the timed group that includes GC0 ∪ {π}, is a subgroup of Gx0 :

GC0 + {π} ⊆ Gx0 .

We will obtain a contradiction, once we prove:

Claim. GC0
+ {π} is unbounded.

Indeed, from any point x ∈ R, one can go arbitrarily far, by applying, in an
alternating manner, either a permutation from Gy0 that necessarily fixes t, t+1,
etc., or π that may cross t, t+ 1, etc.

Case C0 6= {t}. We will focus on the set

D = (C0 \ {t}) + Z.

First observe that we may assume wlog. that π(t) /∈ D. Indeed, if π(t) ∈ D,
then replace t by π(t). If again π(t) ∈ D, repeat the replacement. After a finite
number of steps we finally get π(t) /∈ D, as otherwise π would be unbounded.

As a second step, we observe that one may assume wlog. that π fixes C0 \{t}
and that between t and π(t) there is no element of D:

π ∈ GC0\{t} ∧ (t, π(t)) ∩D = ∅. (8)

Indeed, take a permutation τ ∈ GC0
that slightly modifies π(t), and replace π

by:

π τ π−1.

Now we will argue that by composing π and π−1 with permutations from
GC0 one obtains all permutations from GC0\{t}. This would mean that C0 \ {t}
supports x0, a contradiction with minimality of C0. Thus it is sufficient to show:

Claim. GC0\{t} ⊆ GC0 + {π}.

For the proof of this claim, consider an arbitrary permutation from GC0\{t}, and
focus on its restriction ρ to some open interval (l, u), determined by some two
consecutive element of the set D. Clearly ρ is a permutation of (l, u). Assume
wlog. that t ∈ (l, u). We have at our disposal arbitrary permutations from GC0

,
which restricted to the interval (l, u) means arbitrary permutations of (l, u) that
fix t, and the permutations π and π−1 (note that π(t) ∈ (l, u) and π−1(t) ∈
(l, u) by (8)). We observe that ρ may be always presented as a composition of
permutations at our disposal.

This completes the proof of Fact 7. ut

21



Now we easily demonstrate that (7) is a well-defined function. Indeed, by
general properties of group actions and by the above claim we get

Gx0·π ⊆ Gπ(y0).

Suppose x0 · π = x0 · τ = x. Thus (π−1; τ) ∈ Gx0·π. By the inclusion above we
obtain (π−1; τ) ∈ Gy0·π, and hence y0 · π = y0 · τ .

This completes the proof of Lemma 11. ut

Approximants are aperiodic. We consider the class of deterministic orbit-
finite timed register automata in this section.

Lemma 12. Timed register automata are a subclass of nominal automata, both
in the deterministic and nondeterministic cases.

Proof. There is a natural action of the timed group on states of a timed register
automaton: given a permutation π from the timed group, and a state (l, η), the
state (l, η) · π is defined leaving the location the same, and applying π to each
register value. By Lemma 1, the transition relation of a timed register automaton
is equivariant. ut

The above proof works for the unconstrained model of timed register automata.
Lemma ?? implies that constrained timed register automata have an orbit-finite
state space. In particular:

Corollary 2. Constrained register timed automata are a subclass of orbit-finite
nominal automata, both in the deterministic and nondeterministic cases.

It is not difficult to see that a converse implication holds: constrained timed
register automata have the same expressive power as timed register automata
with an orbit-finite state space, both in the deterministic and nondeterministic
case. b R*selying on Corollary 2, we treat orbit-finite timed register automata
as a subclass of orbit-finite nominal automata. The latter class, being syntax-
independent, allows us to use standard notions, like quotient by an equivariant
equivalence, or automaton homomorphism.

Fix a deterministic orbit-finite timed register automaton A in the sequel,
with orbit-finite state space Q described by maximal constraints, and transition
function δ : Q× (A× R)→ Q.

