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Abstract. This paper is about reachability analysis in a restricted subclass of
multi-pushdown automata: we assume that the control states of an automaton are
partially ordered, and all transitions of an automaton go downwards with respect
to the order. We prove decidability of the reachability problem, and computability
of the backward reachability set. As the main contribution, we identify relevant
subclasses where the reachability problem becomes NP-complete. This matches
the complexity of the same problem for communication-free vector addition sys-
tems (known also as commutative context-free graphs), a special case of stateless
multi-pushdown automata.

1 Introduction

This paper is about reachability analysis of multi-pushdown systems, i.e., systems with
a global control state and multiple stacks. The motivation for our work is twofold. On
one side, a practical motivation coming from context-bounded analysis of recursive
concurrent programs [23, 20, 3]. On the other side, a theoretical motivation coming from
partially-commutative context-free grammars, developed recently in [11–13].

Context bounded analysis. Multi-pushdown systems may be used as an abstract model
of concurrent programs with recursive procedures. As multi-pushdown systems are a
Turing-complete model of computation, they are only applicable for verification un-
der further tractable restrictions. One remarkably successful restriction is imposing
a bound on the number of context switches; between consecutive context switches,
the system may only perform operations on one stack (local operations). In [23], the
context-bounded reachability has been shown decidable, by reduction to reachability
of ordinary pushdown systems [5]. This line of research, with applications in formal
verification, has been continued successfully, e.g., in [6, 20, 3].

Weak control states. As our starting point we observe that if the number of context
switches is bounded, one may safely assume that the control state space is weak, in
the sense that there is a partial order on control states such that transitions go only
downwards with respect to the order. Indeed, the local state space of every thread may
be eliminated using a stack, and the global control state essentially enumerates context
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switches. Roughly speaking, the model investigated in this paper extends the above
one with respect to operations allowed between two context switches, namely, we do
not restrict these operations to one stack only. Thus, if k is the number of stacks, we
assume that transitions of a system are of the following form:

q, X a−→ q′, α1, . . . , αk, (1)

to mean that in state q, symbol X is popped from one of the stacks, and sequences of
symbols α1, . . . , αk, respectively, are pushed on stacks. Wlog. one may assume that the
symbols of different stacks are different.

Partially-commutative context-free grammars. A special case of the model investigated
in this paper is stateless multi-pushdown systems. This is still a quite expressible model
that subsumes, among the others, context-free graphs (so called Basic Process Alge-
bra [8]) and communication-free Petri nets (so called Basic Parallel Processes [8]). In
the stateless case, transitions (1) may be understood as productions of a grammar, with
the nonterminal symbols on the right-hand side (stack symbols) subject to a commu-
tativity law. More precisely, for any two symbols X and Y from different stacks, we
impose the commutativity law

XY = YX.

One easily observes that this is a special case of independence relation over nonterminal
symbols, as defined in trace theory [14]1. In multi-pushdown systems, the dependency
relation (complement of independence relation) is always transitive. A general theory
of context-free grammars modulo dependency relation that is not necessarily transitive,
has been studied recently in [13]; complexity of bisimulation equivalence checking has
been investigated in [11, 12]. The present paper complements these results by focusing
on reachability analysis.

Contributions. This paper contains two main results. First, we prove decidability of
reachability for weak multi-pushdown automata. Our argument is based on a suitable
well order on the set of configurations, that strongly depends on the assumption that the
control states are weak.

Second, we identify additional restrictions under which the problem is NP-complete;
one such restriction is stateless multi-pushdown systems. Our result subsumes (and
gives a simpler algorithm for) the case of communication-free Petri nets; reachability
thereof is NP-complete as shown in [15]. The last result is similar to NP-completeness
of the word problem for partially-commutative context-free grammars [16], where one
asks if the given input word is accepted. The reachability question is more difficult to
answer, as an input word is not given in advance. In fact the main technical difficulty is
to show existence of a polynomial witness for reachability.

As further results, we investigate forward and backward reachability sets, and prove
that the backward reachability set of a regular set of configurations is regular and com-
putable, while the forward reachability set needs not be regular in general. Finally,

1 Note however that the independence is imposed on nonterminal symbols, and not on input
letters, as usually in trace theory.
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we identify the decidability border for reachability of weak multi-pushdown systems.
Roughly speaking, the problem becomes undecidable when one asks about reachability
of a given regular set of configurations, instead of a single configuration.

The standard techniques useful for analysis of pushdown systems, such as pumping
or the automaton-based approach of [5], do not extend to the multi-pushdown setting.
This is why the proofs of our results are based on new insights. The NP-membership
proofs are, roughly speaking, based on polynomial witnesses obtained by careful elim-
ination of ’irrelevant’ transitions. On the other hand, the decidability results are based
on a suitable well order on configurations.

Related research. Multi-pushdown systems are a fundamental model of recursive multi-
threaded programs. This is why different instantiations of the multi-pushdown paradigm
have been appearing in the literature recently, most often in the context of formal verifi-
cation. We only mention here a few relevant positions we are aware of, without claiming
completeness. All the papers cited below bring some restricted decidability results for
reachability or model checking.

Most often, a model has global control states, subject to some restriction. For in-
stance, the author of [1] assumes that the stacks are ordered, and pop operation can
only be performed on the first nonempty stack. Another example is the model intro-
duced in [7] and then further investigated e.g. in [6, 2, 4], that allows for unbounded
creation of new stacks; on the other hand, operations on each stack are local, thus no
communication between threads is allowed.

Another possible approach is to replace global state space with some communica-
tion mechanism between threads. Some successful results on analysis of multi-threaded
programs communicating via locks, in a restricted way, has been reported in [18, 17, 9].

In [21] the algorithm for reachability over PA [8] graphs has been provided. The
PA class is a generalization of both BPA and BPP that allows, similarly like multi-
pushdown systems, both for sequential and interleaved behavior. Finally, in [19] the
reachability problem has been shown decidable for Process Rewrite Systems [22] ex-
tended with weak control states.

Outline. In the following Section 2 we define the model we work with. Then in Sec-
tion 3 we state all our results. In the remaining sections we provide proofs of some of
the results. The other proofs are omitted due to space limitation.

2 Multi-pushdown automata

A multi-pushdown automaton (MPDA) is like a single-pushdown one. In a single step
one symbol is popped from one of stacks2, and a number of symbols are pushed on the
stacks. Assume there is k stacks. A transition of an automaton is thus of the form:

q, X a−→ q′, α1, . . . , αk, (2)

2 If we allowed for popping from more than one stack at a time, the model would clearly become
Turing-complete, even with 1 state only.

3



to mean that when an automaton reads a in state q, it pops X from one of the stacks,
pushes the sequence of symbols αi on the ith stack, for i = 1 . . . k, and goes to state
q′. We allow for silent transitions with a = ε. Observe that wlog. one may assume that
stack alphabets are disjoint.

Formally, the ingredients of a MPDA are: a finite set of states Q, the number of
stacks k, pairwise-disjoint finite stack alphabets S1 . . . Sk, an input alphabet A, and a
finite set of transition rules:

−→ ⊆ Q× (
⋃
i≤k

Si)× (A ∪ {ε})× Q× S1
∗ × . . .× Sk

∗ (3)

written as in (2). A configuration of a MPDA is a tuple 〈q, β1, . . . , βk〉 ∈ Q × S1
∗ ×

. . . × Sk
∗. The transition rules (2) induce the transition relation over all configurations

in a standard way:

q, X a−→ q′, α1, . . . , αk X ∈ Si βi = Xβ

〈q, β1, . . . βi . . . , βk〉
a−→ 〈q′, α1β1, . . . αiβ . . . , αkβk〉

thus defining the configuration graph of a MPDA. For a configuration 〈q, α1, . . . , αk〉,
its size is defined as the sum of lengths of the words αi, i ≤ k. The same applies to a
right-hand side of any transition rule q X a−→ q′ α1 . . . αk.

