Partially-commutative context-free processes

Wojciech Czerwiński

Sibylle Froeschle
Sławomir Lasota

Concur 2009

Outline

Outline

- What is "partially-commutative context-free" ?

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
- Strong bisimilarity checking

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

Outline

$\left(\begin{array}{l}\text { What is "partially-commutative context-free" ? } \\ \text { What is "processes" ? }\end{array}\right.$

- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

context-free grammars

$X \longrightarrow a X B C$

context-free grammars

in Greibach Normal Form
under left-most derivations
$X \longrightarrow a X B C$

context-free grammars

in Greibach Normal Form
under left-most derivations
$X \xrightarrow{a} X B C$

context-free grammars

in Greibach Normal Form

 under left-most derivations$$
\begin{aligned}
& X \xrightarrow{\mathrm{a}} \mathrm{XBC} \\
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{BC} \quad \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
& \text { language }=a \ldots \mathrm{a} b c \ldots b c
\end{aligned}
$$

Commutative context-free grammars

in Greibach Normal Form
under left-most derivations

$$
\begin{aligned}
& X \xrightarrow{\mathrm{a}} \mathrm{XBC} \\
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{BC} \quad \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
& \text { language }=a \ldots \mathrm{a} b c \ldots b c
\end{aligned}
$$

Commutative context-free grammars

$X B$ and C pairwise independent

$$
\begin{array}{ll}
X \xrightarrow{a} X B C & B \xrightarrow{b} \\
X \xrightarrow{a} B C & C \xrightarrow{c} \\
\text { language }= &
\end{array}
$$

Commutative context-free grammars

X B and C pairwise independent

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{XBC} \quad \mathrm{BC} \quad \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{C} \\
& \text { language }=\begin{array}{l}
\# \mathrm{c}=\# \mathrm{~b}=\# \mathrm{c}, \\
\mathrm{a} \text { "preceeds" } \mathrm{b} \text { and } \mathrm{c}
\end{array}
\end{aligned}
$$

Partially-commutative context-free grammars

X B and C pairwise independent

$$
\begin{aligned}
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{XBC} \quad \mathrm{BC} \quad \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
& \mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{C} \\
& \text { language }=\begin{array}{l}
\# \mathrm{c}=\# \mathrm{~b}=\# \mathrm{c}, \\
\mathrm{a} \text { "preceeds" } \mathrm{b} \text { and } \mathrm{c}
\end{array}
\end{aligned}
$$

Partially-commutative context-free grammars

only B and C independent

$$
\begin{array}{ll}
X \xrightarrow{a} X B C & B \xrightarrow{b} \\
X \xrightarrow{a} B C & C \xrightarrow{c} \\
\text { language }= &
\end{array}
$$

Partially-commutative context-free grammars

only B and C independent

$$
\begin{array}{ll}
X \xrightarrow{a} X B C & B \xrightarrow{b} \\
X \xrightarrow{a} B C & C \xrightarrow{c} \\
\text { language }=a . . a(b . . b \mid c . . c)
\end{array}
$$

Independence

Independence

- $\mathrm{V}=$ non-terminal symbols
$V=\{X, B, C\}$

Independence

- $\mathrm{V}=$ non-terminal symbols
$V=\{X, B, C\}$
- independence I = binary symmetric and irreflexive relation on V

$$
\mathrm{I}=\{(\mathrm{B}, \mathrm{C})\}
$$

Independence

- $\mathrm{V}=$ non-terminal symbols

$$
V=\{X, B, C\}
$$

- independence I = binary symmetric and irreflexive relation on V

$$
\mathrm{I}=\{(\mathrm{B}, \mathrm{C})\}
$$

- context-free: I is identity

Independence

- $\mathrm{V}=$ non-terminal symbols

$$
V=\{X, B, C\}
$$

- independence I = binary symmetric and irreflexive relation on V

$$
I=\{(B, C)\}
$$

- context-free: I is identity
- commutative context-free: $\mathrm{I}=\mathrm{V}^{2}$

Expressibility

partially-

 commutative PA context-freetrace context-free

Expressibility

```
bc a..a(b..b | c..c)
```

trace context-free

Expressibility

```
bc a..a(b..b | c..c)
```

trace context-free
(a..a b..b) |c..c

Expressibility

```
bc a..a(b..b | c..c)
```

trace context-free
(a..a b..b) | c..c

context-free processes

non-terminal = elementary process

context-free processes

context-free processes

Partially-commutative context-free processes

B and C independent

Partially-commutative context-free processes

Partially-commutative

 context-free processes
Transition rules

$$
\mathrm{X}_{\mathrm{w}} \xrightarrow{\mathrm{a}} \mathrm{vw} \quad \mathrm{w}, \mathrm{v} \in \mathrm{~V}^{*}
$$

if there is a production $X \xrightarrow{a} v$

Transition rules

if there is a production $X \xrightarrow{a} v$

Transition rules

if there is a production $X \xrightarrow{a} v$
process $=$ trace over (V, I)