Let ∼⊆ Q×Q denote the language equivalence of states of A from now on.
We will use the standard approximating equivalences ∼n⊆ Q × Q of the

language equivalence. The initial approximant ∼0 relates every two accepting
states, and every two non-accepting ones. Inductively, ∼n+1 is defined using ∼n:

q ∼n+1 p ⇐⇒ ∀(a, t) ∈ A× R. δ(q, (a, t)) ∼n δ(p, (a, t)). (9)

In other words, two states are related by ∼n if and only if no word of length at
most n can distinguish the two states. As usual

∼ =
⋂
n

∼n . (10)

22



Lemma 13. For every n, the quotient set Q/∼n is aperiodic.

Proof. The proof is by induction on n. For n = 0 the quotient is a finite set,
hence aperiodic.

Assume Q/∼n is aperiodic. We aim at showing that Q/∼n+1 is aperiodic
too, using the characterization of Lemma 11.

By Lemma 4, the quotient function fn : Q → Q/∼n is definable by con-
straints. As a consequence, the composition of functions

(δ; fn) : Q× (A× R)→ Q/∼n (11)

is also definable by constraints. Towards a contradiction, assume that Q/∼n+1

is not aperiodic. Let O ⊆ Q be a non-aperiodic orbit of Q. Using Lemma 11 we
obtain some unbounded π and x ∈ O/∼n+1 with x · π = x. Using equivariance
of the quotient function fn+1 : Q → Q/∼n+1 restricted to the orbit O, this is
equivalent to saying that there is some unbounded π and a state q ∈ O such that

q ∼n+1 q · π. (12)

We will now apply reasoning similar to Theorem 6 to the function (11) restricted
to the orbit O, to deduce that O/∼n+1 is a singleton, thus aperiodic, which is
a contradiction with our assumption above. In other words, we aim at showing
that every two states in O are related by ∼n+1.

Clearly π(0) 6= 0. Assume wlog. that π(0) > 0 (otherwise consider π−1 instead
of π). As ∼n+1 is an equivariant equivalence, we could replace π with πn, for
any n, while preserving condition (12). Knowing that (πn(0))n is an unbounded
increasing sequence, we may assume wlog. that π(0) is arbitrarily large. Denote
by f the function (11) restricted to the orbit O. Let x range over O and let y
range over A× R. Expanding (9) for q ∼n+1 q · π we know that

f(q, y) = f(q · π, y) for all y. (13)

By Theorem 6 we know that one of the limits exists,

f(x,−∞) or f(+∞, y), (14)

for every x, y. As π(0) may be chosen arbitrarily large in (13), it follows that it
is the second limit f(+∞, y) in (14) that exists for all y. Similarly, one shows
that the limit

f(−∞, y)

exists for all y. Now, using (13) one obtains

f(x, y) = f(x′, y)

for all x, x′ ∈ O and all y, thus O/∼n+1 is a singleton as required. ut

23



Syntactic automaton is aperiodic. We will argue now that the quotient Q/∼
is an aperiodic set. By Lemma 13 and equation (10) it is sufficient to prove that
for some n the sequence of quotients stabilizes, i.e., there is an isomorphism:

Q/∼n ' Q/∼n+1.

The stabilization will easily follow from the following simple observation. By a
characteristic of a one-orbit aperiodic set X we mean here the cardinality of
a minimal support of elements of X. In other words, the characteristic is the
smallest n such that X is isomorphic to an orbit of Rn.

Lemma 14. Let X, Y be orbit-finite aperiodic sets. Suppose f : X → Y is
equivariant, non-bijective and surjective. Then at least one of the following con-
ditions holds:

– Y has strictly less orbits than X,
– for some orbit O of X, the image orbit has strictly smaller characteristic

than O.

Proof. Follows immediately using Lemma 4. ut

Every consecutive equivalence ∼n+1 refines the previous one ∼n, which is wit-
nesses by equivariant surjective quotient function

gn : Q/∼n+1 → Q/∼n.

On the other hand, for every n, the quotient function fn : Q → Q/∼n is also
equivariant and surjective. By Lemma (14), only finitely many of functions fn
are non-bijective. As functions fn and gn commute, we conclude that there are
only finitely many functions gn that are non-bijective. Thus the state space of
the minimal automaton is aperiodic.