An MPDA is stateless if there is just one state (or equivalently no states). Transition
rules of an automaton are then of the form:

X a−→ α1, . . . , αk (4)

and configurations are of the form 〈β1, . . . , βk〉.
A less severe restriction on control states is the following one. We say that an au-

tomaton is weak if there is a partial order ≤ on its states such that every transition (2)
satisfies q′ ≤ q. Clearly, every stateless automaton is weak.

Remark 1. Note that stateless one-stack automata are essentially context-free gram-
mars in Greibach normal form. Thus the configuration graphs are precisely context-free
graphs, called also BPA graphs [22, 8]. Another special case is many stacks with sin-
gleton alphabets. The stacks are thus essentially counters without zero tests. In this
subclass, stateless automata corresponds to communication-free Petri nets [15], called
also BPP [10], or commutative context-free graphs [12]. The BPA and BPP classes are
members of the Process Rewrite Systems hierarchy of [22] that contains, among the
others, pushdown systems and unrestricted Petri nets.

Example 1. Assuming a distinguished initial state and acceptance by all stacks empty,
weak MPDAs can recognize non-context-free languages. For instance, the language

{anbncn : n ≥ 0} (5)

is recognized by an automaton described below. The automaton has two states q1, q2
and two stacks. The alphabets of the stacks are {X,B,D} and {C}, respectively. The
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starting configuration is (q1,XD, ε). Besides the transition rules, we also present the
automaton in a diagram, using push and pop operations with natural meaning.

q1 q2

a, pop X
push XB,C

ε,
pop X

b, pop B

c, pop C

ε, pop D

q1, X a−→ q1, XB, C

q1, X ε−→ q1, ε, ε

q1, B b−→ q1, ε, ε

q1, D ε−→ q2, ε, ε

q2, C c−→ q2, ε, ε

The automaton is weak and uses ε-transitions, which may be however easily eliminated.
Acceptance by empty stacks may be easily simulated using acceptance by states. The
language (5) is not recognized by a stateless automaton, as shown in [13].

Example 2. Non-context-free languages are recognized even by stateless MPDAs with
singleton stack alphabets. The class of languages recognized by this subclass is called
commutative context-free languages [16], see also [13]. One example is the commuta-
tive closure of the language of the previous example: the set of all words with the same
number of occurrences of a, b and c.

In the sequel we do not care about initial states nor about acceptance condition, as
we will focus on the configuration graph of an automaton. Furthermore, as we only
consider reachability problem, the labeling of transitions with input alphabet letters
will be irrelevant, thus we write −→ instead of a−→ from now on.

Using a standard terminology, we say that a MPDA is normed if for any state q and
any configuration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈p, ε, . . . , ε〉

for whatever state p. In general, whenever a MPDA is not assumed to be normed we call
it unnormed for clarity. Note that in all examples above the automata were normed. In
fact normedness is not a restriction as far as languages are considered. In the sequel we
will however analyze the configuration graphs, and then normedness will play a role.

Further, we say that a MPDA is strongly normed if for any state q and any configu-
ration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈q, ε, . . . , ε〉

containing only transitions that do not change state. Intuitively, whatever is the state
q we start in, any top-most symbol X in any stack may „disappear”. For stateless au-
tomata, strong normedness is the same as normedness.

3 Reachability

Regular sets. We will consider various reachability problems in the configuration
graph of a given MPDA. Therefore, we need a finite way of describing infinite sets
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of configurations. A standard approach is to consider regular sets. Below we adapt this
approach to the multi-stack scenario we deal with.

Consider the configurations of a stateless MPDA, S = S1
∗ × . . . × Sk

∗. There is a
natural monoid structure in S, with pointwise identity 〈ε, . . . , ε〉 and multiplication

〈α1, . . . , αk〉 · 〈β1, . . . , βk〉 = 〈α1 β1, . . . , αk βk〉.

Call a subset L ⊆ S regular if there is a finite monoid M and a monoid morphism
γ : S→M that recognizes L, which means that L = γ−1(N) for some subsetN ⊆M .
Without loss of generality one may assume that the monoid M is a product of finite
monoids M = M1 × . . .×Mk, and that

γ = γ1 × . . .× γk where γi : Si
∗ →Mi for i = 1 . . . k.

Thus we may use an equivalent but more compact representation of regular sets, based
on automata: a regular set L is given by a tuple of (nondeterministic) finite automata
B1 . . .Bk over alphabets S1 . . . Sk, respectively, together with a set

F ⊆ Q1 × . . .×Qk

of accepting tuples of states, where Qi denotes the state space of automaton Bi.
Unless stated otherwise, in the sequel we always use such representations of regular

sets of configurations. If there are more than one state, we assume a representation for
every state. In particular, when saying ”polynomial wrt. L”, for a regular language L,
we mean polynomial wrt. the sum of sizes of automata representing L.

Remark 2. Clearly, the cardinality of the set F of accepting tuples may be exponential
wrt. the cardinalities of state spaces of automata Bi. However, complexities we derive
in the sequel will never depend on cardinality of F .

Example 3. Assume that there are two stacks. An example of properties we can define
is: „odd number of elements on the first stack and symbol A on the top of the second
stack, or an even number of the elements on the first stack and the odd number of
elements on the second stack". On the other hand, ”all stacks have equal size" is not a
regular property according to our definition.

Remark 3. We have deliberately chosen a notion of regularity of languages of tuples
of words. Another possible approach could be to consider regular languages of words,
over the product alphabet (S1 ∪ ⊥) × . . . × (Sk ∪ ⊥), where the additional symbol ⊥
is necessary for padding. This would yield a larger class, for instance the last language
from Example 3 would be regular. The price to pay would be however undecidability
of the reachability problems. The undecidability will be discussed below.

Reachability. In this paper we consider the following reachability problem:

INPUT: a MPDA A and two regular sets of configurations L,K ⊆ S.
QUESTION: is there a path in the configuration graph from L to K?
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We will write L;A K if a path from L toK exists in the automatonA. The sets L and
K we call source and target sets, respectively. We will distinguish special cases, when
either L or K or both the sets are singletons, thus obtaining four different variants of
reachability altogether. For brevity we will use symbol ’1’ for a singleton, and symbol
’REG’ for a regular set, and speak of 1;REG reachability (when L is a singleton),
REG;REG reachability (the unrestricted case), and likewise for REG;1 and 1;1.

Before stating the results, we note that all the problems we consider here are NP-
hard:

Lemma 1. The 1;1 reachability is NP-hard for strongly normed stateless MPDAs,
even if all stack alphabets are singletons.

The above fact follows immediately from NP-completeness of the reachability problem
for communication-free Petri nets, see [15] for details.

Results. In presence of states, the 1;1 reachability problem is obviously undecidable,
because the model is Turing powerful. Undecidability holds even for normed MPDAs.
We will thus consider only stateless or weak MPDAs from now on.

We start by observing that out of four combinations of the reachability problem, it
is sufficient to consider only two, namely the REG;1 and REG;REG cases. Indeed, as
far as complexity is concerned, we observe the following collapse:

1;1 = REG;1 1;REG = REG;REG (6)

independently of a restriction on automata. The first equality follows from our first
result:

Lemma 2. Suppose A is a weak MPDA. Let L be a regular set of configurations of A
and let t be a configuration of A. Then

L;A t =⇒ s ;A t for some s ∈ L of size polynomial wrt. A, L and t .

