
Partially-commutative
context-free processes

Wojciech Czerwiński Sibylle Froeschle
Sławomir Lasota

Concur 2009

Outline

2

Outline

What is “partially-commutative context-free” ?

2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
2

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
2

context-free grammars

XBCaX

3

context-free grammars
in Greibach Normal Form

under left-most derivations

XBCaX

3

context-free grammars
in Greibach Normal Form

under left-most derivations

XBCaX a

3

context-free grammars
in Greibach Normal Form

under left-most derivations

XBCaX

BCX a

B b

C c

a ... a bc ... bclanguage =

a

3

context-free grammars
in Greibach Normal Form

under left-most derivations

XBCaX

BCX a

B b

C c

a ... a bc ... bclanguage =

Commutative

a

3

context-free grammars

XBCaX

BCX a

B b

C c

language =

Commutative

B and pairwise independentCX

a

3

context-free grammars

XBCaX

BCX a

B b

C c

language =

Commutative

#a = #b = #c,
a “preceeds” b and c

B and pairwise independentCX

a

3

context-free grammars

XBCaX

BCX a

B b

C c

language = #a = #b = #c,
a “preceeds” b and c

Partially-commutative

B and pairwise independentCX

a

3

context-free grammars

XBCaX

BCX a

B b

C c

language =

Partially-commutative

B and independentConly

a

3

context-free grammars

XBCaX

BCX a

B b

C c

language =

Partially-commutative

B and independentC

a .. a (b .. b | c .. c)

only

a

3

Independence

4

Independence

V = non-terminal symbols V = { X, B, C }

4

Independence

V = non-terminal symbols V = { X, B, C }

independence I = binary symmetric and
irreflexive relation on V I = { (B,C) }

4

Independence

V = non-terminal symbols V = { X, B, C }

independence I = binary symmetric and
irreflexive relation on V I = { (B,C) }

context-free: I is identity

4

Independence

V = non-terminal symbols V = { X, B, C }

independence I = binary symmetric and
irreflexive relation on V I = { (B,C) }

context-free: I is identity

commutative context-free: I = V 2

4

Expressibility

partially-
commutative
context-free

PA

trace context-free

5

Expressibility

partially-
commutative
context-free

PA

trace context-free

bc a..a (b..b | c..c)

5

Expressibility

partially-
commutative
context-free

PA

trace context-free

bc a..a (b..b | c..c)

(a..a b..b) | c..c
5

Expressibility

partially-
commutative
context-free

PA

trace context-free

bc a..a (b..b | c..c)

(a..a b..b) | c..c

...

5

context-free processes

non-terminal = elementary process

6

context-free processes

X

BC

XBC

a

a

BCBC

a ...

a

6

context-free processes

X

BC

XBC

a

a

b
C

c
BCBC

bc
CBC a ...

a

c

6

context-free processes

X

BC

XBC

a

a

b
C

c
BCBC

bc
CBC a ...

a

c

B and C independent

6

Partially-commutative

context-free processes

X

BC

XBC

a

a

b
C

c
BCBC

bc
CBC a

b
B

b c

BBC
c

BB

CC

c

c

b

b ...

a

c

6

Partially-commutative

context-free processes

X

BC

XBC

a

a

b
C

c
BCBC

bc
CBC a

b
B

b c

BBC
c

BB

CC

c

c

b

b ...

a

c

bc

b c

6

Partially-commutative

Transition rules

X w a v w

if there is a production X a v

w, v ∈ V✶

7

Transition rules

X w a v w

if there is a production X a v

up to
transposition of

independent
non-terminals w, v ∈ V✶

7

Transition rules

X w a v w

if there is a production X a v

up to
transposition of

independent
non-terminals

process = trace over (V, I)

w, v ∈ V✶

7

BPC

Context-free
Commutative
context-free

Partially-commutative context-free

8

BPC

Commutative
context-free

Partially-commutative context-free

BPA

8

BPC

Partially-commutative context-free

BPA BPP

8

BPC

BPA BPP

BPC

8

Transitive BPC

BPA BPP

BPC

9

Transitive BPC
transitive dependence D = V \ I2

BPA BPP

BPC

9

Transitive BPC

transitive BPC

transitive dependence D = V \ I2

BPA BPP

BPC

9

Transitive BPC

transitive BPC

transitive dependence D = V \ I2

BPA BPP

BPC

9

XBCX a

BCX a

B b

C c

Transitive BPC - example

10

XBCX a

BCX a

B b

C c

Transitive BPC - example

I = { (X, C), (B, C) }

10

XBCX a

BCX a

B b

C c

Transitive BPC - example

I = { (X, C), (B, C) }
D = { {X, B}, {C} }

10

XBCX a

BCX a

B b

C c

Transitive BPC - example

I = { (X, C), (B, C) }
D = { {X, B}, {C} }

“threads”