Syntactic automaton is a timed register automaton. By now we have
shown that every orbit of the state space Q/∼ of the minimal automaton is
isomorphic to an orbit of R∗. It only remains to show that the transition function

γ : (Q/∼)× (A× R)→ Q/∼

of the minimal automaton is definable by constraints.
Let h : Q→ Q/∼ be the quotient function. The equation

γ(h(q), (a, t)) = h(δ(q, (a, t)))

holds for all q ∈ Q and (a, t) ∈ A × R. As h is simple due to Lemma 4, the
function γ is definable by constraints, as required.

Minimization algorithm. We finally describe a minimization algorithm. In
the sequel we merely concentrate on decidability, not on complexity. However,
an efficient algorithm may be actually derived from our considerations below.
We leave this issue for future research.

24



In consequence of Lemma 4 and 13, every approximating equivalence ∼n
is definable by constraints, as stated in Lemma 15 below. We will be explicit
about what we mean by describing an equivalence over Q by constraints. As the
number of register names varies from one orbit (location) to another, there will
be a separate constraint φl,k for every pair of locations l, k. We distinguish two
cases. If k 6= l, the constraint φl,k will be a finite conjunction of equalities

x = y + k

for x ∈ Xl and y ∈ Xk. If k = l, the constraint φl,l will be a finite conjunction
of equalities of a special form:

x = x′

where x ∈ Xl. The diagonal constraints are over variables Xl ∪ X ′l , where X ′l
contains a copy x′ of every x ∈ Xl. A set of constraints {φl,k}l,k, of the form
described above, where l, k range over locations of A, we will call equivalence
constraint.

Lemma 15. Every approximating equivalence ∼n is definable by an equivalence
constraint.

The minimization algorithm will follow form the two lemmas below. First, note
that from the proof of Lemma 13 it actually follows that if an equivariant equiv-
alence ≡⊆ Q×Q is defined by an equivalence constraint, then the expansion of
≡, defined according to (9) by

q ≡′ p ⇐⇒ ∀(a, t) ∈ A× R. δ(q, (a, t)) ≡ δ(p, (a, t)), (15)

is also definable by an equational constraint. We claim that the expansion is
computable:

Lemma 16. There is an algorithm that for a given equivalence constraint com-
putes an equivalence constraint that defines the expansion.

Proof. Knowing that an equivalence constraint defining the expansion exists,
the algorithm simply enumerates all equivalence constraints, and for each of
them checks if it defines the expansion ≡′ as defined by formula (15). The latter
question is decidable, using a decision procedure for theory of (R, <,+1). ut

A second lemma is an immediate consequence of the above one:

Lemma 17. There is an algorithm that for a given equivalence constraint de-
cides if the defined equivalence coincides with its expansion.

Proof. Compute the expansion and check if the defined equivalence coincides
with the relation defined by the given equivalence constraint. ut

Basing on Lemmas (16) and (17), we obtain a partition refinement algorithm
that always terminates and computes an equivalence constraint that defines lan-
guage equivalence. From the equivalence constraint, it is easy to construct a
presentation of the minimal automaton.

25



D Proof of Theorem 4

Except for the fact that a run starts with all clocks undefined, timed automata
with uninitialized clocks are exactly like timed automata of [2].

We start by defining timed automata with uninitialized clocks explicitly, but
in a slightly unusual notation similar to that used for timed register automata.

Clock constraints. We will use constraints over the structure (R, <,+1) ex-
tended with an additional element ⊥ standing for undefined value. Thus we
additionally allow for atomic constraints of the form x = ⊥.

Let X be a finite set of clock names, and let X ′ contain a copy x′ of every
clock name x ∈ X . By a clock constraint over X we mean any constraint over
variables X ∪ {t} ∪ X ′ that implies, for every clock name x ∈ X , the following
constraint:

(x′ = x ∨ x′ = t ∨ x′ = ⊥) ∧ (x′ = ⊥ =⇒ x = ⊥).

Intuitively, variable t represents current timestamp and variables X ′ represent
new clock values.