Indeed, the reduction from REG;1 to 1;1 is by nondeterministic guessing a source
configuration of polynomial size.

The second equality (6) will follow from our results listed below.
Before stating the remaining results, we summarize all of them in the following

table. We distinguish cases, corresponding to strongly normed/normed/unnormed case
and stateless/weak case. Each entry of the table contains the complexity of REG;REG
reachability problem. Additionally, the complexity of REG;1 reachability problem is
given in cases it is different from the complexity of REG;REG reachability.

For clarity, we do not distinguish stateless strongly normed case from stateless nor-
med one, as these two cases obviously coincide.

[ REG;1] strongly normed normed unnormed
REG;REG

stateless NP-compl. (Thm. 2) [ NP-compl. (Thm. 3) ]
undecidable (Thm. 1)

weak NP-compl. (Thm. 2) [ decidable ] [ decidable (Thm. 4) ]
undecidable (Thm. 1) undecidable
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Now we discuss the results in detail. We first observe an apparent decidability fron-
tier witnessed by stateless unnormed MPDAs and weak normed MPDAs:

Theorem 1. The 1;REG reachability is undecidable for stateless unnormed MPDAs
and for weak normed MPDAs.

The proof is by reduction of the nonemptiness of intersection of context-free languages
and uses three stacks. The case of two stacks remains open.

Thus lack of strong normedness combined with a regular target set yields undecid-
ability in case of stateless automata. Surprisingly, restricting additionally:

– either the automaton to be strongly normed,
– or the target set to a singleton,

makes a dramatical difference for complexity of the problem, as summarized in Theo-
rems 2, 3 and 4 below. In the first theorem we only assume strong normedness:

Theorem 2. The REG;REG reachability is NP-complete for strongly normed weak
MPDAs.

Theorem 2 is the main result of this paper. It is proved by showing that reachability is al-
ways witnessed by a polynomial witness, obtained by careful elimination of ’irrelevant’
transitions.

In the following two theorems we do not assume strong normedness, thus according
to Theorem 1 we have to restrict target set to singleton. Under such a restriction, we are
able to prove NP-completeness only in the class of stateless MPDA, while for all weak
MPDA we merely state decidability:

Theorem 3. The REG;1 reachability is NP-complete for stateless unnormed MPDAs.

Theorem 4. The REG;1 reachability is decidable for weak unnormed MPDAs.

Theorem 3 is shown similarly to Theorem 2, while the proof of Theorem 4 is based on
a well order, the point-wise extension of a variant of Higman ordering.

Open questions. Except for two entries in the summarizing table above, we know the
exact complexity of the reachability problem. The important open question that remains
is the actual complexity of 1;1 reachability for (normed and unnormed) weak MPDAs.
Another interesting question is whether undecidability carries over to automata with two
stacks only.

Reachability set. Now we consider the problem of computing the whole reachability
set. For a given automaton A, and a set L of configurations, we consider forward and
backward reachability sets of L, defined as:

{s : L;A s} and {s : s;A L},

respectively. It turns out that the backward reachability set may be computed under the
strong normedness assumption.
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Theorem 5. For weak strongly normed MPDAs, the backward reachability set of a
regular set is an effectively computable regular set.

Roughly speaking, we show that the backward reachability set is upward closed with
respect to the point-wise extension of a suitable variant of Higman ordering.

On the other hand, the forward reachability set needs not be regular, even in the case
of strongly normed stateless automata, as shown in the following example.

Example 4. Consider a stateless automaton with two stacks, over alphabets {A,X} and
{B}, and the following transition rules:

X −→ XA, B X→ ε, ε A→ ε, ε B→ ε, ε.

The set of configurations reachable from the configuration (X, ε) is not regular:

{(Ai,Bj) : i, j ∈ N} ∪ {(XAk,Bl) : k ≥ l}.

Relaxed regularity. The relaxed definition of regularity, as discusses in Remark 3,
makes the reachability problem intractable in all cases. The following theorem is shown
by reduction from the Post Correspondence Problem:

Theorem 6. The 1;REG reachability is undecidable for stateless strongly normed
MPDAs, under the relaxed notion of regularity.

Furthermore, the backward reachability set of a relaxed regular set is not necessarily
regular, even in stateless strongly normed MPDAs. The illustrating example is omitted
due to space limitation.

4 Proof of Lemma 2

Consider a MPDA A and a regular set L of configurations of A. Let s ∈ L be source
configuration and let t be an arbitrary target configuration. Suppose s ;A t . We will
show that the size of s may be reduced, while preserving membership in L. The crucial
but simple idea of the proof will rely on an analysis of relevance of symbol occurrences,
to be defined below.

Symbol occurrences. Suppose that there is a path π from s to t , consisting of consec-
utive transitions s −→ s1 −→ s2 . . . −→ sn = t . We will consider all individual
occurrences of symbols that appear in the configurations. For instance, in the following
exemplary sequence of two-stack configurations

〈q,AA,C〉 −→ 〈q,BBA,DC〉 −→ 〈q,ABBA,DC〉 (7)

there are altogether 14 symbol occurrences: 3 in the first configuration, 5 in the second
one and 6 in the third one.

Recall that every transition si −→ si+1 is induced by some transition rule X −→ α
of the automaton. Then there is a distinguished occurrence of symbol X in si that is
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involved in the transition. In the sequel we use the term symbol occurrence involved in
a transition.

Precisely one occurrence of symbol in si is involved in the transition si −→ si+1;
for every other occurrence of a symbol in si there is a corresponding occurrence of
the same symbol in si+1. (Note that we always make a difference between correspond-
ing symbol occurrences from different configurations.) All remaining occurrences of
symbols in si+1 are created by the transition; we call these occurrences fresh.

We define the descendant relation as follows. All fresh symbol occurrences in si+1

are descendants of the symbol occurrence in si involved in the transition si −→ si+1.
Moreover, a symbol occurrence in si+1 corresponding to a symbol occurrence in si is
its descendant too. We will use term descendant for the reflexive-transitive closure of
the relation defined above and the term ancestor for its inverse relation. In particular,
every symbol occurrence in t is descendant of a unique symbol occurrence in s . The
descendant relation is a forest, i.e., a disjoint union of trees.

Example 5. As an example, consider again the sequence of transitions (7), with symbol
occurrences identified by subscripts 1 . . . 14:

〈q,A1A2,C3〉 −→ 〈q,B4B5A6,D7C8〉 −→ 〈q,A9B10B11A12,D13C14〉 (8)

Say the transitions are induced by the following two transition rules:

q, A −→ q, BB, D q, D −→ q, A, D

The descendant relation can be presented as the following forest:

A1

B4

B5

D7

B10

B11 A9

D13 C3 C8 C14

A2 A6 A12

The symbol occurrences involved in the two transitions (8) are A1 in the first configu-
ration and D7 in the second one. The fresh symbol occurrences are B4, B5 and D7 in
the second configuration, and A9 and D13 in the third one.

Relevant symbol occurrences. As the automaton A is weak, the number of transitions
in π that change state is bounded by the number of states ofA. All remaining transitions
in π do not change state.

Consider all the occurrences of all symbols in all configurations along the path π,
including configurations s and t themselves. A symbol occurrence is called relevant if
some of its descendants:

– belongs to the target configuration t ; or
– is involved in some transition in π that changes state.

Otherwise, a symbol occurrences is irrelevant. In particular, all symbol occurrences in
t are relevant. Referring back to our example, all symbol occurrences appearing in (8)
are relevant.
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Note that if t is not the empty configuration then every configuration in π contains
at least one relevant symbol occurrence. On the other side, in every configuration, the
number of relevant occurrences is always bounded by the sum of the size of t and the
number of states of A.