10

XBCX a

BCX a

B b

C c

Transitive BPC - example

I = { (X, C), (B, C) }
D = { {X, B}, {C} }

language = (a .. a b .. b) | c .. c,
a “preceeds” c

“threads”

10

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
11

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
11

Strong bisimilarity

12

normed processes

Strong bisimilarity

each non-terminal
generates a word

12

normed processes

Strong bisimilarity

each elementary process
may terminate

12

normed processes

Strong bisimilarity

on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller ‘96]

each elementary process
may terminate

12

normed processes

Strong bisimilarity

on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller ‘96]

on normed PA, bisimulation is in 2-NEXPTIME
[Hirshfeld, Jerrum ’99]

each elementary process
may terminate

12

normed processes

Strong bisimilarity

on normed BPA and BPP, bisimulation is in P
[Hirshfeld, Jerrum, Moller ‘96]

on normed PA, bisimulation is in 2-NEXPTIME
[Hirshfeld, Jerrum ’99]

BPA ~ BPP is in P [Jančar, Kot, Sawa ‘08]

each elementary process
may terminate

12

normed processes

Challenge 1:

BPA and BPP algorithms are totally different

to extend the tractable class

Challenge 2:

Strong bisimilarity

13

Contribution

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Theorem:

14

Contribution

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Theorem:

BPC
transitive BPC

14

Contribution

Bisimilarity is decidable in polynomial time
in a subclass of transitive BPC

Theorem:

Remark:
One polynomial-time algorithm for both BPA
and BPP

14

Contribution

Idea:

The BPP algorithm works for BPA just as well !

15

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Naive implementation in exponential time

15

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Naive implementation in exponential time

Compression of strings helps

15

Contribution

Idea:

The BPP algorithm works for BPA just as well !

Naive implementation in exponential time

Compression of strings helps

15

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
16

Outline

What is “partially-commutative context-free” ?

What is “processes“ ?

Strong bisimilarity checking

Our contribution

Outline of the algorithm

Further research
16

Outline of the algorithm

Bisimilarity ~ is a congruence with
the unique decomposition property

17

Outline of the algorithm

Bisimilarity ~ is a congruence with

Hence it is representable by a

the unique decomposition property

finite base

17

Outline of the algorithm

Bisimilarity ~ is a congruence with

Hence it is representable by a

Algorithm

the unique decomposition property

computes iteratively the bisimilarity base

finite base

17

Outline of the algorithm

Bisimilarity ~ is a congruence with

Hence it is representable by a

Algorithm

the unique decomposition property

computes iteratively the bisimilarity base

finite base

in BPC it isn’t

17

Outline of the algorithm

Bisimilarity ~ is a congruence with

Hence it is representable by a

Algorithm

the unique decomposition property

computes iteratively the bisimilarity base

finite base

17

Unique decomposition

like prime decomposition of natural numbers

18

Unique decomposition

Each non-terminal X is either:

18

Unique decomposition

Each non-terminal X is either:

decomposable: X ~ α, or
α≠X

18

Unique decomposition

Each non-terminal X is either:

decomposable: X ~ α, or

non-decomposable, or prime

18

Unique decomposition

Each process decomposes uniquely into primes

Each non-terminal X is either:

decomposable: X ~ α, or

non-decomposable, or prime

18

Unique decomposition

Each process decomposes uniquely into primes

Each non-terminal X is either:

decomposable: X ~ α, or

non-decomposable, or prime

Makes sense for congruences other than ~
18

Cancellation

if α γ ~ β γ then α ~ β

19

Cancellation

if α γ ~ β γ then α ~ β

follows from the unique decomposition

19

Decomposition vs cancellation

BPA BPP

20

Decomposition vs cancellation

BPA

cancellation

BPP

20

Decomposition vs cancellation

BPA

cancellation

decomposition

BPP

20

Decomposition vs cancellation

BPA

cancellation

decomposition

BPP

decomposition

20

Decomposition vs cancellation

BPA

cancellation

decomposition

BPP

decomposition

cancellation

20

Decomposition vs cancellation

BPA

cancellation

decomposition

BPP

decomposition

cancellation

BPC ?