BPC

BPC

BPC

BPC

Transitive BPC

Transitive BPC

transitive dependence $\mathrm{D}=\mathrm{V}^{2} \backslash \mathrm{I}$

Transitive BPC

transitive dependence $\mathrm{D}=\mathrm{V}^{2} \backslash \mathrm{I}$

Transitive BPC

transitive dependence $\mathrm{D}=\mathrm{V}^{2} \backslash \mathrm{I}$

Transitive BPC - example

$$
\begin{array}{ll}
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{XBC} & \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{BC} & \mathrm{C} \xrightarrow{\mathrm{c}}
\end{array}
$$

Transitive BPC - example

$$
\mathrm{I}=\{(\mathrm{X}, \mathrm{C}),(\mathrm{B}, \mathrm{C})\}
$$

$$
\begin{array}{ll}
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{XBC} & \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{BC} & \mathrm{C} \xrightarrow{\mathrm{c}}
\end{array}
$$

Transitive BPC - example

$$
\begin{gathered}
\mathrm{I}=\{(\mathrm{X}, \mathrm{C}),(\mathrm{B}, \mathrm{C})\} \\
\mathrm{D}=\{\{\mathrm{X}, \mathrm{~B}\},\{\mathrm{C}\}\} \\
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{XBC} \quad \mathrm{~B} \xrightarrow{\mathrm{~b}} \\
\mathrm{X} \xrightarrow{\mathrm{a}} \mathrm{BC} \quad \mathrm{C} \xrightarrow{\mathrm{c}}
\end{gathered}
$$

Transitive BPC - example

$$
\begin{aligned}
& I=\{(X, C),(B, C)\} \\
& D=\{\{X, B), C C\} \\
& X \xrightarrow{a} X B C \quad B \xrightarrow{b} \\
& X \xrightarrow{a} B C \quad C \xrightarrow{c}
\end{aligned}
$$

Transitive BPC - example

$$
\begin{aligned}
& I=\{(X, C),(B, C)\} \text { "threads" } \\
& D=\{\{X, B\},\{C\}\} \\
& X \xrightarrow{a} X B C \\
& B \xrightarrow{b} \\
& X \xrightarrow{a} B C \\
& \mathrm{C} \xrightarrow{\mathrm{C}} \\
& \text { language }=(\mathrm{a} . . \mathrm{ab} . . \mathrm{b}) \mid \mathrm{c} . . \mathrm{c} \text {, } \\
& \text { a "proceeds" c }
\end{aligned}
$$

Outline

What is "partially-commutative context-free" ? What is "processes" ?

- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
-Strong bisimilarity checking
Our contribution
- Outline of the algorithm
- Further research

Strong bisimilarity

normed processes

Strong bisimilarity

Strong bisimilarity

each elementary process
may terminate normed processes

Strong bisimilarity

each elementary process

may terminate

normed processes

- on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]

Strong bisimilarity

each elementary process

may terminate

normed processes

- on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]
- on normed PA, bisimulation is in 2-NEXPTIME [Hirshfeld, Jerrum '99]

Strong bisimilarity

each elementary process

may terminate normed processes

- on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]
- on normed PA, bisimulation is in 2-NEXPTIME [Hirshfeld, Jerrum '99]
- BPA ~ BPP is in P [Jančar, Kot, Sawa '08]

Strong bisimilarity

Challenge 1:

to extend the tractable class

Challenge 2:

BPA and BPP algorithms are totally different

Contribution

Theorem:
Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Contribution

Theorem:
Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Contribution

Theorem:
Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Remark:
One polynomial-time algorithm for both BPA and BPP

Contribution

Idea:
The BPP algorithm works for BPA just as well!

Contribution

Idea:

The BPP algorithm works for BPA just as well!
Naive implementation in exponential time

Contribution

Idea:

The BPP algorithm works for BPA just as well!
Naive implementation in exponential time

Compression of strings helps

Contribution

Idea:
The BPP algorithm works for BPA just as well!

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?