Small source configuration. So prepared, we are ready to prove that there is a configu-
ration s ′ ∈ L of polynomial size with s ′ ;A t . We will rely on the following claim:

Lemma 3. For any configuration s ′ obtained from s by removing some irrelevant sym-
bol occurrences, it holds s ′ ;A t .

The lemma follows from the following two observations: (1) all the transitions in π
involving symbol occurrences remaining in s ′ and their descendants may be re-done;
(2) the resulting configuration will be exactly t , as only irrelevant symbol occurrences
have been removed from s .

Recall that the language L is represented by a tuple B1 . . .Bk of deterministic finite
automata, one automaton per stack. Consider the content of a fixed ith stack in s , say
w ∈ A∗i . Let n be the number of states of Bi. The run of the automaton Bi over w
labels every position of w by some state. We will use a standard pumping argument
to argue that every block of consecutive irrelevant symbol occurrences in s may be
reduced in length to at most n. Indeed, upon every repetition of a state of Bi, the word
w may be shortened by removing the induced infix, while preserving membership in
L. By repeating the pumping argument for all blocks of consecutive irrelevant symbol
occurrences in all stacks in s , one obtains a configuration s ′, still belonging to L, of
quadratic size. By Lemma 3 we know that s ′ ; t , as required.

5 Proof of Theorem 2

NP-hardness follows from Lemma 1. The proof of membership in NP relies on the
following two core lemmas:

Lemma 4. The 1;1 reachability problem is in NP for strongly normed weak MPDAs.

Lemma 5. Let A be a strongly normed weak MPDA and let L,K be regular sets of
configurations. If L ; K then s ; t for some s ∈ L and t ∈ K of size polynomial
wrt. the sizes of A, L and K.

The two lemmas easily yield a decision procedure for REG;REG reachability:
guess configurations s ∈ L and t ∈ K of size bounded by a polynomial deduced from
the proof of Lemma 5, and then apply the procedure of Lemma 4 to check if s ; t .

The rest of this section is devoted to the part of the proof of Lemma 4. The remaining
part of the proof, together with the proof of Lemma 5, are omitted.

5.1 Proof of Lemma 4

Consider a MPDAA and two configurations s and t . We will define a nondeterministic
polynomial-time decision procedure for s ;A t .
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Stateless assumption. For simplicity, we assume that both s and t have the same control
state. Thus we can treat transitions that lead from s to t as stateless transitions. At the
very end of the proof, we will discuss how to generalize it to the general case of strongly
normed weak MPDAs.

Polynomial witness. Our aim is to show that if there is a path from s to t then there is
a path of polynomial length. So stated, the above claim may not be verbally true, even
in the case of context-free graphs, as witnessed by the following simple example.

X1 −→ X2X2 X2 −→ X3X3 . . . Xn−1 −→ XnXn Xn −→ ε (9)

The example scales with respect to n, and thus the shortest path from the configuration
X1 to Xn is of exponential length. As a conclusion, one must use some subtle analysis
in order to be able to reduce the length of a witness of existence of the path as required.
Note that X1 is relevant and thus can not be simply omitted.

Proof idea. As a first step towards a polynomial bound on the witness of the path from s
to t , we will modify the notion of transition. Intuitively speaking, our aim is to consider
exclusively relevant symbol occurrences.

By a subword we mean any subsequence of a given word. For instance, aaccbc is a
subword of aacabbcbcbc. Further, by a subtransition of X −→ α1 . . . αk we mean any
X −→ β1 . . . βk such that the following conditions hold:

– subword: βi is a subword of αi, for all i ∈ {1 . . . k}; and
– nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty.

Note that relying on the notion of relevance one easily deduces that whenever there
is a sequence of transitions from s to t , then there is also sequence of subtransitions.
Indeed, it is sufficient to remove irrelevant symbol occurrences in all transitions along
the path from s to t .

Clearly, the converse implication is not true in general. For instance, if we add sym-
bols X0, A and the transition X0 −→ X1A to the example (9), there is a sequence of
subtransitions from the configuration X0 to Xn. Our aim now it to modify the notion
of subtransition in such a way that the converse implication does hold as well, i.e., that
existence of a sequence of subtransitions implies existence of a sequence of transitions.
This requires certain amount of boring book-keeping, as defined in detail below.

Marked subtransitions. We will need an additional copy of every stack alphabet Ai,
denoted by Āi, for i = 1 . . . k. Thus for every a ∈ Ai there is a corresponding marked
symbol ā ∈ Āi. Formally, let the ith stack alphabet be Ai ∪ Āi.

A marked subword of a wordw ∈ A∗i is any word in (Ai∪Āi)
∗ that may be obtained

from w by the following marking procedure:

– color arbitrary occurrences inw (the idea is to color irrelevant symbol occurrences),
– mark every occurrence that is followed by any colored occurrence,
– and finally remove colored occurrences.

12



For instance, according to the coloring aacabbcbcbc, a marked subword of aacabbcbcbc
is āāc̄cbc.

Recall that a word w ∈ A∗i represents a content of the ith stack, with the left-most
symbol being the top-most. Intuitively, the idea behind the notion of marked subword
is to keep track of removed occurrences that are covered by other symbols on the stack.

A notion of marked subtransition is a natural adaptation of the notion of subtransi-
tion. Compared to subtransitions, there are two differences: ’subword’ is replaced with
’marked subword’; and whenever the left-side symbol is marked, then it may only put
marked symbols on its stack. Formally, a marked subtransition of X −→ α1 . . . αk is
any X −→ β1 . . . βk such that the following conditions hold:

– subword: βi is a marked subword of αi, for all i ∈ {1 . . . k};
– nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty; and
– marking inheritance: if X ∈ Āi is marked then all symbols in βi are marked.

Note that there are exponentially many different marked subtransitions, but each one is
of polynomial size. Finally, note that every subtransition is obtained from some transi-
tion by the marking procedure as above, applied to every stack separately.

By the nonemptiness assumption on marked subtransitions we obtain a simple but
crucial observation:

Lemma 6. Along a sequence of marked subtransitions, the size of configuration can
not decrease.

A marked subconfiguration of a configuration 〈α1, . . . , αk〉 is any tuple 〈β1, . . . , βk〉
such that βi is a marked subword of αi for all i ∈ {1 . . . k}.

Lemma 7. For two configurations s and t , the following conditions are equivalent:

(1) there is a sequence of transitions from s to t ,
(2) there is a sequence of marked subtransitions from u to t , for some marked subcon-

figuration u of s .

Proof. The implication from (1) to (2) follows immediately. The sequence of marked
subtransitions is obtained by application of the marking procedure to all transitions. For
every transition, color in the marking procedure precisely those symbol occurrences
that are irrelevant.

Now we show the implication from (2) to (1). The proof uses strong normedness.
Assume a sequence π of marked subtransitions from u to t , for some marked sub-

configuration u of s . Recall that each subtransition in π has its original transition of A.
We claim that there is a sequence of transitions from s to t, that contains the original
transitions of all the marked subtransitions appearing in π, and canceling sequences

q X −→ . . . −→ 〈q, ε, . . . , ε〉 (10)

for some stack symbols X , existing due to strong normedness assumption.
The sequence of transitions from s to t is constructed by reversing the marking

procedure. For the ease of presentation, beside letters from Ai, we will also use colored
letters.

13



Start with the configuration s , and choose any coloring of symbol occurrences in s
that induces u as the outcome of the marking procedure. Then consecutively apply the
following rule:

– If the top-most symbol X on some stack is colored, apply a canceling sequence for
X.