Timed automata with uninitialized clocks. A (nondeterministic) timed
automaton with uninitialized clocks A is given by the following ingredients.

– A finite set A of labels.
– A finite set Loc of locations.
– Subsets of the locations for the initial and final locations.
– A finite set X of clock names.
– For every two locations q, p ∈ Loc, and every label a ∈ A, a clock constraint,

which defines a subset

δq,a,p ⊆ (R ∪ ⊥)X × R× (R ∪ ⊥)X .

A clock valuation is an element of (R ∪ ⊥)X . A state of A is a pair (l,v)
consisting of a location and a clock valuation. Let QA denote the set of states
of A. The semantics of the automaton is defined in a standard way. One defines

δA ⊆ QA × (A× R)×QA

to be the set of triples (q,v), (a, t), (p,w) such that

(v, t,w) ∈ δq,a,p.

A run is a sequence of states consistent with the transition relation, that
starts in a state consisting of an initial location and the completely undefined
clock valuation.

In the sequel, automata defined above are called briefly timed automata.

From timed automata to constrained timed register automata. A timed
automaton A as defined above may be easily transformed to an equivalent con-
strained timed register automaton as follows.

26



First of all, we need to guarantee that the timed register automaton will rec-
ognize only monotonic words. For this purpose we introduce one additional clock
to store the most recent timestamp, and transitions to an additional sink state
when the monotonicity is violated. Now the clocks become registers. Note that
value ⊥ may be eliminated from states, by reducing the set of clocks/registers
in certain locations.

Second, every location is split into a finite number of locations, one per every
clock region. Some clock regions are represented by maximals constraints, and
some are not. In the latter case, eliminate those clocks that are unbounded.
As projection of a clock region is a clock region, this will result in a maximal
constraint. Note that information about region is stored explicitly in the location.

E Proof of Theorem 5

The top-down implication is straightforward: it is not difficult to see that the
four conditions 1-4 hold for any language recognized by a deterministic timed
automaton. The rest of the section is devoted to proving the converse.

Fix a finite set Afin of labels, and a language L over the alphabet Afin × R,
as in the theorem. Assume that L satisfies conditions 1-4. We will show that L
is recognized by a timed automaton.

Let us write A for Afin × R. Let Q be the state space of the syntactic au-
tomaton, and let δ be its transition relation. Fix this notation for the rest of this
section.

The proof of Theorem 5 is done in two steps. In Section E.1, we show that
the syntactic automaton is actually (isomorphic to) a timed register automaton.
In Section E.2, we show that after adding some new locations, the syntactic
automaton becomes a timed automaton.

E.1 Getting a timed register automaton

Proposition 2. The syntactic automaton is a timed register automaton.

We use the standard notion of residue for a word w ∈ A∗

w−1L
def
= {v ∈ A∗ : wv ∈ L}.

Two words are L-equivalent if and only if they have the same residues. Define a
partial function

minfuture : A∗
.→ R

which maps a word w to

inf{t ∈ R : t is a timestamp that appears in w−1L}.

27



It is not difficult to see that the function minfuture is equivariant. Because
the value minfuture(w) depends only on the set w−1L, it follows that two L-
equivalent words have the same values under minfuture. Therefore, by abuse of
notation, we can think of minfuture as being a function

minfuture : Q
.→ R.

A state q ∈ Q we call equivariant if {q} is equivariant as subset of Q. Equiv-
alently, one can say that q has empty support.

Lemma 18. A state q ∈ Q is equivariant if and only if minfuture(q) is unde-
fined.

Proof. The left-to-right implication is immediate. Suppose that q is equivariant,
and that minfuture(q) is defined and equal to a real number x. Then

x · π = minfuture(q) · π = minfuture(q · π) = minfuture(q) = x

holds for every permutation π in the timed group. There is no real number x
with this property.

Consider now the right-to-left implication. Consider a state q ∈ Q, which
is the L-equivalence class of some word w ∈ A∗. We will prove that either
minfuture(q) is defined, or q is equivariant. The state is equivariant q if and only
if the residue w−1L is equivariant, i.e. it is a set of words that is stable under the
action of the timed group. Let us first look at three cases concerning the residue
w−1L.

