Partially-commutative context-free processes

Wojciech Czerwiński Sibylle Froeschle Sławomir Lasota

Concur 2009

• What is "partially-commutative context-free"?

- What is "partially-commutative context-free"?
- What is "processes" ?

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

- What is "partially-commutative context-free"?
 What is "processes"?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

 $X \longrightarrow aXBC$

in Greibach Normal Form under left-most derivations

 $X \longrightarrow aXBC$

in Greibach Normal Form under left-most derivations

in Greibach Normal Form under left-most derivations

 $X \xrightarrow{a} BC$

$$C \xrightarrow{C} C$$

language = $a \dots a b c \dots b c$

Commutative context-free grammars

in Greibach Normal Form under left-most derivations

 $X \xrightarrow{a} XBC$

 $X \xrightarrow{a} BC$

$$2 \xrightarrow{C} \rightarrow$$

language = a ... a bc ... bc

Commutative context-free grammars

X B and C pairwise independent

language =

Commutative context-free grammars

X B and C pairwise independent

language = #a = #b = #c, a "preceeds" b and c

Partially-commutative context-free grammars

X B and C pairwise independent

language = #a = #b = #c, a "preceeds" b and c

Partially-commutative context-free grammars

only B and C independent

language =

Partially-commutative context-free grammars

only B and C independent

language = $a \dots a (b \dots b | c \dots c)$

• V = non-terminal symbols $V = \{ X, B, C \}$

- V = non-terminal symbols $V = \{ X, B, C \}$
- independence I = binary symmetric and irreflexive relation on V
 I = { (B,C) }

- V = non-terminal symbols $V = \{ X, B, C \}$
- independence I = binary symmetric and irreflexive relation on V
 I = { (B,C) }
- context-free: I is identity

- V = non-terminal symbols $V = \{ X, B, C \}$
- independence I = binary symmetric and irreflexive relation on V
 I = { (B,C) }
- context-free: I is identity
- commutative context-free: $I = V^2$

Expressibility

partiallycommutative PA context-free

trace context-free

trace context-free

Expressibility

bc a..a (b..b | c..c)

partiallycommutative context-free

trace context-free

. . .

PA

context-free processes

non-terminal = elementary process

context-free processes

context-free processes

Partially-commutative context-free processes

B and C independent

Partially-commutative context-free processes

Partially-commutative context-free processes

a

b

CB

a

a

Transition rules

w, $v \in V^*$

if there is a production $X \xrightarrow{a} v$

Transition rules

if there is a production $X \xrightarrow{a} v$
Transition rules

w, $v \in V^*$

if there is a production $X \xrightarrow{a} v$

process = trace over (V, I)

BPC

Partially-commutative context-free

Context-free

Commutative context-free

BPC

Partially-commutative context-free

BPA

Commutative context-free

Transitive BPC

transitive dependence $D = V^2 \setminus I$

Transitive BPC

transitive dependence $D = V^2 \setminus I$

Transitive BPC

transitive dependence $D = V^2 \setminus I$

Transitive BPC - example

Transitive BPC - example

 $I = \{ (X, C), (B, C) \}$

Transitive BPC - example

 $I = \{ (X, C), (B, C) \}$ $D = \{ \{X, B\}, \{C\} \}$

Transitive BPC - example
$$I = \{(X, C), (B, C)\}$$
"threads" $J = \{(X, B), \{C\}\}$ $X \rightarrow XBC$ $B \rightarrow B$ $X \rightarrow ABC$ $B \rightarrow B$ $C \rightarrow C$

Transitive BPC - example

$$I = \{(X, C), (B, C)\}$$

$$T = \{(X, B), \{C\}\}$$

$$X \xrightarrow{a} XBC \qquad B \xrightarrow{b}$$

$$X \xrightarrow{a} BC \qquad C \xrightarrow{c}$$

$$Ianguage = (a .. a b .. b) | c .. c,$$

$$a "preceeds" c$$

Outline

- What is "partially-commutative context-free"?
 What is "processes"?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

Outline

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
 - Outline of the algorithm
 - Further research

normed processes

each non-terminal generates a word

each elementary process may terminate

each elementary process may terminate

 on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]

each elementary process may terminate

- on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]
- on normed PA, bisimulation is in 2-NEXPTIME [Hirshfeld, Jerrum '99]

each elementary process may terminate

- on normed BPA and BPP, bisimulation is in P [Hirshfeld, Jerrum, Moller '96]
- on normed PA, bisimulation is in 2-NEXPTIME [Hirshfeld, Jerrum '99]
- BPA ~ BPP is in P [Jančar, Kot, Sawa '08]

Challenge 1:

to extend the tractable class

Challenge 2:

BPA and BPP algorithms are totally different

Theorem:

Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Theorem:

Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Theorem:

Bisimilarity is decidable in polynomial time in a subclass of transitive BPC

Remark:

One polynomial-time algorithm for both BPA and BPP

The BPP algorithm works for BPA just as well !