– Otherwise, apply the original transition of the next subtransition from π, using
again some coloring that could have been used in the marking procedure.

For correctness, we need to show that all colored occurrences of symbols are eventually
canceled out, as this guarantees that the final configuration is precisely t.

Let’s inspect π. As no symbol in t is marked, every marked symbol occurrence
eventually disappears as a result of firing of some subtransition. Recall that marking of
a symbol X̄ disappears only if the subtransition pushes nothing on the stack of X̄ . As a
consequence, every colored symbol occurrence will eventually appear on the top of its
stack. Thus the canceling sequence for X will be eventually applied. ut

Lemma 8. For two configurations u and v , if there is a sequence of marked subtransi-
tions from u to v , then there is such a sequence of polynomial length wrt. the sizes of u ,
v and A.

This is the last lemma needed for NP-membership. Its proof is omitted.

Decision procedure. Now we drop the stateless assumption. Note that the notion of
marked subconfiguration and marked subtransition may be easily adapted to transitions
that change state. We do not impose however the nonemptiness condition on transitions
that change state, which is in accordance with the intuition that irrelevant symbol oc-
currences are removed in the marking procedure. Using Lemmas 6, 7 and 8 we will
define the nondeterministic decision procedure for strongly normed weak MPDAs.

Let the two given configurations s and t have control states q and p, respectively. In
the first step, the algorithm guesses a number of marked subconfigurations t1 . . . tn−1,
where n is not greater than the number of states of A, and marked subtransitions that
change state:

t1 −→ s1 t2 −→ s2 . . . tn−1 −→ sn−1

such that si and ti+1 have the same control states for i ∈ {0 . . . n−1}. For convenience,
we write s0 instead of s and tn instead of t . In particular, we assume that the control
state of t1 is q, and the control state of sn−1 is p. Relying on Lemma 6, it is sufficient
to consider configurations of sizes satisfying the following inequalities:

size(si) ≤ size(ti+1) for i ∈ {1 . . . n− 1}. (11)

In the second phase, the algorithm guesses, for i ∈ {0 . . . n − 1}, a sequence of
subtransitions from si to ti+1 of length bounded by polynomial derived from the proof
of Lemma 8; and checks that the respective sequences of subtransitions lead from si to
ti+1, as required by Lemma 7. ut
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A NP membership

A.1 Proof of Theorem 2 continued

Proof of Lemma 8. From now on, we will write ’subtransitions’ instead of ’marked
subtransitions’. As we will primarily work with subtransitions, we will use the stack
alphabets Ai ∪ Āi for i ∈ {1 . . . k}.

The number of subtransitions that change state is bounded by the number of states
of A, as A is assumed to be weak. Thus it is sufficient to prove the lemma under the
assumption that the subtransitions do not change state. In other words, wlog. we may
assume A to be stateless.

The size of the right-hand side of a marked subtransition is at least 1. Distinguish
subtransitions with the size of the right-hand side equal 1, and call them singleton sub-
transitions. Clearly, the number of non-singleton subtransitions appearing in the se-
quence in the above claim is at most equal to the size of v , thus it is sufficient to con-
centrate on the following claim:

Claim. If there is a sequence of singleton subtransitions from a configuration u to v
then there is such a sequence of polynomial length.

Note that the sizes of u and v in the above claim are necessarily the same.
Now we analyze in more detail the singleton subtransitions. Note that they have the

form
X −→ Y (12)

as the right-hand sides contain precisely one occurrence of a symbol. Consider the
strongly connected components in the induced graph, with symbols as vertices, and
singleton subtransitions (12) as edges.

Distinguish those singleton subtransitions (12) that stay inside one strongly con-
nected component (in other words, such that there is a sequence of subtransitions from
Y back to X) and call them inner singleton subtransitions. Note that the number of non-
inner subtransitions that appear in the sequence of the last claim is polynomial (at most
quadratic), thus the last claim is equivalent to the following one:

Claim. If there is a sequence of inner singleton subtransitions from a configuration u
to v then there is such a sequence of polynomial length.

The rest of the proof is devoted to showing the last claim.
We start by doing a sequence of simplifying assumption without losing generality.
First, wlog. we may assume that the relation (12) is transitive, as we only care about

the length of the sequence of subtransitions up to a polynomial. Thus every strongly
connected component is a directed clique.

By the type of a clique we mean the set of stacks that are represented in the clique,
i.e., the stacks that have at least one symbol in the alphabet that belongs to the clique.
We may assume that there is no clique of singleton type. Indeed, otherwise the stack
is essentially inactive along the path, except for the top-most symbol, and thus may be
ignored in our analysis.
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Further, wlog. we may also assume that every clique has at most one symbol be-
longing to every stack alphabet. Indeed, two different symbols from the same clique
and the same stack alphabet can easily mutate from one into the other, when being the
top-most symbol of the stack. And every symbol X may be easily made top-most by
popping all symbols above X to other stacks (this can be done due to the assumption
that type of cliques are not singletons).

The simplifications lead us to the following reformulation of the last claim. Let
k ≥ 1 be an integer. Assume a finite set of symbols A, each symbol X ∈ A coming
with its type type(X) ⊆ {1 . . . k} of cardinality at least 2. Consider the set of k-tuples
of stacks (A∗)k satisfying the following consistency condition: if X appears in the ith
sequence then i ∈ type(X). Consider the following transition rules: the top-most letter
of some stack may be moved to the top of some other stack, as long as the consistency
is preserved.

Claim. If there is a sequence of transitions from some configuration u ∈ (A∗)k to some
configuration v ∈ (A∗)k, then there is such a sequence of polynomial length.

So formulated, the claim is fairly straightforward.
We will show a polynomial sequence of transitions that starts in u and ends in a

configuration u ′ that has the same bottom-most symbol as v on some stack. This is
sufficient, as the same thing may be done for all other occurrences of symbols in v .

Note that we do not assume that different symbols have different types. Two sym-
bols we call siblings if they have the same type and this type has two elements (thus the
symbols may be placed only on two stacks).

Choose an arbitrary stack that is nonempty in v , say the ith stack, with the bottom-
most symbol X. We may assume wlog. that X does not appear in u on the ith stack
(otherwise, i.e., if some occurrences of X in u are on the ith stack, move all the occur-
rences of X, together with all other symbols above them, to arbitrary other stacks).

Let the jth stack in u contain an occurrence of symbol X, for some j 6= i.
The sequence of steps from u to u ′ is the following:

1. Move all symbols above the chosen occurrence of X from the jth stack to other
stacks.

2. Move all symbols from the ith stack to other stacks such that X is still on the top of
the jth stack.

3. Move the chosen occurrence of symbol X to the destination ith stack.

Clearly step 1. may be always done. We will show that step 2. may be always done as
well. We distinguish two cases.

If the symbol X is not a sibling, every other symbol may be moved, from the ith
stack, to a stack different than the ith one, in such a way that after this operation X
will be still on the top of the jth stack. Indeed, assume that a symbol Y is on the top
of the ith stack. If Y can be moved to a stack different than the jth one, we are done.
Otherwise, Y can only occur on the ith and jth stacks. According to the assumption, X
and Y are not siblings, thus there is another kth stack to which X can be moved. Then
we proceed as follows: X is moved from jth to the kth stack, next Y is moved from
the ith stack to the jth stack, and finally X is moved back from the kth stack to the jth
stack.
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As the second case, assume that X is a sibling. Assume that the top-most occurrence
of X on the jth stack has been chosen. As j 6= i, and there is a sequence of steps from
u to v , one easily observes that no sibling of X may occur in u either on the ith stack,
or above X on the jth stack. Thus step 2. is clearly can be done.