– If w−1L is empty, then it is equivariant.
– If w is the empty word, then w−1L is L, which is equivariant by assumption.
– If w−1 contains only the empty word, then it is equivariant.

Suppose then that none of the cases above holds, which means that w is a
nonempty word and w−1L is a nonempty language. Since w is a nonempty
word, it has some last timestamp, call it t. By condition 2 on monotonicity,
all timestamps that appear in w−1L are bigger than t. By nonemptiness of
w−1L, there is at least one timestamp that appears in w−1L. It follows that the
lower bound in the definition of minfuture is well defined, as an infimum over a
nonempty set of reals that is bounded from below.

Proof (of Proposition 2). First we show that the state space is aperiodic. Choose
an orbit of the state space Q. If the orbit is a singleton, then it is aperiodic. If
the orbit is not a singleton, then minfuture is defined on the orbit by Lemma 18.
Therefore, the orbit is aperiodic.

Because the language L is monotone, we know that for every state q ∈ Q and
every letter a, the value δ(q, a −∞) is defined and equal to the rejecting sink
state. From condition 3, we see that for every q ∈ Q and every letter a ∈ A, the
value δ(q−∞, a) is defined. Therefore, by Corollary 1, the syntactic automaton
is actually an orbit-finite timed register automaton.

ut

28



E.2 Getting a timed automaton

So far, we have shown that the syntactic automaton is an orbit-finite register
automaton. However, not every orbit-finite register automaton is equivalent to
a deterministic timed automaton. The following lemma shows what is needed to
get a timed automaton.

Lemma 19. An deterministic orbit-finite timed register automaton is equivalent
to a deterministic timed automaton if

– It only accept monotonic words.
– There is some M ∈ N such that for every word w ∈ A∗, after reading w the

register contain only timestamps that appear in w, and the timestamps are
at distance at most M from the last timestamp.

Proof. Suppose that a deterministic orbit-finite timed register automaton satis-
fied the conditions above. It may be easily transformed to a timed automaton.
One needs to add dummy register names to make the number of registers equal
in each location. Additionally, one needs to keep track of a simple book-keeping,
for instance instead of copying value of a register x to register y, keep this value
in the same register while remembering the assignment y 7→ x in an additional
finite control state space. ut

In this section, we prove that the syntactic automaton can be modified so
that it satisfies the second condition in Lemma 19 while recognizing the same
language.

Let Q1, . . . , Qn ⊆ Q be the orbits of Q. The number of orbits is finite by
condition 4. Let Qi be one of the orbits. By Proposition 2, this orbit is aperiodic.
By Proposition 1, the orbit Qi is isomorphic to some orbit R∗, let us denote the
latter orbit by Xi ⊆ R∗. Of course all vectors in Xi have the same dimension,
i.e. there is some number ni ∈ N such that Xi ⊆ Rni . Summing up, we can
assume that the state space of the automaton is

Q =
⋃

i∈{1,...,n}

{i} ×Xi.

Essentially, the above is a presentation of the state space, as defined in Section B.
As previously, we will write x � y when x and y have the same fractional

parts.

Lemma 20. Let the state of the automaton after reading a nonempty word w
be

(i, x1, . . . , xni
).

For every j ∈ {1, . . . , ni} there is a timestamp yj in w such that xj � yj.
Furthermore, this distance between yj and the last timestamp in w is at most
M , where M is the constant from condition 3.

29



Proof. Decompose w as w = uv where v is be the maximal suffix of w which
contains all the timestamps at distance at most M from the last timestamp in
w. Let t1, . . . , tk be all the timestamps that appear in the suffix v. We need to
prove that for every j ∈ {1, . . . , ni}, there is some l ∈ {1, . . . , k} with xj � tl.