20

Decomposition vs cancellation

BPC weak cancellation

21

Decomposition vs cancellation

BPC weak cancellation

decomposition

21

Decomposition vs cancellation

BPC weak cancellation

decomposition

cancellation
21

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

22

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:
norm-reducing bisimulation

22

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:
norm-reducing bisimulation

weakly cancellative

22

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

has unique decomposition property

norm-reducing bisimulation

weakly cancellative

22

Decomposition vs cancellation

Theorem:

Each congruence on transitive BPC that is:

has unique decomposition property

norm-reducing bisimulation

weakly cancellative

not only bisimilarity

22

Outline of the algorithm

Bisimularity ~ is a congruence with

Hence it is representable by a

Algorithm

the unique decomposition property

computes iteratively the bisimilarity base

finite base

23

Outline of the algorithm

Bisimularity ~ is a congruence with

Hence it is representable by a

Algorithm

the unique decomposition property

computes iteratively the bisimilarity base

finite base

23

Base

Base B:

24

Base

Base B:

a succinct representation of a congruence
with unique decomposition property

24

Base

primes ⊆ V

Base B:

a succinct representation of a congruence
with unique decomposition property

24

Base

primes ⊆ V

decompositions X = α into primes, one for
each non-prime X

Base B:

a succinct representation of a congruence
with unique decomposition property

24

Bisimulation approximants

BPA BPPBPA

25

Bisimulation approximants

BPA BPP

initialization:

BPA

B ⊇ B 0 ~

25

Bisimulation approximants

BPA BPP

initialization:

BPA

B ⊇ B 0 ~

initialization:
B represents
norm-equality

0

25

Bisimulation approximants

BPA BPP

initialization:

BPA

refinement:

B ⊇ B 0 ~

removing pairs
from B

initialization:
B represents
norm-equality

0

25

Bisimulation approximants

BPA BPP

initialization:

BPA

refinement:

B ⊇ B 0 ~

removing pairs
from B

initialization:

refinement:

B represents
norm-equality

0

bisimulation
“expansion”

25

Bisimulation approximants

BPA BPP

initialization:

BPA

refinement:

B ⊇ B 0 ~

removing pairs
from B

initialization:

refinement:

B represents
norm-equality

0

bisimulation
“expansion”

BPC ?

25

Bisimulation approximants

BPA BPP

initialization:

BPA

refinement:

B ⊇ B 0 ~

removing pairs
from B

initialization:

refinement:

B represents
norm-equality

0

bisimulation
“expansion”

BPC ?

25

Further research

26

Further research

beyond transitive BPC

BPC
transitive BPC

26

Further research

beyond transitive BPC

expressibility of “partially-commutative
context-free”

BPC PA
trace

26

Further research

beyond transitive BPC

expressibility of “partially-commutative
context-free”

decidability for non-normed processes

26

Further research

beyond transitive BPC

expressibility of “partially-commutative
context-free”

decidability for non-normed processes

beyond strong bisimilarity

26

strong bisimulation
on BPP

[Hirshfeld, Jerrum, Moller ’96]
27

The algorithm

strong bisimulation
on BPP

[Hirshfeld, Jerrum, Moller ’96]

strong bisimulation
on BPA

27

The algorithm

strong bisimulation
on BPP

[Hirshfeld, Jerrum, Moller ’96]

strong bisimulation
on BPA

other bisimulations
on BPP

[Froeschle, Lasota ’06]
27

The algorithm

strong bisimulation
on BPP

[Hirshfeld, Jerrum, Moller ’96]

strong bisimulation
on BPA

other bisimulations
on BPP

[Froeschle, Lasota ’06]

?

27

The algorithm

Thanks!

28

Question:

is BPA ~ BPP subsumed?

transitive BPC

BPA BPP

BPC

29

The answer: no!

BPA

BPP

30

Thanks!

31