This completes the proof of Lemma 8 and thus also the proof of Lemma 4, under
the stateless assumption. 2

Proof of Lemma 5. SupposeA is a strongly normed weak MPDA. Let L, K be regular
sets of configurations of A and let π be a sequence of transitions from some configura-
tion s ∈ L to some configuration t ∈ K. We will demonstrate existence of configura-
tions s ′ ∈ L and t ′ ∈ K such that t ′ is of polynomial size and s ′ ; t ′. Importantly, we
do not have to provide any bound on the size of s ′, as the polynomial bound follows by
Lemma 2.

Recall the coloring discipline used in the proof of Lemma 4. There we have used
just one color; here we will use an unbounded number of different colors, as described
below.

The coloring discipline will apply to all configurations appearing in π. We start
by coloring all symbol occurrences in the first configuration s with different colors.
Then, for every transition s1 −→ s2 in π, assumed that s1 has been already colored,
we stipulate the following coloring rule for s2 (recall that symbol occurrences in s2 are
divided into those corresponding to symbol occurrences in s1, and fresh ones):

– If a symbol occurrence corresponds to a symbol occurrence in s1, its color is the
same as the color of corresponding symbol occurrence.

– Let c be the color of the unique occurrence of symbol in s1, say symbol X, that
is involved in the transition. All fresh symbol occurrences in s2 that appear on
the same stack as X are colored with c; we say that they inherit the color from
X. All other fresh symbol occurrences in s2 are colored by new fresh colors, with
the proviso that two occurrences have the same color if and only if they occur on
the same stack. Thus at most k − 1 new fresh colors is needed for coloring fresh
occurrences on other stacks, where k is the number of stacks.

For any color used, and for any fixed configuration, the set of all symbol occurrences
colored with that color we call line. Note that a line is always a subset of symbol oc-
currences on a single stack. Further, note that the cardinality of a line is not bounded in
principle, due to the inheritance of color.

We now aim at reducing the size of the destination configuration t ′. Roughly speak-
ing, we will prove that s ′ ; t ′, for some s ′ ∈ L and t ′ ∈ K such that both the number
of different lines in t ′, and the cardinality of all lines in t ′, are polynomially bounded.

For convenience, we split colors into two disjoint subsets. A color c is called active
if some symbol occurrence labeled by c:

– either is involved in some transition in π,
– or is a fresh symbol occurrence created by some transition in π.

Otherwise, a color is called inactive, i.e. occurrences of this color are present in s and
are not involved in any transition during the run. Likewise, the lines are also called
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active or inactive. Note that inactive colors label suffixes of stacks in every configuration
in π, and these suffixes do not change along π. Inactive lines are clearly singletons.

Bounding the number of active lines. Consider content of some stack, say the ith stack,
in the destination configuration t ∈ K. Denote by w ∈ A∗i its prefix colored by active
colors. Every active line on the ith stack corresponds to an infix of w, and thus the
coloring induces a factorization

w = w1 · w2 · . . . · wm

determined by some m− 1 positions in w.
Recall that the language K is represented by a tuple B1 . . .Bk of finite automata,

one automaton per stack. A run of the automaton Bi over the ith stack of t labels each of
them−1 distinguished positions inw by a state. By a standard pumping argument, there
is a subword w′ of w, obtained by removing a number of lines from w, that contains
at most as many lines as the number of states of Bi, and such that Bi reaches the same
state after reading w and w′. By repeating the pumping argument for all stacks, one
obtains a configuration t ′ still belonging to K, that contains only a polynomial (in fact,
at most quadratic) number of active lines, as required.

We only need to show that s ; t ′. In this part of the proof we will use the canceling
sequences (10), available due to strong normedness. Observe that every active line that
appears in π appears as the top-most one on its stack at some configuration in π. We
apply the canceling sequence for all symbol occurrences in every active line not appear-
ing in t ′. In order to keep the reachability s ; t ′, we apply the canceling sequence in
the last configuration in π where this line is the top-most one. Thus the disappearance
of a line has no effect for the remaining lines.

Bounding the number of inactive lines. We repeat a pumping argument similar to the
above one. Let L and K be represented by A1 . . .Ak and B1 . . .Bk, respectively. Con-
sider some i ≤ k and runs of automata Ai and Bi over the inactive suffix of the ith
stack of t ′ (or t). The runs label every position by a pair of states of Ai and Bi, respec-
tively. Upon a repetition of the same pair of states, a standard pumping applies. Thus
the length of every inactive suffix in v may be reduced to at most quadratic.

Bounding the cardinalities of active lines. Consider the configuration t ′ obtained by
now, and a single active line on some ith stack in this configuration. Let v ∈ A∗i be the
word representing the line. Thus the ith stack in t ′ is of the form:

w1v w2

for some words w1, w2. Similarly as before, we aim at applying pumping inside v, to
reduce its length.

Let’s focus on symbol occurrences in v in configuration t ′ and on the corresponding
symbol occurrences in other configurations in π. Observe that all symbol occurrences
in v satisfy the following condition:

the corresponding symbol occurrence in some previous configuration was freshly
created in some transition.
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Some of the above-mentioned transitions have created new lines, and some not. Among
symbols in v, distinguish a subset containing only those occurrences that satisfy the
following strengthened condition:

the corresponding symbol occurrence in some previous configuration was freshly
created in some transition that created a new line that is represented in t ′.

The distinguished symbol occurrences call non-local, the others call local.
The overall number of lines in t ′ is polynomially bounded, thus the same bound

applies to the number of non-local symbol occurrences in v . We thus obtain:

Claim. There is only polynomially many non-local symbol occurrences in v.

Thus, it is sufficient to reduce the length of any block of local occurrences in v. From
now on we focus on a single maximal infix u of v that contains only local symbol
occurrences.

Those transitions in π that involve a symbol occurrence corresponding to a sym-
bol occurrence in u use only the ith stack. Thus this set of transitions is essentially a
stateless pushdown automaton. We will use a well-known fact:

Claim. For a pushdown automaton one can construct a finite automaton of polynomial
size that recognizes the language of all reachable configurations of the pushdown au-
tomaton.

We will now use a standard pumping to reduce the length of u. As said above, a run
of Bi over the ith stack of v labels each position of u with a state. Likewise for the
automaton of the above claim. Upon a repetition of a pair of states, a standard pumping
applies, as usual. This completes the proof of Lemma 5. 2

A.2 Proof of Theorem 3

A straightforward adaptation of the proof of Lemma 4 (combined with Lemma 2). Ob-
serve that irrelevant symbol occurrences must necessarily be normed, as they do not
contribute to the target configuration.

B Decidability

B.1 Proof of Theorem 4

By virtue of Lemma 2 we may focus on the 1;1 reachability only. Fix a MPDAA and
two configurations s and t . We will describe an algorithm to decide whether s ;A t .
Roughly speaking, our approach is to define a suitable well order compatible with tran-
sitions, and then apply a standard algorithm for reachability of a downward-closed (the
algorithm works actually in any well-structured transition system). However, to apply
the standard framework we need to introduce some additional structure in configura-
tions. This additional structure will be intuitively described as coloring of symbols,
similarly as in the proof of Lemma 4.
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Recall the notion of relevant symbol occurrences, introduced in Section 4. The idea
of the proof will be based on the observation that removing some irrelevant symbol
occurrences has no impact on reachability of a fixed target configuration (cf. Lemma 3
from Section 4).

Fix the target configuration t . We will define colored configurations and modified
transitions between colored configurations. The basic intuition is that irrelevant symbol
occurrences will be colored. Note however that we don’t know in advance which symbol
occurrences in a given configuration s are relevant and which are not, as we do not even
know if s ; t . Thus a coloring will have to be guessed.