Strong bisimilarity checking
Our contribution

- Outline of the algorithm
- Further research

Outline

- What is "partially-commutative context-free" ?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution

Outline of the algorithm
\int Further research

Outline of the algorithm

Bisimilarity ~ is a congruence with the unique decomposition property

Outline of the algorithm

Bisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Outline of the algorithm

Bisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Outline of the algorithm

 in BPC it isn'tBisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Outline of the algorithm

Bisimilarity ~ is a congruence with
 the unique decomposition property
 Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Unique decomposition

like prime decomposition of natural numbers

Unique decomposition

Each non-terminal X is either:

Unique decomposition

Each non-terminal X is either:

$$
\alpha \neq x
$$

- decomposable: $X \sim \alpha$, or

Unique decomposition

Each non-terminal X is either:

- decomposable: $X \sim \alpha$, or
- non-decomposable, or prime

Unique decomposition

Each non-terminal X is either:

- decomposable: X ~ α, or
- non-decomposable, or prime

Each process decomposes uniquely into primes

Unique decomposition

Each non-terminal X is either:

- decomposable: X ~ α, or
- non-decomposable, or prime

Each process decomposes uniquely into primes

Makes sense for congruences other than ~

Cancellation

if $\alpha \gamma \sim \beta \gamma$ then $\alpha \sim \beta$

Cancellation

if $\alpha \gamma \sim \beta \gamma$ then $\alpha \sim \beta$
follows from the unique decomposition

Decomposition vs cancellation

BPA
BPP

Decomposition vs cancellation

BPA
BPP
cancellation

Decomposition vs cancellation

BPA
BPP
cancellation

Decomposition vs cancellation

BPA
BPP

cancellation

decomposition
decomposition

Decomposition vs cancellation

cancellation

decomposition
decomposition

cancellation

Decomposition vs cancellation

BPA
cancellation

decomposition

BPP
decomposition

cancellation

Decomposition vs cancellation

BPC

weak cancellation

Decomposition vs cancellation

BPC
weak cancellation

decomposition

Decomposition vs cancellation

BPC
weak cancellation

decomposition

cancellation

Decomposition vs cancellation

Theorem:
Each congruence on transitive BPC that is:

Decomposition vs cancellation

Theorem:
Each congruence on transitive BPC that is:

- norm-reducing bisimulation

Decomposition vs cancellation

Theorem:
Each congruence on transitive BPC that is:

- norm-reducing bisimulation
- weakly cancellative

Decomposition vs cancellation

Theorem:
Each congruence on transitive BPC that is:

- norm-reducing bisimulation
- weakly cancellative
has unique decomposition property

Decomposition vs cancellation

Theorem:
Each congruence on transitive BPC that is: - norm-reducing bisimulation

- weakly cancellative
has unique decomposition property

Outline of the algorithm

Bisimularity ~ is a congruence with
the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Outline of the algorithm

Bisimularity ~ is a congruence with
 the unique decomposition property

Algorith computes iteratively bisimilarity base

Base

Base B:

Base

a succinct representation of a congruence with unique decomposition property

Base B:

Base

a succinct representation of a congruence with unique decomposition property

Base B:

- primes $\subseteq \mathrm{V}$

Base

a succinct representation of a congruence with unique decomposition property

Base B:

- primes $\subseteq \mathrm{V}$
- decompositions $X=\alpha$ into primes, one for each non-prime X

Bisimulation approximants

BPA
BPP

Bisimulation approximants

BPA
BPP
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

Bisimulation approximants

BPA
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

BPP
initialization:
B_{0} represents
norm-equality

Bisimulation approximants

BPA
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

refinement:
removing pairs
from B

BPP
initialization:
B_{0} represents
norm-equality

Bisimulation approximants

BPA
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

refinement:
removing pairs
from B

BPP
initialization:
B_{0} represents
norm-equality
refinement:
bisimulation
"expansion"

Bisimulation approximants

BPA
BPC ?
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

refinement:
removing pairs
from B

BPP
initialization:
B_{0} represents norm-equality
refinement:
bisimulation
"expansion"

Bisimulation approximants

BPA
initialization:

$$
\mathrm{B}_{0} \supseteq \mathrm{~B}_{\sim}
$$

refinement:
removing pairs
from B

BPP

Further research

Further research

- beyond transitive BPC

Further research

- beyond transitive BPC
- expressibility of "partially-commutative context-free"

Further research

- beyond transitive BPC
- expressibility of "partially-commutative context-free"
- decidability for non-normed processes

Further research

- beyond transitive BPC
- expressibility of "partially-commutative context-free"
- decidability for non-normed processes
- beyond strong bisimilarity

The algorithm

strong bisimulation

on BPP

[Hirshfeld, Jerrum, Moller '96]

The algorithm

strong bisimulation on BPA

strong bisimulation on BPP
[Hirshfeld, Jerrum, Moller '96]

The algorithm

strong bisimulation

on BPA

strong bisimulation on BPP

[Hirshfeld, Jerrum, Moller '96]
other bisimulations on BPP
[Froeschle, Lasota '06]

The algorithm

strong bisimulation on BPA

strong bisimulation on BPP
[Hirshfeld, Jerrum, Moller '96]

Thanks!

Question:

is BPA ~ BPP subsumed?

The answer: no!

Thanks!