Idea:

The BPP algorithm works for BPA just as well ! Naive implementation in exponential time

Idea:

The BPP algorithm works for BPA just as well ! Naive implementation in exponential time Compression of strings helps

The BPP algorithm works for BPA just as well !!

Outline

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution
- Outline of the algorithm
- Further research

Outline

- What is "partially-commutative context-free"?
- What is "processes" ?
- Strong bisimilarity checking
- Our contribution

Outline of the algorithmFurther research

Bisimilarity ~ is a congruence with the unique decomposition property

Bisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Bisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

in BPC it isn't

Bisimilarity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base
Outline of the algorithm

Bisimilarity ~ is a congruence with

(the unique decomposition property)

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

like prime decomposition of natural numbers

Each non-terminal X is either:

α≠X

Each non-terminal X is either:

decomposable: X ~ α, or

Each non-terminal X is either:

- decomposable: $X \sim \alpha$, or
- non-decomposable, or prime

Each non-terminal X is either:

• decomposable: $X \sim \alpha$, or

• non-decomposable, or prime

Each process decomposes uniquely into primes

Each non-terminal X is either:

- decomposable: $X \sim \alpha$, or
- non-decomposable, or prime

Each process decomposes uniquely into primes

Makes sense for congruences other than ~

Cancellation

if $\alpha \gamma \sim \beta \gamma$ then $\alpha \sim \beta$

Cancellation

if $\alpha \gamma \sim \beta \gamma$ then $\alpha \sim \beta$

follows from the unique decomposition

BPA

BPA

cancellation

BPA

cancellation

BPA

cancellation

BPP

decomposition

decomposition

BPA

cancellation

BPP

decomposition

cancellation

weak cancellation

BPC

BPC

weak cancellation

decomposition

Decomposition vs cancellation BPC weak cancellation decomposition

cancellation

Each congruence on transitive BPC that is:

Each congruence on transitive BPC that is:norm-reducing bisimulation

Theorem:

Each congruence on transitive BPC that is:norm-reducing bisimulation

• weakly cancellative

Theorem:

Each congruence on transitive BPC that is:norm-reducing bisimulationweakly cancellative

has unique decomposition property

has unique decomposition property

Outline of the algorithm

Bisimularity ~ is a congruence with

(the unique decomposition property)

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Outline of the algorithm

Bisimularity ~ is a congruence with the unique decomposition property

Hence it is representable by a finite base

Algorithm computes iteratively the bisimilarity base

Base B:

a succinct representation of a congruence with unique decomposition property

Base B:

a succinct representation of a congruence with unique decomposition property

Base B:

• primes \subseteq V

a succinct representation of a congruence with unique decomposition property

Base B:

- primes \subseteq V
- decompositions X = α into primes, one for each non-prime X

BPA

BPA

initialization: $B_0 \supseteq B_-$

BPA

initialization: $B_0 \supseteq B_-$

BPP

<u>initialization:</u> B₀ represents norm-equality

BPA

$\frac{\text{initialization:}}{B_0 \supseteq B_2}$

<u>refinement:</u> removing pairs from B

BPP

<u>initialization:</u> B₀ represents norm-equality

BPA

$\frac{\text{initialization:}}{B_0 \supseteq B_-}$

<u>refinement:</u> removing pairs from B

BPP

initialization: B₀ represents norm-equality refinement:

> bisimulation "expansion"

Bisimulation approximants BPA BPP BPC? initialization: initialization: B_0 represents $B_0 \supseteq B_{\sim}$ norm-equality refinement: refinement: bisimulation removing pairs from **B** "expansion"

• beyond transitive BPC

- beyond transitive BPC
- expressibility of "partially-commutative context-free"

- beyond transitive BPC
- expressibility of "partially-commutative context-free"
- decidability for non-normed processes

- beyond transitive BPC
- expressibility of "partially-commutative context-free"
- decidability for non-normed processes
- beyond strong bisimilarity

strong bisimulation on BPP

[Hirshfeld, Jerrum, Moller '96]

strong bisimulation on BPA

strong bisimulation on BPP

[Hirshfeld, Jerrum, Moller '96]

strong bisimulation on BPA

strong bisimulation on BPP

other bisimulations on BPP

[Hirshfeld, Jerrum, Moller '96]

[Froeschle, Lasota '06]

Thanks!

is BPA ~ BPP subsumed?

29

Thanks!