Let n be the number of states of A and let m be the size of t . By a colored config-
uration we mean a configuration with some symbol occurrences colored, such that the
number of uncolored symbol occurrences is smaller than n + m. Formally, coloring is
implemented by extending the alphabet of every stack with its colored copy. We define
an ordering on colored configurations: r ′ � r if r ′ is obtained from r by removing
some colored symbol occurrences. (In particular, if r ′ � r then both configurations
are identical, when restricted to uncolored symbols, so every single uncolored config-
uration is indeed a downward-closed set). As the number of uncolored occurrences is
bounded, the number of blocks of colored occurrences is bounded likewise. The order-
ing � is like a Higman ordering on words, extended in the point-wise manner to blocks
of colored occurrences. Thus one easily shows, using Higman’s lemma:

Claim. The ordering � is a well order on colored configurations.

Now we define the transition rules for colored configurations. Consider any original
transition rule δ of A. This transition rule will give rise to a number of new transition
rules that will be applicable to colored configurations. One new transition is obtained
by coloring all symbols in δ, i.e., both the left-hand side symbol and all the right-hand
side symbol occurrences. In all other new transitions arising from δ, the left-hand side
symbol is kept uncolored. On the other hand, an arbitrary subset of the right-hand side
symbol occurrences may be colored, under the following restriction:

if the transition δ does not change state then at least one of right-hand side
symbols must be kept uncolored.

This corresponds to the intuition that uncolored symbol occurrences correspond to rel-
evant ones.

We have thus now two transition systems: the original transition system and the
colored one. The relationship between reachability in these two systems is stated in
the following claim (recall that the configuration t is fixed and contains no colored
symbols):

Claim. For any configuration s , s ; t if and only if there is some coloring s ′ of s such
that s ′ ; t .

Indeed, the only if direction is obtained by coloring precisely irrelevant symbol occur-
rences in s . The if direction also follows immediately, by replacing the colored transi-
tions with their uncolored original transitions.

Basing on the above claim, the algorithm for s ; t simply guesses a coloring s ′

of s and then checks if s ′ ; t in the colored transition system. It thus only remains to
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show that the latter problem is decidable. For this we will need a compatibility property
of the colored transitions with respect to the well order:

Claim. For every colored configurations r ′, r and u , if r ′ � r −→ u then

– either there is a colored configuration u ′ with r ′ −→ u ′ � u ,
– or r ′ � u .

In other words, � is a variant of backward simulation with respect to −→. Indeed, if
the symbol occurrence involved in r −→ u is uncolored, the transition may be also
fired from r ′. Otherwise, suppose that the symbol occurrence involved in r −→ u
is colored (recall that in this case all fresh symbol occurrences are colored). If this
occurrence appears also in r ′, it may be fired similarly as above. On the other hand, if
this occurrence does not appear in r ′, we have r ′ � u , as required.

Using the last claim we easily show decidability. The algorithm explores exhaus-
tively a portion of the tree of colored configurations reachable from s ′, with the follow-
ing termination condition. As the ordering� is a well order, we know that on every path
eventually two colored configurations appear, say u ′ and u , such that u ′ precedes u and
u ′ � u . Such a pair we call domination pair. Whenever a domination pair is found on
some path, the algorithm stops lengthening this path. The well order guarantees thus
that the algorithm terminates, after computing a finite tree of colored configurations.
The algorithm answers ’yes’ if the configuration t appears in the tree.

Now we prove correctness of the algorithm. Towards contradiction, suppose t is
reachable from s ′ but t is not found in the tree. Consider the shortest path π from s ′ to
t , and the domination pair u ′ � u on that path. Thus u ; t . Using the compatibility
condition, we deduce that u ; t implies u ′ ; t ′ for some t ′ � t , along a path not
longer that the path from u to t . By the definition of � we obtain t ′ = t . Thus the
fragment of path π from s ′ to u ′, composed with the path from u ′ to t yields a path
strictly shorter than π, a contradiction. ut

B.2 Proof of Theorem 5

We start by splitting the set L according to the control state, into finitely many subsets,
and consider these subsets separately.

Stateless restriction. Then we observe that it is sufficient to prove the result for state-
less strongly normed MPDAs. Indeed, suppose that we already know that the back-
ward reachability set of a regular set is an effectively computable regular set, in case of
stateless strongly normed MPDAs. Moreover, for any two different states q and p, the
state-changing backward step of a regular set L, i.e.,

{s : there is a transition s −→ L that changes state from q to p}

is clearly effectively computable and regular as well. Now note that there is only finitely
many possible sequences of state-changes. Taking the union over all such sequences,
and composing the two regularity-preservation properties along every sequence, one
gets the result for weak strongly normed MPDAs.
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Restriction to fully active paths. In order to express a second simplification, we dis-
tinguish a subset of paths. A path from a configuration s to t is fully active if some
descendant of every symbol occurrence in s is involved in some transition. As a second
simplification, we claim that it is sufficient to show regularity of the set of all configu-
rations s that reach L by a fully active path. To prove this claim, consider any monoid
homomorphism h that recognizes L. LetM be the co-domain of h, a finite monoid. The
backward reachability set of L is the union⋃

m,n

Bm Ln

ranging over all pairs m,n ∈ M such that mn is accepting, where Ln = h−1(n) is
the inverse image of the element n ∈ M with respect to h, and Bm is the backward
reachability set of Lm with respect to the fully active paths. Thus regularity of the sets
Bm clearly implies regularity of L.

The proof. Under the restriction to fully active paths, the proof is fairly easy. Let A
be a MPDA and let L be a regular set of configurations. Recall that we may assume a
MPDA to be stateless and strongly normed.

The initialized Higman ordering over words relates w′ and w if the words have the
same first letter, and the tails of w′ and w are related by the ordinary Higman ordering.
Order the configurations by the point-wise extension of the initialized Higman ordering,
denoted by �. Observe that this order is a well order.

Claim. Under the restriction to fully active paths, the backward reachability set of a
regular set L is upward closed with respect to �.

Indeed, assuming s ′ � s and s ′ ; t ∈ L, one deduces s ; t by applying the can-
celing sequences. These sequences are applicable to some descendant of every symbol
occurrence in s , as the path is fully active and the ordering is initialized.

By the above claim, the backward reachability set is determined by the minimal con-
figurations with respect to �. As � is a well order there is only finitely many minimal
configurations, and thus the backward reachability set is regular.

For effectivity, we inspect the proofs of Lemmas 2 and 5 and conclude that all
the minimal elements are of polynomial size with respect to the size of L: indeed, if
s ; L then s ′ ; L for some s ′ � s of polynomial size. It is important to notice
that the path remains fully active while decreasing the size of the source configuration.
With this, the algorithm determines the minimal elements by inspecting exhaustively all
configurations s of polynomially bounded size, and checks for every of them if s ; L.
The restriction to only fully active paths may be imposed by a simple encoding.

The procedure may be implemented in exponential time. ut

C Undecidability

The following example shows that the backward reachability set of a relaxed regular set
is not necessarily regular.
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Example 6. The automaton uses two stacks, with alphabets {A,X,B} and {C}. Every
symbol has a disappearing rule: A −→ ε, ε, and likewise for X, B and C. Additionally
there is a transition rule B −→ C. Consider the relaxed regular language

L = {(XAn,Cn) : n ≥ 0}

and its backward reachability set. Denote by K the subset of the backward reacha-
bility set consisting of configurations with the second stack empty. We claim that the
projection of K on the alphabet of the first stack is not regular. Indeed, as the only non-
disappearing rule is B −→ C, configurations from K have on the first stack a word of
the form wXAn, with at least n occurrences of B in w.