Suppose that j ∈ {1, . . . , ni} is such that xj 6� tl for all l ∈ {1, . . . , k}. We
will derive a contradiction. Choose a permutation π in the timed group which
preserves all the timestamps t1, . . . , tk, but does not preserve the timestamp xj .
Such a permutation π exists, it moves xj by a very small distance. The transition
function of the syntactic automaton is equivariant, and therefore the state of the
syntactic automaton after reading w · π is

(i, π(x1), . . . , π(xni)),

which is a different state than the one after reading w (because the two states
are different on coordinate j). Stated differently, the words w and w · π are not
L-equivalent. Knowing that v · π = v, we may write:

w = uv 6∼L w · π = (u · π)(v · π) = (u · π)v.

If u is empty, then we get a contradiction immediately. If u is nonempty, then
we get a contradiction with condition 4 in Theorem 5. ut

Let w and (i, x1, . . . , xni) be as in Lemma 20. Define a vector

λ(w) = (y1, . . . , yni
)

by choosing for yj the last timestamp in w that has the same fractional part as
xj . The length of the vector λ(w) depends on the orbit i. Lemma 20 says that
the vector λ(w) is always defined, and also all of the coordinates of λ(w) are at
distance at most M from the last timestamp in w. Finally, define a vector

∆(w) = (x1 − y1, . . . , xni − yni). (16)

By definition of λ(w), the vector ∆(w) contains only integers.

Lemma 21. The set ∆
def
= {∆(w) : w ∈ A∗} is finite.

Proof. Using Lemma 4 we immediately obtain:

Claim. Let n ∈ N, let X be a single orbit in Rn, and let f : X → R be an
equivariant function. The following set has bounded span.

{(x1, . . . , xn, f(x1, . . . , xn)) : (x1, . . . , xn) ∈ X} ⊆ Rn+1.

Consider the function which maps a word w to three pieces of information:

1. The state (i, x1, . . . , xni
) of the syntactic automaton after reading w.

2. The number minfuture(w).
3. The last timestamp in w.

30



Using property 3, one shows that the distance between the minfuture(w) and
the last timestamp in w is bounded by M . As we have observed previously, the
second piece of information is a function of the first piece of information, and
therefore by the claim above, the possible values for the first and second pieces
of information have bounded span, when ranging over all words. It follows that
the values for all three pieces of information have bounded span, which gives the
lemma. ut

Consider now the function γ, which maps a word to

γ(w) = (i,∆(w), λ(w)),

where i ∈ {1, . . . , n} identifies the orbit of the state δ∗(w).

Lemma 22. The function γ is equivariant, and its image γ(A∗) is orbit-finite.

Proof. The function λ has orbit-finite image, while the other components i and
∆(w) come from a finite set. ut

Lemma 23. The function δ∗ factors through γ, i.e. there is an equivariant func-
tion f : γ(A∗)→ Q such that δ∗ = f ◦ γ.

Proof. The orbit is already stored in γ(w), while the register values in δ∗(w) can
be computed by adding the vectors λ(w) and ∆(w):

f(i,x,y) = (i,x + y),

according to the equality (16). ut

Lemma 24. The function γ is compositional in the following sense. There is
an equivariant function

γ̂ : γ(A∗)×A→ γ(A∗) (17)

such that for every word w ∈ A∗ and every letter a ∈ A,

γ(w · a) = γ̂(γ(w), a)

Proof. Recall that the transition function δ of A is defined by constraints. Re-
call also that the function f : γ(A∗) → Q acts by adding vectors. Then the
constraints that define δ may be lifted along f to define a function (17) such
that γ̂, δ and f commute:

f ◦ γ̂ = δ ◦ f.
Being defined by constaints, γ̂ is automatically equivariant.

ut

We define an automaton B as follows. Its states are γ(A∗); the state space
is orbit-finite by Lemma 22. The transition function is γ̂ from Lemma 24. The
accepting and initial states are obtained by taking the inverse images under the
function f from Lemma 23. The automaton recognizes the same language as the
syntactic automaton thanks to Lemma 23. By definition of λ(w), the registers
of B only store recently seen timestamps, and therefore the automaton B is
equivalent to a timed automaton thanks to Lemma 19.

31