C.1 Proof of Theorem 1

We start by considering stateless unnormed MPDAs. We reduce the problem of check-
ing if the intersection of two context-free languages is empty.

Assume two context-free grammars in Greibach Normal Form over an input alpha-
betA. We will construct a MPDA with three stacks. Two stacks will be used to simulate
derivations of the two grammars, and the other third stack will be used for storage of
the input word. Formally, the alphabet of the first and second stack are the nonterminals
of the two grammars, and the alphabet of the third stack contains two symbols a1 and
a2 for every terminal symbol a of the grammars. For every production

X→ aα (13)

of the first grammar, there will be a transition

X −→ α, ε, a1

that drops α on the first stack and a on the third one. Likewise, for every production (13)
of the second grammar, there is a transition

X −→ ε, α, a2.

The initial configuration is 〈X1,X2, ε〉, where Xi is the initial symbol of the ith gram-
mar. Finally, the regular language L of target configurations constraints the first two
stacks to be empty, and the third one to:

{a1a2 : a ∈ A}∗.

One easily verifies that the intersection of the two grammars is nonempty if and only if
some configuration from L is reachable from the initial configuration.

Now we turn to weak normed MPDAs. It turns out that normedness assumption
does not make reachability problem easier, in case of weak automata. Indeed, the case
of stateless unnormed MPDAs easily reduces to the case of weak normed MPDAs.
It is sufficient to add an additional sink state, and for every symbol X two additional
transitions, to enforce normedness. The first one allows X to change state to the sink
state. The other one allows X to disappear in the sink state. (This is in fact a reduction
of the whole case of weak unnormed MPDAs.) ut
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C.2 Proof of Theorem 6

The proof is by reduction from the Post Correspondence Problem (PCP). For a given
instance of PCP, consisting of a finite set of pairs (si, ti) of words, i ∈ {1 . . . n}, we
construct a stateless strongly normed MPDA A and a relaxed-regular set L such that
the PCP instance has a solution

si1 si2 . . . sik = ti1 ti2 . . . tik (ij ∈ {1 . . . n} for j ∈ {1 . . . k})

if and only if there exists a path from the initial configuration of A to L. Roughly
speaking, a run of A will simply guess a PCP solution, and the target language L will
be used to check its correctness.

The main difficulty to overcome is the strong normedness requirement, which im-
plies that every symbol may always disappear and not contribute to the target configu-
ration.

Half-solution. We start by restricting to only the left-hand side words si of the PCP
instance. We will construct a MPDA A1, and a relaxed-regular language L1 of config-
urations, so that the reachable configurations of A1 belonging to L1 are essentially of
the form (two stacks):

(i1 i2 . . . ik, si1 si2 . . . sik). (14)

In other words, one of stacks contains the sequence of indexes, and the other one con-
tains the concatenation of the corresponding words si.

For technical reasons we will however need four stacks and few auxiliary nonter-
minal symbols. The nonterminals of A1 are following (superscripts indicate the stack
number of every nonterminal):

– G1 and G4, used for ’guarding’ symbols on their stacks, as described below;
– i1 and i2, for i ∈ {1 . . . n}, representing the ith word si;
– a3 and a4, for a ∈ Σ, representing alphabet letters of the PCP instance.

The initial configuration is (G1, ε, ε, G4).
For a word w = a1a2 . . . am ∈ Σ∗, we write w3 to mean the word a31a

3
2 . . . a

3
m.

Likewise for w4. The transition rules of A1 are the following. For i ∈ {1 . . . n}, there
are rules:

G1 −→ G1 i1, ε, s3i , ε G4 −→ ε, i2, ε, G4 s4i .

Additionally, to fulfill the strong normedness restriction we add disappearing transition
rules of the form X −→ ε, ε, ε, ε for all nonterminal symbols.

The target set L1 is defined to contain all configurations of the form

(G1 α1, α2, α3, G4 α4),

with α1 almost equal to α2 and α3 almost equal to α4. By ’almost equal’ we mean
equality modulo (ignoring) the superscripts. The set L1 is clearly relaxed-regular.
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Let’s analyze possible ways of reaching a configuration from L1. Surely G1 and G4

cannot fire the disappearing transitions, because their presence is required by L1. As
G1 and G4 are always top-most on their stacks, all other symbols on these stacks are
’guarded’ – they can not fire a disappearing transition neither. A key observation is that
no symbol from other two stacks could fire a disappearing transition:

Lemma 9. Every path from the initial configuration to L contains no disappearing
transitions.

Proof. The precise proof of this fact needs a certain effort. Let us define the weight of
a nonterminal. The intuition behind this notion is that it counts for how many letters in
words si the particular nonterminal is responsible. The definition is the following:

– weight(G1) = weight(G4) = 0

– weight(i1) = weight(i2) = length(si)

– weight(a3) = weight(a4) = 1

Weight of a word is defined as the sum of weights of its letters. Note now that any
configuration α = (G1 α1, α2, α3, G4 α4) reachable from (G1, ε, ε, G4) satisfies the
following inequalities:

SInv1(α) = weight(α1)− weight(α3) ≥ 0

SInv2(α) = weight(α4)− weight(α2) ≥ 0.

To see this it is enough to observe this both semi-invariants SInv1 and SInv2 equal 0 in
the initial configuration and that they never decrease due to performing a transition. In
particular, every disappearing transition on the second or third stack increases one of
the semi-invariants. Finally, every configuration α ∈ L satisfies the equality:

SInv1(α) + SInv2(α) = 0,

as weight(α1) = weight(α2) and weight(α3) = weight(α4). Therefore both semi-
invariants are necessary equal to 0, and thus there is no possibility for disappearing
transitions to be fired. ut

As a conclusion we obtain:

Corollary 1. Consider any configuration in L1 that is reachable from the initial con-
figuration, and suppose that its first and forth stacks have the form:

G1 i11 . . . i
1
k G4 a41 . . . a

4
m.

Then it holds:

si1 . . . sik = a1 . . . am.
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Complete solution. Similarly as above, one may construct a MPDA A2 and a language
L2 for the right-hand side words ti from the PCP instance. Essentially (i.e., ignoring the
technical details) the reachable configurations of A2 intersected with L2 are (cf. (14)):

(i1 i2 . . . ik, ti1 ti2 . . . tik).

Our final solution is to appropriately combine both MPDAs and both languages.
The MPDA A is obtained by merging A1 and A2, but the first stacks are identified.

Thus A will have seven stacks altogether. In particular, symbols i1 and i2 represent
now the ith pair (si, ti). All transitions are exactly as described above, however with a
different numbering of stacks. The language L imposes the requirements of L1 and L2,
and additionally requires that the fourth stack of A1 is almost equal to the fourth stack
of A2.

For describing the missing details we have to fix a new numbering of stacks. Let
the first four stacks correspond to the stacks of A1, and the remaining three stacks
correspond to the stacks of A2 different than the first one. The initial configuration of
A is

(G1, ε, ε, G4, ε, ε, G7).

Except for the disappearing transitions, A has the following transition rules:

G1 −→ G1 i1, ε, s3i , ε, ε, t
6
i , ε

G4 −→ ε, i2, ε, G4 s4i , ε, ε, ε

G7 −→ ε, ε, ε, ε, i5, ε, G7 t7i .

The language L contains configurations of the form:

(G1 α1, α2, α3, G4 α4, α5, α6, G7 α7)

satisfying the following almost equalities:

α1 = α2 = α5 α3 = α4 = α6 = α7.

One can easily observe that L is reachable from the initial configuration if and only if
the PCP instance has a solution, using exactly the same techniques as before.
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